1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
|
#!/usr/bin/env python
#
# This file is Copyright (c) 2010 by the GPSD project
# BSD terms apply: see the file COPYING in the distribution root for details.
#
# Collect and plot latency-profiling data from a running gpsd.
# Requires gnuplot.
#
# This code runs compatibly under Python 2 and 3.x for x >= 2.
# Preserve this property!
from __future__ import absolute_import, print_function, division
import copy
import getopt
import gps
import math
import os
import signal
import socket
import sys
import time
class Baton(object):
"Ship progress indication to stderr."
def __init__(self, prompt, endmsg=None):
self.stream = sys.stderr
self.stream.write(prompt + "...")
if os.isatty(self.stream.fileno()):
self.stream.write(" \b")
self.stream.flush()
self.count = 0
self.endmsg = endmsg
self.time = time.time()
return
def twirl(self, ch=None):
if self.stream is None:
return
if ch:
self.stream.write(ch)
elif os.isatty(self.stream.fileno()):
self.stream.write("-/|\\"[self.count % 4])
self.stream.write("\b")
self.count = self.count + 1
self.stream.flush()
return
def end(self, msg=None):
if msg is None:
msg = self.endmsg
if self.stream:
self.stream.write("...(%2.2f sec) %s.\n" % (time.time() - self.time, msg))
return
class plotter(object):
"Generic class for gathering and plotting sensor statistics."
def __init__(self):
self.fixes = []
self.start_time = int(time.time())
self.watch = set(['TPV'])
def whatami(self):
"How do we identify this plotting run?"
desc = "%s, %s, " % \
(gps.misc.isotime(self.start_time),
self.device.get('driver', "unknown"))
if 'bps' in self.device:
desc += "%d %dN%d, cycle %ds" % \
(self.device['bps'], 9 - self.device['stopbits'],
self.device['stopbits'], self.device['cycle'])
else:
desc += self.device['path']
return desc
def collect(self, verbose, logfp=None):
"Collect data from the GPS."
try:
self.session = gps.gps(host=host, port=port, verbose=verbose)
except socket.error:
sys.stderr.write("gpsprof: gpsd unreachable.\n")
sys.exit(1)
# Initialize
self.session.read()
if self.session.version is None:
sys.stderr.write("gpsprof: requires gpsd to speak new protocol.\n")
sys.exit(1)
# Set parameters
flags = gps.WATCH_ENABLE | gps.WATCH_JSON
if self.requires_time:
flags |= gps.WATCH_TIMING
if device:
flags |= gps.WATCH_DEVICE
try:
signal.signal(signal.SIGUSR1, lambda empty, unused: sys.stderr.write("%d of %d (%d%%)..." % (await - countdown, await, ((await - countdown) * 100.0 / await))))
signal.siginterrupt(signal.SIGUSR1, False)
self.session.stream(flags, device)
baton = Baton("gpsprof: %d looking for fix" % os.getpid(), "done")
countdown = await
basetime = time.time()
while countdown > 0:
if self.session.read() == -1:
sys.stderr.write("gpsprof: gpsd has vanished.\n")
sys.exit(1)
baton.twirl()
if self.session.data["class"] == "ERROR":
sys.stderr.write(" ERROR: %s.\n" % self.session.data["message"])
sys.exit(1)
if self.session.data["class"] == "DEVICES":
if len(self.session.data["devices"]) != 1 and not device:
sys.stderr.write(" ERROR: multiple devices connected, you must explicitly specify the device.\n")
sys.exit(1)
for i in range(len(self.session.data["devices"])):
self.device = copy.copy(self.session.data["devices"][i])
if self.device['path'] == device:
break
if self.session.data["class"] == "WATCH":
if "timing" in options and not self.session.data.get("timing"):
sys.stderr.write("timing is not enabled.\n")
sys.exit(1)
# Log before filtering - might be good for post-analysis.
if logfp:
logfp.write(self.session.response)
# Ignore everything but what we're told to
if self.session.data["class"] not in self.watch:
continue
# We can get some funky artifacts at start of self.session
# apparently due to RS232 buffering effects. Ignore
# them.
if threshold and time.time() - basetime < self.session.cycle * threshold:
continue
if self.session.fix.mode <= gps.MODE_NO_FIX:
continue
if countdown == await:
sys.stderr.write("first fix in %.2fsec, gathering %d samples..." % (time.time() - basetime, await))
if self.sample():
countdown -= 1
baton.end()
finally:
self.session.stream(gps.WATCH_DISABLE | gps.WATCH_TIMING)
signal.signal(signal.SIGUSR1, signal.SIG_DFL)
def replot(self, infp):
"Replot from a JSON log file."
baton = Baton("gpsprof: replotting", "done")
self.session = gps.gps(host=None)
for line in infp:
baton.twirl()
self.session.unpack(line)
if self.session.data["class"] == "DEVICES":
self.device = copy.copy(self.session.data["devices"][0])
elif self.session.data["class"] not in self.watch:
continue
self.sample()
baton.end()
def dump(self):
"Dump the raw data for post-analysis."
return self.header() + self.data()
class spaceplot(plotter):
"Spatial scattergram of fixes."
name = "space"
requires_time = False
def __init__(self):
plotter.__init__(self)
self.recentered = []
def d(self, a, b):
return math.sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)
def sample(self):
# Watch out for the NaN value from gps.py.
self.fixes.append((self.session.fix.latitude, self.session.fix.longitude, self.session.fix.altitude))
return True
def header(self):
return "# Position uncertainty, %s\n" % self.whatami()
def postprocess(self):
if not self.recentered:
# centroid is just arithmetic avg of lat,lon
self.centroid = (sum([x[0] for x in self.fixes]) / len(self.fixes), sum([x[1] for x in self.fixes]) / len(self.fixes))
# Sort fixes by distance from centroid
self.fixes.sort(key=lambda p: self.d(self.centroid, p))
# Convert fixes to offsets from centroid in meters
self.recentered = [gps.MeterOffset(self.centroid, fix[:2]) for fix in self.fixes]
def data(self):
res = ""
for i in range(len(self.recentered)):
(lat, lon) = self.recentered[i][:2]
(raw1, raw2, alt) = self.fixes[i]
res += "%f\t%f\t%f\t%f\t%f\n" % (lat, lon, raw1, raw2, alt)
return res
def plot(self):
# Compute CEP(50%)
cep_meters = gps.EarthDistance(self.centroid[:2], self.fixes[int(len(self.fixes) * 0.50)][:2])
cep95_meters = gps.EarthDistance(self.centroid[:2], self.fixes[int(len(self.fixes) * 0.95)][:2])
cep99_meters = gps.EarthDistance(self.centroid[:2], self.fixes[int(len(self.fixes) * 0.99)][:2])
alt_sum = 0
alt_num = 0
alt_fixes = []
lon_max = -9999
for i in range(len(self.recentered)):
(_lat, lon) = self.recentered[i][:2]
(_raw1, _raw2, alt) = self.fixes[i]
if not gps.isnan(alt):
alt_sum += alt
alt_fixes.append(alt)
alt_num += 1
if lon > lon_max:
lon_max = lon
if alt_num == 0:
alt_avg = gps.NaN
alt_ep = gps.NaN
else:
alt_avg = alt_sum / alt_num
# Sort fixes by distance from average altitude
alt_fixes.sort(key=lambda a: abs(alt_avg - a))
alt_ep = abs(alt_fixes[len(alt_fixes) // 2] - alt_avg)
if self.centroid[0] < 0:
latstring = "%fS" % -self.centroid[0]
elif self.centroid[0] == 0:
latstring = "0"
else:
latstring = "%fN" % self.centroid[0]
if self.centroid[1] < 0:
lonstring = "%fW" % -self.centroid[1]
elif self.centroid[1] == 0:
lonstring = "0"
else:
lonstring = "%fE" % self.centroid[1]
fmt = "set autoscale\n"
fmt += 'set key below\n'
fmt += 'set key title "%s"\n' % gps.misc.isotime(int(time.time()))
fmt += 'set size ratio -1\n'
fmt += 'set style line 2 pt 1\n'
fmt += 'set style line 3 pt 2\n'
fmt += 'set xlabel "Meters east from %s"\n' % lonstring
fmt += 'set ylabel "Meters north from %s"\n' % latstring
fmt += 'set border 15\n'
if not gps.isnan(alt_avg):
fmt += 'set y2label "Meters Altitude from %f"\n' % alt_avg
fmt += 'set ytics nomirror\n'
fmt += 'set y2tics\n'
fmt += 'cep=%f\n' % self.d((0, 0), self.recentered[len(self.fixes) // 2])
fmt += 'cep95=%f\n' % self.d((0, 0), self.recentered[int(len(self.fixes) * 0.95)])
fmt += 'cep99=%f\n' % self.d((0, 0), self.recentered[int(len(self.fixes) * 0.99)])
fmt += 'set parametric\n'
fmt += 'set trange [0:2*pi]\n'
fmt += 'cx(t, r) = sin(t)*r\n'
fmt += 'cy(t, r) = cos(t)*r\n'
fmt += 'chlen = cep/20\n'
fmt += "set arrow from -chlen,0 to chlen,0 nohead\n"
fmt += "set arrow from 0,-chlen to 0,chlen nohead\n"
if len(self.fixes) > 1000:
plot_style = 'dots'
else:
plot_style = 'points'
fmt += 'plot "-" using 1:2 with ' + plot_style + ' ls 3 title "%d GPS fixes" ' % (len(self.fixes))
if not gps.isnan(alt_avg):
fmt += ', "-" using ( %f ):($5 < 100000 ? $5 - %f : 1/0) axes x1y2 with %s ls 2 title " %d Altitude fixes, Average = %f, EP (50%%) = %f"' % (lon_max + 1, alt_avg, plot_style, alt_num, alt_avg, alt_ep)
fmt += ', cx(t, cep),cy(t, cep) ls 1 title "CEP (50%%) = %f meters"' % (cep_meters)
fmt += ', cx(t, cep95),cy(t, cep95) title "CEP (95%%) = %f meters"' % (cep95_meters)
fmt += ', cx(t, cep99),cy(t, cep99) title "CEP (99%%) = %f meters"' % (cep99_meters)
fmt += "\n"
fmt += self.header()
fmt += self.data()
if not gps.isnan(alt_avg):
fmt += "e\n" + self.data()
return fmt
class timeplot(plotter):
"Time drift against PPS."
name = "time"
requires_time = True
def __init__(self):
plotter.__init__(self)
self.watch = set(['PPS'])
def sample(self):
if self.session.data["class"] == "PPS":
self.fixes.append((self.session.data['real_sec'],
self.session.data['real_nsec'],
self.session.data['clock_sec'],
self.session.data['clock_nsec']))
return True
def header(self):
return "# Time drift against PPS, %s\n" % self.whatami()
def postprocess(self):
pass
def data(self):
res = ""
for (real_sec, real_nsec, clock_sec, clock_nsec) in self.fixes:
res += "%d\t%d\t%d\t%d\n" % (real_sec, real_nsec, clock_sec, clock_nsec)
return res
def plot(self):
fmt = '''\
set autoscale
set key below
set ylabel "System clock delta from GPS time (nsec)"
plot "-" using 0:((column(1)-column(3))*1e9 + (column(2)-column(4))) title "Delta" with impulses
'''
return fmt + self.header() + self.data()
class uninstrumented(plotter):
"Total times without instrumentation."
name = "uninstrumented"
requires_time = False
def __init__(self):
plotter.__init__(self)
def sample(self):
if self.session.fix.time:
seconds = time.time() - gps.misc.isotime(self.session.data.time)
self.fixes.append(seconds)
return True
else:
return False
def header(self):
return "# Uninstrumented total latency, " + self.whatami() + "\n"
def postprocess(self):
pass
def data(self):
res = ""
for seconds in self.fixes:
res += "%2.6lf\n" % seconds
return res
def plot(self):
fmt = '''\
set autoscale
set key below
set key title "Uninstrumented total latency"
plot "-" using 0:1 title "Total time" with impulses
'''
return fmt + self.header() + self.data()
class instrumented(plotter):
"Latency as analyzed by instrumentation."
name = "instrumented"
requires_time = True
def __init__(self):
plotter.__init__(self)
def sample(self):
if 'rtime' in self.session.data:
self.fixes.append((self.session.data['tag'],
gps.misc.isotime(self.session.data['time']),
self.session.data["chars"],
self.session.data['sats'],
self.session.data['sor'],
self.session.data['rtime'],
time.time()))
return True
else:
return False
def header(self):
res = "# Analyzed latency, " + self.whatami() + "\n"
res += "# Tag -- Fix time -- - Chars - -- Latency - RS232- Analysis - Recv -\n"
return res
def postprocess(self):
pass
def data(self):
res = ""
for (tag, fix_time, chars, sats, start, xmit, recv) in self.fixes:
rs232_time = (chars * 10.0) / self.device['bps']
res += "%-6s %.3f %9u %2u %.6f %.6f %.6f %.6f\n" % (tag, fix_time, chars, sats, start - fix_time, (start - fix_time) + rs232_time, xmit - fix_time, recv - fix_time)
return res
def plot(self):
legends = (
"Reception delta",
"Analysis time",
"RS232 time",
"Fix latency",
)
fmt = '''\
set autoscale
set key title "Analyzed latency"
set key below
plot \\\n'''
for (i, legend) in enumerate(legends):
j = len(legends) - i + 4
fmt += ' "-" using 0:%d title "%s" with impulses, \\\n' % (j, legend)
fmt = fmt[:-4] + "\n"
return fmt + self.header() + (self.data() + "e\n") * len(legends)
formatters = (spaceplot, timeplot, uninstrumented, instrumented)
if __name__ == '__main__':
try:
(options, arguments) = getopt.getopt(sys.argv[1:], "d:f:hl:m:n:rs:t:T:D:")
plotmode = "space"
raw = False
title = None
threshold = 0
await = 100
verbose = 0
terminal = None
dumpfile = None
logfp = None
redo = False
for (switch, val) in options:
if switch == '-f':
plotmode = val
elif switch == '-m':
threshold = int(val)
elif switch == '-n':
if val[-1] == 'h':
await = int(val[:-1]) * 360
else:
await = int(val)
elif switch == '-t':
title = val
elif switch == '-T':
terminal = val
elif switch == '-d':
dumpfile = val
elif switch == '-l':
logfp = open(val, "w")
elif switch == '-r':
redo = True
elif switch == '-D':
verbose = int(val)
elif switch == '-h':
sys.stderr.write(
"usage: gpsprof [-h] [-D debuglevel] [-m threshold] [-n samplecount] [-d]\n"
+ "\t[-f {" + "|".join([x.name for x in formatters]) + "}] [-s speed] [-t title] [-T terminal] [server[:port[:device]]]\n")
sys.exit(0)
(host, port, device) = ("localhost", "2947", None)
if len(arguments):
args = arguments[0].split(":")
if len(args) >= 1:
host = args[0]
if len(args) >= 2:
port = args[1]
if len(args) >= 3:
device = args[2]
# Select the plotting mode
if plotmode:
for formatter in formatters:
if formatter.name == plotmode:
plot = formatter()
break
else:
sys.stderr.write("gpsprof: no such formatter.\n")
sys.exit(1)
# Get fix data from the GPS
if redo:
plot.replot(sys.stdin)
else:
plot.collect(verbose, logfp)
plot.postprocess()
# Save the timing data (only) for post-analysis if required.
if dumpfile:
with open(dumpfile, "w") as fp:
fp.write(plot.dump())
if logfp:
logfp.close()
# Ship the plot to standard output
if not title:
title = plot.whatami()
if terminal:
sys.stdout.write("set terminal %s\n" % terminal)
sys.stdout.write("set title \"%s\"\n" % title)
sys.stdout.write(plot.plot())
except KeyboardInterrupt:
pass
# The following sets edit modes for GNU EMACS
# Local Variables:
# mode:python
# End:
|