1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
|
#!/usr/bin/env python
#
# This file is Copyright (c) 2010 by the GPSD project
# BSD terms apply: see the file COPYING in the distribution root for details.
#
# Collect and plot latency-profiling data from a running gpsd.
# Requires gnuplot.
#
import sys, os, time, getopt, socket, math, copy
import gps
class Baton:
"Ship progress indication to stderr."
def __init__(self, prompt, endmsg=None):
self.stream = sys.stderr
self.stream.write(prompt + "...")
if os.isatty(self.stream.fileno()):
self.stream.write(" \010")
self.stream.flush()
self.count = 0
self.endmsg = endmsg
self.time = time.time()
return
def twirl(self, ch=None):
if self.stream is None:
return
if ch:
self.stream.write(ch)
elif os.isatty(self.stream.fileno()):
self.stream.write("-/|\\"[self.count % 4])
self.stream.write("\010")
self.count = self.count + 1
self.stream.flush()
return
def end(self, msg=None):
if msg == None:
msg = self.endmsg
if self.stream:
self.stream.write("...(%2.2f sec) %s.\n" % (time.time() - self.time, msg))
return
class spaceplot:
"Total times without instrumentation."
name = "space"
def __init__(self):
self.fixes = []
def d(self, a, b):
return math.sqrt((a[0] - b[0])**2 + (a[1] - b[1])**2)
def gather(self, session):
# Include altitude, not used here, for 3D plot experiments.
# Watch out for the NaN value from gps.py.
self.fixes.append((session.fix.latitude, session.fix.longitude, session.fix.altitude))
return True
def header(self, session):
res = "# Position uncertainty, %s, %s, %ds cycle\n" % \
(title, session.gps_id, session.cycle)
return res
def data(self, unused):
res = ""
for i in range(len(self.recentered)):
(lat, lon) = self.recentered[i][:2]
(raw1, raw2, alt) = self.fixes[i]
res += "%f\t%f\t%f\t%f\t%f\n" % (lat, lon, raw1, raw2, alt)
return res
def plot(self, unused, session):
if len(self.fixes) == 0:
sys.stderr.write("No fixes collected, can't estimate accuracy.")
sys.exit(1)
# centroid is just arithmetic avg of lat,lon
self.centroid = (sum(map(lambda x:x[0], self.fixes))/len(self.fixes), sum(map(lambda x:x[1], self.fixes))/len(self.fixes))
# Sort fixes by distance from centroid
self.fixes.sort(lambda x, y: cmp(self.d(self.centroid, x), self.d(self.centroid, y)))
# Convert fixes to offsets from centroid in meters
self.recentered = map(lambda fix: gps.MeterOffset(self.centroid, fix[:2]), self.fixes)
# Compute CEP(50%)
cep_meters = gps.EarthDistance(self.centroid[:2], self.fixes[int(len(self.fixes)*0.50)][:2])
cep95_meters = gps.EarthDistance(self.centroid[:2], self.fixes[int(len(self.fixes)*0.95)][:2])
cep99_meters = gps.EarthDistance(self.centroid[:2], self.fixes[int(len(self.fixes)*0.99)][:2])
alt_sum = 0
alt_num = 0
alt_fixes = []
lon_max = -9999
for i in range(len(self.recentered)):
(lat, lon) = self.recentered[i][:2]
(raw1, raw2, alt) = self.fixes[i]
if not gps.isnan(alt):
alt_sum += alt
alt_fixes.append( alt)
alt_num += 1
if lon > lon_max :
lon_max = lon
if alt_num == 0:
alt_avg = gps.NaN
alt_ep = gps.NaN
else:
alt_avg = alt_sum / alt_num
# Sort fixes by distance from average altitude
alt_fixes.sort(lambda x, y: cmp(abs(alt_avg - x), abs(alt_avg - y)))
alt_ep = abs( alt_fixes[ len(alt_fixes)/2 ] - alt_avg)
if self.centroid[0] < 0:
latstring = "%fS" % -self.centroid[0]
elif self.centroid[0] == 0:
latstring = "0"
else:
latstring = "%fN" % self.centroid[0]
if self.centroid[1] < 0:
lonstring = "%fW" % -self.centroid[1]
elif self.centroid[1] == 0:
lonstring = "0"
else:
lonstring = "%fE" % self.centroid[1]
fmt = "set autoscale\n"
fmt += 'set key below\n'
fmt += 'set key title "%s"\n' % time.asctime()
fmt += 'set size ratio -1\n'
fmt += 'set style line 2 pt 1\n'
fmt += 'set style line 3 pt 2\n'
fmt += 'set xlabel "Meters east from %s"\n' % lonstring
fmt += 'set ylabel "Meters north from %s"\n' % latstring
fmt += 'set border 15\n'
if not gps.isnan(alt_avg):
fmt += 'set y2label "Meters Altitude from %f"\n' % alt_avg
fmt += 'set ytics nomirror\n'
fmt += 'set y2tics\n'
fmt += 'cep=%f\n' % self.d((0,0), self.recentered[len(self.fixes)/2])
fmt += 'cep95=%f\n' % self.d((0,0), self.recentered[int(len(self.fixes)*0.95)])
fmt += 'cep99=%f\n' % self.d((0,0), self.recentered[int(len(self.fixes)*0.99)])
fmt += 'set parametric\n'
fmt += 'set trange [0:2*pi]\n'
fmt += 'cx(t, r) = sin(t)*r\n'
fmt += 'cy(t, r) = cos(t)*r\n'
fmt += 'chlen = cep/20\n'
fmt += "set arrow from -chlen,0 to chlen,0 nohead\n"
fmt += "set arrow from 0,-chlen to 0,chlen nohead\n"
if len(self.fixes) > 1000: plot_style = 'dots'
else: plot_style = 'points'
fmt += 'plot "-" using 1:2 with ' + plot_style + ' ls 3 title "%d GPS fixes" ' % (len(self.fixes))
if not gps.isnan(alt_avg):
fmt += ', "-" using ( %f ):($5 < 100000 ? $5 - %f : 1/0) axes x1y2 with %s ls 2 title " %d Altitude fixes, Average = %f, EP (50%%) = %f"' % (lon_max +1, alt_avg, plot_style, alt_num, alt_avg, alt_ep)
fmt += ', cx(t, cep),cy(t, cep) ls 1 title "CEP (50%%) = %f meters"' % (cep_meters)
fmt += ', cx(t, cep95),cy(t, cep95) title "CEP (95%%) = %f meters"' % (cep95_meters)
fmt += ', cx(t, cep99),cy(t, cep99) title "CEP (99%%) = %f meters"' % (cep99_meters)
fmt += "\n"
fmt += self.header(session)
fmt += self.data(session)
if not gps.isnan(alt_avg):
fmt += "e\n" + self.data(session)
return fmt
class uninstrumented:
"Total times without instrumentation."
name = "uninstrumented"
def __init__(self):
self.stats = []
def gather(self, session):
if session.fix.time:
seconds = time.time() - session.fix.time
self.stats.append(seconds)
return True
else:
return False
def header(self, session):
return "# Uninstrumented total latency, %s, %s, %dN%d, cycle %ds\n" % \
(title,
session.gps_id, session.baudrate,
session.stopbits, session.cycle)
def data(self, unused):
res = ""
for seconds in self.stats:
res += "%2.6lf\n" % seconds
return res
def plot(self, title, session):
fmt = '''
set autoscale
set key below
set key title "Uninstrumented total latency, %s, %s, %dN%d, cycle %ds"
plot "-" using 0:1 title "Total time" with impulses
'''
res = fmt % (title,
session.gps_id, session.baudrate,
session.stopbits, session.cycle)
res += self.header(session)
return res + self.data(session)
class rawplot:
"All measurement, no deductions."
name = "raw"
def __init__(self):
self.stats = []
def gather(self, session):
self.stats.append(copy.copy(session.timings))
return True
def header(self, session):
res = "# Raw latency data, %s, %s, %dN%d, cycle %ds\n" % \
(title,
session.gps_id, session.baudrate,
session.stopbits, session.cycle)
res += "# tag len xmit "
for hn in ("T1", "D1", "E2", "T2", "D2"):
res += "%-13s" % hn
res += "\n#------- ----- --------------------"
res += (" " + ("-" * 11)) * 5
return res + "\n"
def data(self, unused):
res = ""
for timings in self.stats:
res += "% 8s %4d %2.9f %2.9f %2.9f %2.9f %2.9f %2.9f\n" \
% (timings.tag,
timings.len,
timings.xmit,
timings.recv - timings.xmit,
timings.decode - timings.recv,
timings.emit - timings.decode,
timings.c_recv - timings.emit,
timings.c_decode - timings.c_recv)
return res
def plot(self, unused, session):
fmt = '''
set autoscale
set key below
set key title "Raw latency data, %s, %s, %dN%d, cycle %ds"
plot \
"-" using 0:8 title "D2 = Client decode time" with impulses, \
"-" using 0:7 title "T2 = TCP/IP latency" with impulses, \
"-" using 0:6 title "E2 = Daemon encode time" with impulses, \
"-" using 0:5 title "D1 = Daemon decode time" with impulses, \
"-" using 0:4 title "T1 = RS232 time" with impulses
'''
res = fmt % (title,
session.gps_id, session.baudrate,
session.stopbits, session.cycle)
res += self.header(session)
res += (self.data(session) + "e\n") * 5
return res
class splitplot:
"Discard base time, use color to indicate different tags."
name = "split"
sentences = []
def __init__(self):
self.stats = []
def gather(self, session):
self.stats.append(copy.copy(session.timings))
if session.timings.tag not in self.sentences:
self.sentences.append(session.timings.tag)
return True
def header(self, session):
res = "# Split latency data, %s, %s, %dN%d, cycle %ds\n#" % \
(title,
session.gps_id, session.baudrate,
session.stopbits, session.cycle)
for s in splitplot.sentences:
res += "%8s\t" % s
for hn in ("T1", "D1", "E2", "T2", "D2", "length"):
res += "%8s\t" % hn
res += "tag\n# "
for s in tuple(splitplot.sentences) + ("T1", "D1", "E2", "T2", "D2", "length"):
res += "---------\t"
return res + "--------\n"
def data(self, unused):
res = ""
for timings in self.stats:
for s in splitplot.sentences:
if s == timings.tag:
res += "%2.6f\t" % timings.xmit
else:
res += "- \t"
res += "%2.6f\t%2.6f\t%2.6f\t%2.6f\t%2.6f\t%8d\t# %s\n" \
% (timings.recv - timings.xmit,
timings.decode - timings.recv,
timings.emit - timings.decode,
timings.c_recv - timings.emit,
timings.c_decode - timings.c_recv,
timings.len,
timings.tag)
return res
def plot(self, title, session):
fixed = '''
set autoscale
set key below
set key title "Filtered latency data, %s, %s, %dN%d, cycle %ds"
plot \
"-" using 0:%d title "D2 = Client decode time" with impulses, \
"-" using 0:%d title "T2 = TCP/IP latency" with impulses, \
"-" using 0:%d title "E2 = Daemon encode time" with impulses, \
"-" using 0:%d title "D1 = Daemon decode time" with impulses, \
"-" using 0:%d title "T1 = RS232 time" with impulses, \
'''
sc = len(splitplot.sentences)
fmt = fixed % (title,
session.gps_id, session.baudrate,
session.stopbits, session.cycle,
sc+5,
sc+4,
sc+3,
sc+2,
sc+1)
for i in range(sc):
fmt += ' "-" using 0:%d title "%s" with impulses,' % \
(i+1, self.sentences[i])
res = fmt[:-1] + "\n"
res += self.header(session)
res += (self.data(session) + "e\n") * (sc + 5)
return res
class cycle:
"Send-cycle analysis."
name = "cycle"
def __init__(self):
self.stats = []
def gather(self, session):
self.stats.append(copy.copy(session.timings))
return True
def plot(self, title, session):
msg = ""
def roundoff(n):
# Round a time to hundredths of a second
return round(n*100) / 100.0
intervals = {}
last_seen = {}
last_command = ""
for timing in self.stats:
# Throw out everything but the leader in each GSV group
if timing.tag[-3:] == "GSV" and last_command[-3:] == "GSV":
continue
last_command = timing.tag
# Record timings
received = timing.d_received()
if not timing.tag in intervals:
intervals[timing.tag] = []
if timing.tag in last_seen:
intervals[timing.tag].append(roundoff(received - last_seen[timing.tag]))
last_seen[timing.tag] = received
# Step three: get command frequencies and the basic send cycle time
frequencies = {}
for (key, interval_list) in intervals.items():
frequencies[key] = {}
for interval in interval_list:
frequencies[key][interval] = frequencies[key].get(interval, 0) + 1
# filter out noise
for key in frequencies:
distribution = frequencies[key]
for interval in distribution.keys():
if distribution[interval] < 2:
del distribution[interval]
cycles = {}
for key in frequencies:
distribution = frequencies[key]
if len(frequencies[key].values()) == 1:
# The value is uniqe after filtering
cycles[key] = distribution.keys()[0]
else:
# Compute the mode
maxfreq = 0
for (interval, frequency) in distribution.items():
if distribution[interval] > maxfreq:
cycles[key] = interval
maxfreq = distribution[interval]
msg += "Cycle report %s, %s, %dN%d, cycle %ds" % \
(title,
session.gps_id, session.baudrate,
session.stopbits, session.cycle)
msg += "The sentence set emitted by this GPS is: %s\n" % " ".join(intervals.keys())
for key in cycles:
if len(frequencies[key].values()) == 1:
if cycles[key] == 1:
msg += "%s: is emitted once a second.\n" % key
else:
msg += "%s: is emitted once every %d seconds.\n" % (key, cycles[key])
else:
if cycles[key] == 1:
msg += "%s: is probably emitted once a second.\n" % key
else:
msg += "%s: is probably emitted once every %d seconds.\n" % (key, cycles[key])
sendcycle = min(*cycles.values())
if sendcycle == 1:
msg += "Send cycle is once per second.\n"
else:
msg += "Send cycle is once per %d seconds.\n" % sendcycle
return msg
formatters = (spaceplot, uninstrumented, rawplot, splitplot, cycle)
def plotframe(await, fname, speed, threshold, title):
"Return a string containing a GNUplot script "
if fname:
for formatter in formatters:
if formatter.name == fname:
plotter = formatter()
break
else:
sys.stderr.write("gpsprof: no such formatter.\n")
sys.exit(1)
try:
session = gps.gps(verbose=verbose)
except socket.error:
sys.stderr.write("gpsprof: gpsd unreachable.\n")
sys.exit(1)
# Initialize
session.read()
if session.version == None:
print >>sys.stderr, "gpsprof: requires gpsd to speak new protocol."
sys.exit(1)
session.send("?DEVICES;")
while session.read() != -1:
if session.data["class"] == "DEVICES":
break
if len(session.data.devices) != 1:
print >>sys.stderr, "gpsprof: exactly one device must be attached."
sys.exit(1)
device = session.data.devices[0]
path = device["path"]
# Set parameters
if speed:
session.send('?DEVICE={"path":"%s","bps:":%d}' % (path, speed))
session.read()
if session.baudrate != speed:
sys.stderr.write("gpsprof: baud rate change failed.\n")
options = ""
if formatter not in (spaceplot, uninstrumented):
options = ',"timing":true'
try:
session.send('?WATCH={"enable":true,"json":true%s}' % options)
baton = Baton("gpsprof: looking for fix", "done")
countdown = await
basetime = time.time()
while countdown > 0:
if session.read() == -1:
sys.stderr.write("gpsprof: gpsd has vanished.\n")
sys.exit(1)
baton.twirl()
if session.data["class"] == "WATCH":
if "timing" in options and not session.data.get("timing"):
sys.stderr.write("gpsprof: timing is not enabled.\n")
sys.exit(1)
# We can get some funky artifacts at start of session
# apparently due to RS232 buffering effects. Ignore
# them.
if threshold and time.time()-basetime < session.cycle * threshold:
continue
if session.fix.mode <= gps.MODE_NO_FIX:
continue
if countdown == await:
sys.stderr.write("first fix in %.2fsec, gathering %d samples..." % (time.time()-basetime,await))
if plotter.gather(session):
countdown -= 1
baton.end()
finally:
session.send('?WATCH={"enable":false,"timing":false}')
command = plotter.plot(title, session)
del session
return command
if __name__ == '__main__':
try:
(options, arguments) = getopt.getopt(sys.argv[1:], "f:hm:n:s:t:D:")
formatter = "space"
raw = False
speed = 0
title = time.ctime()
threshold = 0
await = 100
verbose = 0
for (switch, val) in options:
if (switch == '-f'):
formatter = val
elif (switch == '-m'):
threshold = int(val)
elif (switch == '-n'):
await = int(val)
elif (switch == '-s'):
speed = int(val)
elif (switch == '-t'):
title = val
elif (switch == '-D'):
verbose = int(val)
elif (switch == '-h'):
sys.stderr.write(\
"usage: gpsprof [-h] [-D debuglevel] [-m threshold] [-n samplecount] \n"
+ "\t[-f {" + "|".join(map(lambda x: x.name, formatters)) + "}] [-s speed] [-t title]\n")
sys.exit(0)
sys.stdout.write(plotframe(await,formatter,speed,threshold,title))
except KeyboardInterrupt:
pass
# The following sets edit modes for GNU EMACS
# Local Variables:
# mode:python
# End:
|