summaryrefslogtreecommitdiff
path: root/gst-libs/gst/resample/resample.c
blob: 3d944843e0c66ad9d4eb48331c56163306b4cc6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
/* Resampling library
 * Copyright (C) <2001> David A. Schleef <ds@schleef.org>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */


#include <string.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

#include "private.h"
#include <gst/gstplugin.h>
#include <gst/gstversion.h>

inline double sinc(double x)
{
	if(x==0)return 1;
	return sin(x) / x;
}

inline double window_func(double x)
{
	x = 1 - x*x;
	return x*x;
}

signed short double_to_s16(double x)
{
	if(x<-32768){
		printf("clipped\n");
		return -32768;
	}
	if(x>32767){
		printf("clipped\n");
		return -32767;
	}
	return rint(x);
}

signed short double_to_s16_ppcasm(double x)
{
	if(x<-32768){
		return -32768;
	}
	if(x>32767){
		return -32767;
	}
	return rint(x);
}

void resample_init(resample_t * r)
{
	r->i_start = 0;
	if(r->filter_length&1){
		r->o_start = 0;
	}else{
		r->o_start = r->o_inc * 0.5;
	}

	memset(r->acc, 0, sizeof(r->acc));

	resample_reinit(r);
}

void resample_reinit(resample_t * r)
{
	/* i_inc is the number of samples that the output increments for
	 * each input sample.  o_inc is the opposite. */
	r->i_inc = (double) r->o_rate / r->i_rate;
	r->o_inc = (double) r->i_rate / r->o_rate;

	r->halftaps = (r->filter_length - 1.0) * 0.5;

	if (r->format == RESAMPLE_S16) {
		switch (r->method) {
		default:
		case RESAMPLE_NEAREST:
			r->scale = resample_nearest_s16;
			break;
		case RESAMPLE_BILINEAR:
			r->scale = resample_bilinear_s16;
			break;
		case RESAMPLE_SINC_SLOW:
			r->scale = resample_sinc_s16;
			break;
		case RESAMPLE_SINC:
			r->scale = resample_sinc_ft_s16;
			break;
		}
	} else if (r->format == RESAMPLE_FLOAT) {
		switch (r->method) {
		default:
		case RESAMPLE_NEAREST:
			r->scale = resample_nearest_float;
			break;
		case RESAMPLE_BILINEAR:
			r->scale = resample_bilinear_float;
			break;
		case RESAMPLE_SINC_SLOW:
			r->scale = resample_sinc_float;
			break;
		case RESAMPLE_SINC:
			r->scale = resample_sinc_ft_float;
			break;
		}
	} else {
		fprintf (stderr, "resample: Unexpected format \"%d\"\n", r->format);
	}
}

/*
 * Prepare to be confused.
 *
 * We keep a "timebase" that is based on output samples.  The zero
 * of the timebase cooresponds to the next output sample that will
 * be written.
 *
 * i_start is the "time" that corresponds to the first input sample
 * in an incoming buffer.  Since the output depends on input samples
 * ahead in time, i_start will tend to be around halftaps.
 *
 * i_start_buf is the time of the first sample in the temporary
 * buffer.
 */
void resample_scale(resample_t * r, void *i_buf, unsigned int i_size)
{
	int o_size;

	r->i_buf = i_buf;

	r->i_samples = i_size / 2 / r->channels;

	r->i_start_buf = r->i_start - r->filter_length * r->i_inc;

	/* i_start is the offset (in a given output sample) that is the
	 * beginning of the current input buffer */
	r->i_end = r->i_start + r->i_inc * r->i_samples;

	r->o_samples = floor(r->i_end - r->halftaps * r->i_inc);

	o_size = r->o_samples * r->channels * 2;
	r->o_buf = r->get_buffer(r->priv, o_size);

	if(r->verbose){
		printf("resample_scale: i_buf=%p i_size=%d\n",
			i_buf,i_size);
		printf("resample_scale: i_samples=%d o_samples=%d i_inc=%g o_buf=%p\n",
			r->i_samples, r->o_samples, r->i_inc, r->o_buf);
		printf("resample_scale: i_start=%g i_end=%g o_start=%g\n",
			r->i_start, r->i_end, r->o_start);
	}

	if ((r->filter_length + r->i_samples)*2*2 > r->buffer_len) {
		int size = (r->filter_length + r->i_samples) * sizeof(double) * 2;

		if(r->verbose){
			printf("resample temp buffer size=%d\n",size);
		}
		if(r->buffer)free(r->buffer);
		r->buffer_len = size;
		r->buffer = malloc(size);
		memset(r->buffer, 0, size);
	}

        if (r->format==RESAMPLE_S16) {
		if(r->channels==2){
			conv_double_short(
					r->buffer + r->filter_length * sizeof(double) * 2,
					r->i_buf, r->i_samples * 2);
		} else {
			conv_double_short_dstr(
					r->buffer + r->filter_length * sizeof(double) * 2,
					r->i_buf, r->i_samples, sizeof(double) * 2);
		}
	} else if (r->format==RESAMPLE_FLOAT) {
		if(r->channels==2){
			conv_double_float(
					r->buffer + r->filter_length * sizeof(double) * 2,
					r->i_buf, r->i_samples * 2);
		} else {
			conv_double_float_dstr(
					r->buffer + r->filter_length * sizeof(double) * 2,
					r->i_buf, r->i_samples, sizeof(double) * 2);
		}
	}

	r->scale(r);

	memcpy(r->buffer,
		r->buffer + r->i_samples * sizeof(double) * 2,
		r->filter_length * sizeof(double) * 2);

	/* updating times */
	r->i_start += r->i_samples * r->i_inc;
	r->o_start += r->o_samples * r->o_inc - r->i_samples;
	
	/* adjusting timebase zero */
	r->i_start -= r->o_samples;
}

void resample_nearest_s16(resample_t * r)
{
	signed short *i_ptr, *o_ptr;
	int i_count = 0;
	double a;
	int i;

	i_ptr = (signed short *) r->i_buf;
	o_ptr = (signed short *) r->o_buf;

	a = r->o_start;
	i_count = 0;
#define SCALE_LOOP(COPY,INC) \
	for (i = 0; i < r->o_samples; i++) {	\
		COPY;							\
		a += r->o_inc;						\
		while (a >= 1) {				\
			a -= 1;						\
			i_ptr+=INC;					\
			i_count++;					\
		}								\
		o_ptr+=INC;						\
   	}

	switch (r->channels) {
	case 1:
		SCALE_LOOP(o_ptr[0] = i_ptr[0], 1);
		break;
	case 2:
		SCALE_LOOP(o_ptr[0] = i_ptr[0];
			   o_ptr[1] = i_ptr[1], 2);
		break;
	default:
	{
		int n, n_chan = r->channels;

		SCALE_LOOP(for (n = 0; n < n_chan; n++) o_ptr[n] =
			   i_ptr[n], n_chan);
	}
	}
	if (i_count != r->i_samples) {
		printf("handled %d in samples (expected %d)\n", i_count,
		       r->i_samples);
	}
}

void resample_bilinear_s16(resample_t * r)
{
	signed short *i_ptr, *o_ptr;
	int o_count = 0;
	double b;
	int i;
	double acc0, acc1;

	i_ptr = (signed short *) r->i_buf;
	o_ptr = (signed short *) r->o_buf;

	acc0 = r->acc[0];
	acc1 = r->acc[1];
	b = r->i_start;
	for (i = 0; i < r->i_samples; i++) {
		b += r->i_inc;
		/*printf("in %d\n",i_ptr[0]); */
		if(b>=2){
			printf("not expecting b>=2\n");
		}
		if (b >= 1) {
			acc0 += (1.0 - (b-r->i_inc)) * i_ptr[0];
			acc1 += (1.0 - (b-r->i_inc)) * i_ptr[1];

			o_ptr[0] = rint(acc0);
			/*printf("out %d\n",o_ptr[0]); */
			o_ptr[1] = rint(acc1);
			o_ptr += 2;
			o_count++;

			b -= 1.0;

			acc0 = b * i_ptr[0];
			acc1 = b * i_ptr[1];
		} else {
			acc0 += i_ptr[0] * r->i_inc;
			acc1 += i_ptr[1] * r->i_inc;
		}
		i_ptr += 2;
	}
	r->acc[0] = acc0;
	r->acc[1] = acc1;

	if (o_count != r->o_samples) {
		printf("handled %d out samples (expected %d)\n", o_count,
		       r->o_samples);
	}
}

void resample_sinc_slow_s16(resample_t * r)
{
	signed short *i_ptr, *o_ptr;
	int i, j;
	double c0, c1;
	double a;
	int start;
	double center;
	double weight;

	if (!r->buffer) {
		int size = r->filter_length * 2 * r->channels;

		printf("resample temp buffer\n");
		r->buffer = malloc(size);
		memset(r->buffer, 0, size);
	}

	i_ptr = (signed short *) r->i_buf;
	o_ptr = (signed short *) r->o_buf;

	a = r->i_start;
#define GETBUF(index,chan) (((index)<0) \
			? ((short *)(r->buffer))[((index)+r->filter_length)*2+(chan)] \
			: i_ptr[(index)*2+(chan)])
	{
		double sinx, cosx, sind, cosd;
		double x, d;
		double t;

		for (i = 0; i < r->o_samples; i++) {
			start = floor(a) - r->filter_length;
			center = a - r->halftaps;
			x = M_PI * (start - center) * r->o_inc;
			sinx = sin(M_PI * (start - center) * r->o_inc);
			cosx = cos(M_PI * (start - center) * r->o_inc);
			d = M_PI * r->o_inc;
			sind = sin(M_PI * r->o_inc);
			cosd = cos(M_PI * r->o_inc);
			c0 = 0;
			c1 = 0;
			for (j = 0; j < r->filter_length; j++) {
				weight = (x==0)?1:(sinx/x);
/*printf("j %d sin %g cos %g\n",j,sinx,cosx); */
/*printf("j %d sin %g x %g sinc %g\n",j,sinx,x,weight); */
				c0 += weight * GETBUF((start + j), 0);
				c1 += weight * GETBUF((start + j), 1);
				t = cosx * cosd - sinx * sind;
				sinx = cosx * sind + sinx * cosd;
				cosx = t;
				x += d;
			}
			o_ptr[0] = rint(c0);
			o_ptr[1] = rint(c1);
			o_ptr += 2;
			a += r->o_inc;
		}
	}
#undef GETBUF

	memcpy(r->buffer,
	       i_ptr + (r->i_samples - r->filter_length) * r->channels,
	       r->filter_length * 2 * r->channels);
}

/* only works for channels == 2 ???? */
void resample_sinc_s16(resample_t * r)
{
	double *ptr;
	signed short *o_ptr;
	int i, j;
	double c0, c1;
	double a;
	int start;
	double center;
	double weight;
	double x0, x, d;
	double scale;

	ptr = (double *) r->buffer;
	o_ptr = (signed short *) r->o_buf;

	/* scale provides a cutoff frequency for the low
	 * pass filter aspects of sinc().  scale=M_PI
	 * will cut off at the input frequency, which is
	 * good for up-sampling, but will cause aliasing
	 * for downsampling.  Downsampling needs to be
	 * cut off at o_rate, thus scale=M_PI*r->i_inc. */
	/* actually, it needs to be M_PI*r->i_inc*r->i_inc.
	 * Need to research why. */
	scale = M_PI*r->i_inc;
	for (i = 0; i < r->o_samples; i++) {
		a = r->o_start + i * r->o_inc;
		start = floor(a - r->halftaps);
/*printf("%d: a=%g start=%d end=%d\n",i,a,start,start+r->filter_length-1); */
		center = a;
		/*x = M_PI * (start - center) * r->o_inc; */
		/*d = M_PI * r->o_inc; */
		/*x = (start - center) * r->o_inc; */
		x0 = (start - center) * r->o_inc;
		d = r->o_inc;
		c0 = 0;
		c1 = 0;
		for (j = 0; j < r->filter_length; j++) {
			x = x0 + d * j;
			weight = sinc(x*scale*r->i_inc)*scale/M_PI;
			weight *= window_func(x/r->halftaps*r->i_inc);
			c0 += weight * ptr[(start + j + r->filter_length)*2 + 0];
			c1 += weight * ptr[(start + j + r->filter_length)*2 + 1];
		}
		o_ptr[0] = double_to_s16(c0);
		o_ptr[1] = double_to_s16(c1);
		o_ptr += 2;
	}
}

/*
 * Resampling audio is best done using a sinc() filter.
 *
 *
 *  out[t] = Sum( in[t'] * sinc((t-t')/delta_t), all t')
 *
 * The immediate problem with this algorithm is that it involves a
 * sum over an infinite number of input samples, both in the past
 * and future.  Note that even though sinc(x) is bounded by 1/x,
 * and thus decays to 0 for large x, since sum(x,{x=0,1..,n}) diverges
 * as log(n), we need to be careful about convergence.  This is
 * typically done by using a windowing function, which also makes
 * the sum over a finite number of input samples.
 *
 * The next problem is computational:  sinc(), and especially
 * sinc() multiplied by a non-trivial windowing function is expensive
 * to calculate, and also difficult to find SIMD optimizations.  Since
 * the time increment on input and output is different, it is not
 * possible to use a FIR filter, because the taps would have to be
 * recalculated for every t.
 *
 * To get around the expense of calculating sinc() for every point,
 * we pre-calculate sinc() at a number of points, and then interpolate
 * for the values we want in calculations.  The interpolation method
 * chosen is bi-cubic, which requires both the evalated function and
 * its derivative at every pre-sampled point.  Also, if the sampled
 * points are spaced commensurate with the input delta_t, we notice
 * that the interpolating weights are the same for every input point.
 * This decreases the number of operations to 4 multiplies and 4 adds
 * for each tap, regardless of the complexity of the filtering function.
 * 
 * At this point, it is possible to rearrange the problem as the sum
 * of 4 properly weghted FIR filters.  Typical SIMD computation units
 * are highly optimized for FIR filters, making long filter lengths
 * reasonable.
 */

static functable_t *ft;

double out_tmp[10000];

void resample_sinc_ft_s16(resample_t * r)
{
	double *ptr;
	signed short *o_ptr;
	int i;
	/*int j; */
	double c0, c1;
	/*double a; */
	double start_f, start_x;
	int start;
	double center;
	/*double weight; */
	double x, d;
	double scale;
	int n = 4;

	scale = r->i_inc;	/* cutoff at 22050 */
	/*scale = 1.0;		// cutoff at 24000 */
	/*scale = r->i_inc * 0.5;	// cutoff at 11025 */

	if(!ft){
		ft = malloc(sizeof(*ft));
		memset(ft,0,sizeof(*ft));

		ft->len = (r->filter_length + 2) * n;
		ft->offset = 1.0 / n;
		ft->start = - ft->len * 0.5 * ft->offset;

		ft->func_x = functable_sinc;
		ft->func_dx = functable_dsinc;
		ft->scale = M_PI * scale;

		ft->func2_x = functable_window_std;
		ft->func2_dx = functable_window_dstd;
		ft->scale2 = 1.0 / r->halftaps;
	
		functable_init(ft);

		/*printf("len=%d offset=%g start=%g\n",ft->len,ft->offset,ft->start); */
	}

	ptr = r->buffer;
	o_ptr = (signed short *) r->o_buf;

	center = r->o_start;
	start_x = center - r->halftaps;
	start_f = floor(start_x);
	start_x -= start_f;
	start = start_f;
	for (i = 0; i < r->o_samples; i++) {
		/*start_f = floor(center - r->halftaps); */
/*printf("%d: a=%g start=%d end=%d\n",i,a,start,start+r->filter_length-1); */
		x = start_f - center;
		d = 1;
		c0 = 0;
		c1 = 0;
/*#define slow */
#ifdef slow
		for (j = 0; j < r->filter_length; j++) {
			weight = functable_eval(ft,x)*scale;
			/*weight = sinc(M_PI * scale * x)*scale*r->i_inc; */
			/*weight *= window_func(x / r->halftaps); */
			c0 += weight * ptr[(start + j + r->filter_length)*2 + 0];
			c1 += weight * ptr[(start + j + r->filter_length)*2 + 1];
			x += d;
		}
#else
		functable_fir2(ft,
			&c0,&c1,
			x, n,
			ptr+(start + r->filter_length)*2,
			r->filter_length);
		c0 *= scale;
		c1 *= scale;
#endif

		out_tmp[2 * i + 0] = c0;
		out_tmp[2 * i + 1] = c1;
		center += r->o_inc;
		start_x += r->o_inc;
		while(start_x>=1.0){
			start_f++;
			start_x -= 1.0;
			start++;
		}
	}

	if(r->channels==2){
		conv_short_double(r->o_buf,out_tmp,2 * r->o_samples);
	}else{
		conv_short_double_sstr(r->o_buf,out_tmp,r->o_samples,2 * sizeof(double));
	}
}

/********
 ** float code below
 ********/


void resample_nearest_float(resample_t * r)
{
	float *i_ptr, *o_ptr;
	int i_count = 0;
	double a;
	int i;

	i_ptr = (float *) r->i_buf;
	o_ptr = (float *) r->o_buf;

	a = r->o_start;
	i_count = 0;
#define SCALE_LOOP(COPY,INC) \
	for (i = 0; i < r->o_samples; i++) {	\
		COPY;							\
		a += r->o_inc;						\
		while (a >= 1) {				\
			a -= 1;						\
			i_ptr+=INC;					\
			i_count++;					\
		}								\
		o_ptr+=INC;						\
   	}

	switch (r->channels) {
	case 1:
		SCALE_LOOP(o_ptr[0] = i_ptr[0], 1);
		break;
	case 2:
		SCALE_LOOP(o_ptr[0] = i_ptr[0];
			   o_ptr[1] = i_ptr[1], 2);
		break;
	default:
	{
		int n, n_chan = r->channels;

		SCALE_LOOP(for (n = 0; n < n_chan; n++) o_ptr[n] =
			   i_ptr[n], n_chan);
	}
	}
	if (i_count != r->i_samples) {
		printf("handled %d in samples (expected %d)\n", i_count,
		       r->i_samples);
	}
}

void resample_bilinear_float(resample_t * r)
{
	float *i_ptr, *o_ptr;
	int o_count = 0;
	double b;
	int i;
	double acc0, acc1;

	i_ptr = (float *) r->i_buf;
	o_ptr = (float *) r->o_buf;

	acc0 = r->acc[0];
	acc1 = r->acc[1];
	b = r->i_start;
	for (i = 0; i < r->i_samples; i++) {
		b += r->i_inc;
		/*printf("in %d\n",i_ptr[0]); */
		if(b>=2){
			printf("not expecting b>=2\n");
		}
		if (b >= 1) {
			acc0 += (1.0 - (b-r->i_inc)) * i_ptr[0];
			acc1 += (1.0 - (b-r->i_inc)) * i_ptr[1];

			o_ptr[0] = acc0;
			/*printf("out %d\n",o_ptr[0]); */
			o_ptr[1] = acc1;
			o_ptr += 2;
			o_count++;

			b -= 1.0;

			acc0 = b * i_ptr[0];
			acc1 = b * i_ptr[1];
		} else {
			acc0 += i_ptr[0] * r->i_inc;
			acc1 += i_ptr[1] * r->i_inc;
		}
		i_ptr += 2;
	}
	r->acc[0] = acc0;
	r->acc[1] = acc1;

	if (o_count != r->o_samples) {
		printf("handled %d out samples (expected %d)\n", o_count,
		       r->o_samples);
	}
}

void resample_sinc_slow_float(resample_t * r)
{
	float *i_ptr, *o_ptr;
	int i, j;
	double c0, c1;
	double a;
	int start;
	double center;
	double weight;

	if (!r->buffer) {
		int size = r->filter_length * sizeof(float) * r->channels;

		printf("resample temp buffer\n");
		r->buffer = malloc(size);
		memset(r->buffer, 0, size);
	}

	i_ptr = (float *) r->i_buf;
	o_ptr = (float *) r->o_buf;

	a = r->i_start;
#define GETBUF(index,chan) (((index)<0) \
			? ((float *)(r->buffer))[((index)+r->filter_length)*2+(chan)] \
			: i_ptr[(index)*2+(chan)])
	{
		double sinx, cosx, sind, cosd;
		double x, d;
		double t;

		for (i = 0; i < r->o_samples; i++) {
			start = floor(a) - r->filter_length;
			center = a - r->halftaps;
			x = M_PI * (start - center) * r->o_inc;
			sinx = sin(M_PI * (start - center) * r->o_inc);
			cosx = cos(M_PI * (start - center) * r->o_inc);
			d = M_PI * r->o_inc;
			sind = sin(M_PI * r->o_inc);
			cosd = cos(M_PI * r->o_inc);
			c0 = 0;
			c1 = 0;
			for (j = 0; j < r->filter_length; j++) {
				weight = (x==0)?1:(sinx/x);
/*printf("j %d sin %g cos %g\n",j,sinx,cosx); */
/*printf("j %d sin %g x %g sinc %g\n",j,sinx,x,weight); */
				c0 += weight * GETBUF((start + j), 0);
				c1 += weight * GETBUF((start + j), 1);
				t = cosx * cosd - sinx * sind;
				sinx = cosx * sind + sinx * cosd;
				cosx = t;
				x += d;
			}
			o_ptr[0] = c0;
			o_ptr[1] = c1;
			o_ptr += 2;
			a += r->o_inc;
		}
	}
#undef GETBUF

	memcpy(r->buffer,
	       i_ptr + (r->i_samples - r->filter_length) * r->channels,
	       r->filter_length * sizeof(float) * r->channels);
}

/* only works for channels == 2 ???? */
void resample_sinc_float(resample_t * r)
{
	double *ptr;
	float *o_ptr;
	int i, j;
	double c0, c1;
	double a;
	int start;
	double center;
	double weight;
	double x0, x, d;
	double scale;

	ptr = (double *) r->buffer;
	o_ptr = (float *) r->o_buf;

	/* scale provides a cutoff frequency for the low
	 * pass filter aspects of sinc().  scale=M_PI
	 * will cut off at the input frequency, which is
	 * good for up-sampling, but will cause aliasing
	 * for downsampling.  Downsampling needs to be
	 * cut off at o_rate, thus scale=M_PI*r->i_inc. */
	/* actually, it needs to be M_PI*r->i_inc*r->i_inc.
	 * Need to research why. */
	scale = M_PI*r->i_inc;
	for (i = 0; i < r->o_samples; i++) {
		a = r->o_start + i * r->o_inc;
		start = floor(a - r->halftaps);
/*printf("%d: a=%g start=%d end=%d\n",i,a,start,start+r->filter_length-1); */
		center = a;
		/*x = M_PI * (start - center) * r->o_inc; */
		/*d = M_PI * r->o_inc; */
		/*x = (start - center) * r->o_inc; */
		x0 = (start - center) * r->o_inc;
		d = r->o_inc;
		c0 = 0;
		c1 = 0;
		for (j = 0; j < r->filter_length; j++) {
			x = x0 + d * j;
			weight = sinc(x*scale*r->i_inc)*scale/M_PI;
			weight *= window_func(x/r->halftaps*r->i_inc);
			c0 += weight * ptr[(start + j + r->filter_length)*2 + 0];
			c1 += weight * ptr[(start + j + r->filter_length)*2 + 1];
		}
		o_ptr[0] = c0;
		o_ptr[1] = c1;
		o_ptr += 2;
	}
}

void resample_sinc_ft_float(resample_t * r)
{
	double *ptr;
	float *o_ptr;
	int i;
	/*int j; */
	double c0, c1;
	/*double a; */
	double start_f, start_x;
	int start;
	double center;
	/*double weight; */
	double x, d;
	double scale;
	int n = 4;

	scale = r->i_inc;	/* cutoff at 22050 */
	/*scale = 1.0;		// cutoff at 24000 */
	/*scale = r->i_inc * 0.5;	// cutoff at 11025 */

	if(!ft){
		ft = malloc(sizeof(*ft));
		memset(ft,0,sizeof(*ft));

		ft->len = (r->filter_length + 2) * n;
		ft->offset = 1.0 / n;
		ft->start = - ft->len * 0.5 * ft->offset;

		ft->func_x = functable_sinc;
		ft->func_dx = functable_dsinc;
		ft->scale = M_PI * scale;

		ft->func2_x = functable_window_std;
		ft->func2_dx = functable_window_dstd;
		ft->scale2 = 1.0 / r->halftaps;
	
		functable_init(ft);

		/*printf("len=%d offset=%g start=%g\n",ft->len,ft->offset,ft->start); */
	}

	ptr = r->buffer;
	o_ptr = (float *) r->o_buf;

	center = r->o_start;
	start_x = center - r->halftaps;
	start_f = floor(start_x);
	start_x -= start_f;
	start = start_f;
	for (i = 0; i < r->o_samples; i++) {
		/*start_f = floor(center - r->halftaps); */
/*printf("%d: a=%g start=%d end=%d\n",i,a,start,start+r->filter_length-1); */
		x = start_f - center;
		d = 1;
		c0 = 0;
		c1 = 0;
/*#define slow */
#ifdef slow
		for (j = 0; j < r->filter_length; j++) {
			weight = functable_eval(ft,x)*scale;
			/*weight = sinc(M_PI * scale * x)*scale*r->i_inc; */
			/*weight *= window_func(x / r->halftaps); */
			c0 += weight * ptr[(start + j + r->filter_length)*2 + 0];
			c1 += weight * ptr[(start + j + r->filter_length)*2 + 1];
			x += d;
		}
#else
		functable_fir2(ft,
			&c0,&c1,
			x, n,
			ptr+(start + r->filter_length)*2,
			r->filter_length);
		c0 *= scale;
		c1 *= scale;
#endif

		out_tmp[2 * i + 0] = c0;
		out_tmp[2 * i + 1] = c1;
		center += r->o_inc;
		start_x += r->o_inc;
		while(start_x>=1.0){
			start_f++;
			start_x -= 1.0;
			start++;
		}
	}

	if(r->channels==2){
		conv_float_double(r->o_buf,out_tmp,2 * r->o_samples);
	}else{
		conv_float_double_sstr(r->o_buf,out_tmp,r->o_samples,2 * sizeof(double));
	}
}

static gboolean
plugin_init (GModule *module, GstPlugin *plugin)
{
  gst_plugin_set_longname (plugin, "Resampling routines for use in audio plugins");
  return TRUE;
}

GstPluginDesc plugin_desc = {
  GST_VERSION_MAJOR,
  GST_VERSION_MINOR,
  "gstresample",
  plugin_init
};