/* Test of substitute. Copyright (C) 2011-2016 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Written by Bruno Haible , 2011. */ #include #include #include "fpucw.h" #include "macros.h" /* Check that FLT_RADIX is a constant expression. */ int a[] = { FLT_RADIX }; #if FLT_RADIX == 2 /* Return 2^n. */ static float pow2f (int n) { int k = n; volatile float x = 1; volatile float y = 2; /* Invariant: 2^n == x * y^k. */ if (k < 0) { y = 0.5f; k = - k; } while (k > 0) { if (k != 2 * (k / 2)) { x = x * y; k = k - 1; } if (k == 0) break; y = y * y; k = k / 2; } /* Now k == 0, hence x == 2^n. */ return x; } /* Return 2^n. */ static double pow2d (int n) { int k = n; volatile double x = 1; volatile double y = 2; /* Invariant: 2^n == x * y^k. */ if (k < 0) { y = 0.5; k = - k; } while (k > 0) { if (k != 2 * (k / 2)) { x = x * y; k = k - 1; } if (k == 0) break; y = y * y; k = k / 2; } /* Now k == 0, hence x == 2^n. */ return x; } /* Return 2^n. */ static long double pow2l (int n) { int k = n; volatile long double x = 1; volatile long double y = 2; /* Invariant: 2^n == x * y^k. */ if (k < 0) { y = 0.5L; k = - k; } while (k > 0) { if (k != 2 * (k / 2)) { x = x * y; k = k - 1; } if (k == 0) break; y = y * y; k = k / 2; } /* Now k == 0, hence x == 2^n. */ return x; } /* ----------------------- Check macros for 'float' ----------------------- */ /* Check that the FLT_* macros expand to constant expressions. */ int fb[] = { FLT_MANT_DIG, FLT_MIN_EXP, FLT_MAX_EXP, FLT_DIG, FLT_MIN_10_EXP, FLT_MAX_10_EXP }; float fc[] = { FLT_EPSILON, FLT_MIN, FLT_MAX }; static void test_float (void) { /* Check that the value of FLT_MIN_EXP is well parenthesized. */ ASSERT ((FLT_MIN_EXP % 101111) == (FLT_MIN_EXP) % 101111); /* Check that the value of DBL_MIN_10_EXP is well parenthesized. */ ASSERT ((FLT_MIN_10_EXP % 101111) == (FLT_MIN_10_EXP) % 101111); /* Check that 'float' is as specified in IEEE 754. */ ASSERT (FLT_MANT_DIG == 24); ASSERT (FLT_MIN_EXP == -125); ASSERT (FLT_MAX_EXP == 128); /* Check the value of FLT_MIN_10_EXP. */ ASSERT (FLT_MIN_10_EXP == - (int) (- (FLT_MIN_EXP - 1) * 0.30103)); /* Check the value of FLT_DIG. */ ASSERT (FLT_DIG == (int) ((FLT_MANT_DIG - 1) * 0.30103)); /* Check the value of FLT_MIN_10_EXP. */ ASSERT (FLT_MIN_10_EXP == - (int) (- (FLT_MIN_EXP - 1) * 0.30103)); /* Check the value of FLT_MAX_10_EXP. */ ASSERT (FLT_MAX_10_EXP == (int) (FLT_MAX_EXP * 0.30103)); /* Check the value of FLT_MAX. */ { volatile float m = FLT_MAX; int n; ASSERT (m + m > m); for (n = 0; n <= 2 * FLT_MANT_DIG; n++) { volatile float pow2_n = pow2f (n); /* 2^n */ volatile float x = m + (m / pow2_n); if (x > m) ASSERT (x + x == x); else ASSERT (!(x + x == x)); } } /* Check the value of FLT_MIN. */ { volatile float m = FLT_MIN; volatile float x = pow2f (FLT_MIN_EXP - 1); ASSERT (m == x); } /* Check the value of FLT_EPSILON. */ { volatile float e = FLT_EPSILON; volatile float me; int n; me = 1.0f + e; ASSERT (me > 1.0f); ASSERT (me - 1.0f == e); for (n = 0; n <= 2 * FLT_MANT_DIG; n++) { volatile float half_n = pow2f (- n); /* 2^-n */ volatile float x = me - half_n; if (x < me) ASSERT (x <= 1.0f); } } } /* ----------------------- Check macros for 'double' ----------------------- */ /* Check that the DBL_* macros expand to constant expressions. */ int db[] = { DBL_MANT_DIG, DBL_MIN_EXP, DBL_MAX_EXP, DBL_DIG, DBL_MIN_10_EXP, DBL_MAX_10_EXP }; double dc[] = { DBL_EPSILON, DBL_MIN, DBL_MAX }; static void test_double (void) { /* Check that the value of DBL_MIN_EXP is well parenthesized. */ ASSERT ((DBL_MIN_EXP % 101111) == (DBL_MIN_EXP) % 101111); /* Check that the value of DBL_MIN_10_EXP is well parenthesized. */ ASSERT ((DBL_MIN_10_EXP % 101111) == (DBL_MIN_10_EXP) % 101111); /* Check that 'double' is as specified in IEEE 754. */ ASSERT (DBL_MANT_DIG == 53); ASSERT (DBL_MIN_EXP == -1021); ASSERT (DBL_MAX_EXP == 1024); /* Check the value of DBL_MIN_10_EXP. */ ASSERT (DBL_MIN_10_EXP == - (int) (- (DBL_MIN_EXP - 1) * 0.30103)); /* Check the value of DBL_DIG. */ ASSERT (DBL_DIG == (int) ((DBL_MANT_DIG - 1) * 0.30103)); /* Check the value of DBL_MIN_10_EXP. */ ASSERT (DBL_MIN_10_EXP == - (int) (- (DBL_MIN_EXP - 1) * 0.30103)); /* Check the value of DBL_MAX_10_EXP. */ ASSERT (DBL_MAX_10_EXP == (int) (DBL_MAX_EXP * 0.30103)); /* Check the value of DBL_MAX. */ { volatile double m = DBL_MAX; int n; ASSERT (m + m > m); for (n = 0; n <= 2 * DBL_MANT_DIG; n++) { volatile double pow2_n = pow2d (n); /* 2^n */ volatile double x = m + (m / pow2_n); if (x > m) ASSERT (x + x == x); else ASSERT (!(x + x == x)); } } /* Check the value of DBL_MIN. */ { volatile double m = DBL_MIN; volatile double x = pow2d (DBL_MIN_EXP - 1); ASSERT (m == x); } /* Check the value of DBL_EPSILON. */ { volatile double e = DBL_EPSILON; volatile double me; int n; me = 1.0 + e; ASSERT (me > 1.0); ASSERT (me - 1.0 == e); for (n = 0; n <= 2 * DBL_MANT_DIG; n++) { volatile double half_n = pow2d (- n); /* 2^-n */ volatile double x = me - half_n; if (x < me) ASSERT (x <= 1.0); } } } /* -------------------- Check macros for 'long double' -------------------- */ /* Check that the LDBL_* macros expand to constant expressions. */ int lb[] = { LDBL_MANT_DIG, LDBL_MIN_EXP, LDBL_MAX_EXP, LDBL_DIG, LDBL_MIN_10_EXP, LDBL_MAX_10_EXP }; long double lc1 = LDBL_EPSILON; long double lc2 = LDBL_MIN; #if 0 /* LDBL_MAX is not a constant expression on some platforms. */ long double lc3 = LDBL_MAX; #endif static void test_long_double (void) { /* Check that the value of LDBL_MIN_EXP is well parenthesized. */ ASSERT ((LDBL_MIN_EXP % 101111) == (LDBL_MIN_EXP) % 101111); /* Check that the value of LDBL_MIN_10_EXP is well parenthesized. */ ASSERT ((LDBL_MIN_10_EXP % 101111) == (LDBL_MIN_10_EXP) % 101111); /* Check that 'long double' is at least as wide as 'double'. */ ASSERT (LDBL_MANT_DIG >= DBL_MANT_DIG); ASSERT (LDBL_MIN_EXP - LDBL_MANT_DIG <= DBL_MIN_EXP - DBL_MANT_DIG); ASSERT (LDBL_MAX_EXP >= DBL_MAX_EXP); /* Check the value of LDBL_DIG. */ ASSERT (LDBL_DIG == (int)((LDBL_MANT_DIG - 1) * 0.30103)); /* Check the value of LDBL_MIN_10_EXP. */ ASSERT (LDBL_MIN_10_EXP == - (int) (- (LDBL_MIN_EXP - 1) * 0.30103)); /* Check the value of LDBL_MAX_10_EXP. */ ASSERT (LDBL_MAX_10_EXP == (int) (LDBL_MAX_EXP * 0.30103)); /* Check the value of LDBL_MAX. */ { volatile long double m = LDBL_MAX; int n; ASSERT (m + m > m); for (n = 0; n <= 2 * LDBL_MANT_DIG; n++) { volatile long double pow2_n = pow2l (n); /* 2^n */ volatile long double x = m + (m / pow2_n); if (x > m) ASSERT (x + x == x); else ASSERT (!(x + x == x)); } } /* Check the value of LDBL_MIN. */ { volatile long double m = LDBL_MIN; volatile long double x = pow2l (LDBL_MIN_EXP - 1); ASSERT (m == x); } /* Check the value of LDBL_EPSILON. */ { volatile long double e = LDBL_EPSILON; volatile long double me; int n; me = 1.0L + e; ASSERT (me > 1.0L); ASSERT (me - 1.0L == e); for (n = 0; n <= 2 * LDBL_MANT_DIG; n++) { volatile long double half_n = pow2l (- n); /* 2^-n */ volatile long double x = me - half_n; if (x < me) ASSERT (x <= 1.0L); } } } int main () { test_float (); test_double (); { DECL_LONG_DOUBLE_ROUNDING BEGIN_LONG_DOUBLE_ROUNDING (); test_long_double (); END_LONG_DOUBLE_ROUNDING (); } return 0; } #else int main () { fprintf (stderr, "Skipping test: FLT_RADIX is not 2.\n"); return 77; } #endif