/* Copyright 2009-2015,2018-2019
Free Software Foundation, Inc.
This file is part of Guile.
Guile is free software: you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Guile is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Guile. If not, see
. */
#ifdef HAVE_CONFIG_H
# include
#endif
#ifdef HAVE_LIMITS_H
# include
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#include "scm.h"
#if SCM_ENABLE_MINI_GMP
#include "mini-gmp.h"
#else
#include
#endif
#include "array-handle.h"
#include "arrays.h"
#include "boolean.h"
#include "dynwind.h"
#include "extensions.h"
#include "generalized-vectors.h"
#include "gsubr.h"
#include "list.h"
#include "numbers.h"
#include "pairs.h"
#include "ports.h"
#include "srfi-4.h"
#include "strings.h"
#include "symbols.h"
#include "uniform.h"
#include "version.h"
#include "bytevectors.h"
/* Utilities. */
/* Convenience macros. These are used by the various templates (macros) that
are parameterized by integer signedness. */
#define INT8_T_signed int8_t
#define INT8_T_unsigned uint8_t
#define INT16_T_signed int16_t
#define INT16_T_unsigned uint16_t
#define INT32_T_signed int32_t
#define INT32_T_unsigned uint32_t
#define is_signed_int8(_x) (((_x) >= -128L) && ((_x) <= 127L))
#define is_unsigned_int8(_x) ((_x) <= 255UL)
#define is_signed_int16(_x) (((_x) >= -32768L) && ((_x) <= 32767L))
#define is_unsigned_int16(_x) ((_x) <= 65535UL)
#define is_signed_int32(_x) (((_x) >= -2147483648L) && ((_x) <= 2147483647L))
#define is_unsigned_int32(_x) ((_x) <= 4294967295UL)
#define SIGNEDNESS_signed 1
#define SIGNEDNESS_unsigned 0
#define INT_TYPE(_size, _sign) INT ## _size ## _T_ ## _sign
#define INT_SWAP(_size) bswap_ ## _size
#define INT_VALID_P(_size, _sign) is_ ## _sign ## _int ## _size
#define SIGNEDNESS(_sign) SIGNEDNESS_ ## _sign
#define INTEGER_ACCESSOR_PROLOGUE(validate, _len, _sign) \
size_t c_len, c_index; \
_sign char *c_bv; \
\
SCM_VALIDATE_##validate (1, bv); \
c_index = scm_to_size_t (index); \
\
c_len = SCM_BYTEVECTOR_LENGTH (bv); \
c_bv = (_sign char *) SCM_BYTEVECTOR_CONTENTS (bv); \
\
if (SCM_UNLIKELY (c_len < c_index \
|| (c_len - c_index < (_len) / 8))) \
scm_out_of_range (FUNC_NAME, index);
#define INTEGER_GETTER_PROLOGUE(_len, _sign) \
INTEGER_ACCESSOR_PROLOGUE (BYTEVECTOR, _len, _sign)
#define INTEGER_SETTER_PROLOGUE(_len, _sign) \
INTEGER_ACCESSOR_PROLOGUE (MUTABLE_BYTEVECTOR, _len, _sign)
/* Template for fixed-size integer access (only 8, 16 or 32-bit). */
#define INTEGER_REF(_len, _sign) \
SCM result; \
\
INTEGER_GETTER_PROLOGUE (_len, _sign); \
SCM_VALIDATE_SYMBOL (3, endianness); \
\
{ \
INT_TYPE (_len, _sign) c_result; \
\
memcpy (&c_result, &c_bv[c_index], (_len) / 8); \
if (!scm_is_eq (endianness, scm_i_native_endianness)) \
c_result = INT_SWAP (_len) (c_result); \
\
result = SCM_I_MAKINUM (c_result); \
} \
\
return result;
/* Template for fixed-size integer access using the native endianness. */
#define INTEGER_NATIVE_REF(_len, _sign) \
SCM result; \
\
INTEGER_GETTER_PROLOGUE (_len, _sign); \
\
{ \
INT_TYPE (_len, _sign) c_result; \
\
memcpy (&c_result, &c_bv[c_index], (_len) / 8); \
result = SCM_I_MAKINUM (c_result); \
} \
\
return result;
/* Template for fixed-size integer modification (only 8, 16 or 32-bit). */
#define INTEGER_SET(_len, _sign) \
INTEGER_SETTER_PROLOGUE (_len, _sign); \
SCM_VALIDATE_SYMBOL (3, endianness); \
\
{ \
scm_t_signed_bits c_value; \
INT_TYPE (_len, _sign) c_value_short; \
\
if (SCM_UNLIKELY (!SCM_I_INUMP (value))) \
scm_wrong_type_arg (FUNC_NAME, 3, value); \
\
c_value = SCM_I_INUM (value); \
if (SCM_UNLIKELY (!INT_VALID_P (_len, _sign) (c_value))) \
scm_out_of_range (FUNC_NAME, value); \
\
c_value_short = (INT_TYPE (_len, _sign)) c_value; \
if (!scm_is_eq (endianness, scm_i_native_endianness)) \
c_value_short = INT_SWAP (_len) (c_value_short); \
\
memcpy (&c_bv[c_index], &c_value_short, (_len) / 8); \
} \
\
return SCM_UNSPECIFIED;
/* Template for fixed-size integer modification using the native
endianness. */
#define INTEGER_NATIVE_SET(_len, _sign) \
INTEGER_SETTER_PROLOGUE (_len, _sign); \
\
{ \
scm_t_signed_bits c_value; \
INT_TYPE (_len, _sign) c_value_short; \
\
if (SCM_UNLIKELY (!SCM_I_INUMP (value))) \
scm_wrong_type_arg (FUNC_NAME, 3, value); \
\
c_value = SCM_I_INUM (value); \
if (SCM_UNLIKELY (!INT_VALID_P (_len, _sign) (c_value))) \
scm_out_of_range (FUNC_NAME, value); \
\
c_value_short = (INT_TYPE (_len, _sign)) c_value; \
\
memcpy (&c_bv[c_index], &c_value_short, (_len) / 8); \
} \
\
return SCM_UNSPECIFIED;
/* Bytevector type. */
#define SCM_BYTEVECTOR_HEADER_BYTES \
(SCM_BYTEVECTOR_HEADER_SIZE * sizeof (scm_t_bits))
#define SCM_BYTEVECTOR_SET_FLAG(bv, flag) \
SCM_SET_BYTEVECTOR_FLAGS ((bv), SCM_BYTEVECTOR_FLAGS (bv) | flag)
#define SCM_BYTEVECTOR_SET_LENGTH(_bv, _len) \
SCM_SET_CELL_WORD_1 ((_bv), (scm_t_bits) (_len))
#define SCM_BYTEVECTOR_SET_CONTENTS(_bv, _contents) \
SCM_SET_CELL_WORD_2 ((_bv), (scm_t_bits) (_contents))
#define SCM_BYTEVECTOR_SET_PARENT(_bv, _parent) \
SCM_SET_CELL_OBJECT_3 ((_bv), (_parent))
#define SCM_VALIDATE_MUTABLE_BYTEVECTOR(pos, v) \
SCM_MAKE_VALIDATE_MSG (pos, v, MUTABLE_BYTEVECTOR_P, "mutable bytevector")
/* The empty bytevector. */
SCM scm_null_bytevector = SCM_UNSPECIFIED;
static inline SCM
make_bytevector (size_t len, scm_t_array_element_type element_type)
{
SCM ret;
size_t c_len;
if (SCM_UNLIKELY (element_type > SCM_ARRAY_ELEMENT_TYPE_LAST
|| scm_i_array_element_type_sizes[element_type] < 8))
/* This would be an internal Guile programming error */
abort ();
/* Make sure that the total allocation size will not overflow size_t,
with ~30 extra bytes to spare to avoid an overflow within the
allocator. */
if (SCM_UNLIKELY (len >= (((size_t) -(SCM_BYTEVECTOR_HEADER_BYTES + 32))
/ (scm_i_array_element_type_sizes[element_type]/8))))
scm_num_overflow ("make-bytevector");
if (SCM_UNLIKELY (len == 0 && element_type == SCM_ARRAY_ELEMENT_TYPE_VU8
&& SCM_BYTEVECTOR_P (scm_null_bytevector)))
ret = scm_null_bytevector;
else
{
signed char *contents;
c_len = len * (scm_i_array_element_type_sizes[element_type] / 8);
contents = scm_gc_malloc_pointerless (SCM_BYTEVECTOR_HEADER_BYTES + c_len,
SCM_GC_BYTEVECTOR);
ret = SCM_PACK_POINTER (contents);
contents += SCM_BYTEVECTOR_HEADER_BYTES;
SCM_SET_BYTEVECTOR_FLAGS (ret,
element_type | SCM_F_BYTEVECTOR_CONTIGUOUS);
SCM_BYTEVECTOR_SET_LENGTH (ret, c_len);
SCM_BYTEVECTOR_SET_CONTENTS (ret, contents);
SCM_BYTEVECTOR_SET_PARENT (ret, SCM_BOOL_F);
}
return ret;
}
/* Return a bytevector of LEN elements of type ELEMENT_TYPE, with element
values taken from CONTENTS. Assume that the storage for CONTENTS will be
automatically reclaimed when it becomes unreachable. */
static inline SCM
make_bytevector_from_buffer (size_t len, void *contents,
scm_t_array_element_type element_type)
{
SCM ret;
if (SCM_UNLIKELY (len == 0))
ret = make_bytevector (len, element_type);
else
{
size_t c_len;
ret = SCM_PACK_POINTER (scm_gc_malloc (SCM_BYTEVECTOR_HEADER_BYTES,
SCM_GC_BYTEVECTOR));
c_len = len * (scm_i_array_element_type_sizes[element_type] / 8);
SCM_SET_BYTEVECTOR_FLAGS (ret, element_type);
SCM_BYTEVECTOR_SET_LENGTH (ret, c_len);
SCM_BYTEVECTOR_SET_CONTENTS (ret, contents);
SCM_BYTEVECTOR_SET_PARENT (ret, SCM_BOOL_F);
}
return ret;
}
/* Return a new bytevector of size LEN octets. */
SCM
scm_c_make_bytevector (size_t len)
{
return make_bytevector (len, SCM_ARRAY_ELEMENT_TYPE_VU8);
}
/* Return a new bytevector of size LEN elements. */
SCM
scm_i_make_typed_bytevector (size_t len, scm_t_array_element_type element_type)
{
return make_bytevector (len, element_type);
}
/* Return a bytevector of size LEN made up of CONTENTS. The area
pointed to by CONTENTS must be protected from GC somehow: either
because it was allocated using `scm_gc_malloc ()', or because it is
part of PARENT. */
SCM
scm_c_take_gc_bytevector (signed char *contents, size_t len, SCM parent)
{
SCM ret;
ret = make_bytevector_from_buffer (len, contents, SCM_ARRAY_ELEMENT_TYPE_VU8);
SCM_BYTEVECTOR_SET_PARENT (ret, parent);
return ret;
}
SCM
scm_c_take_typed_bytevector (signed char *contents, size_t len,
scm_t_array_element_type element_type, SCM parent)
{
SCM ret;
ret = make_bytevector_from_buffer (len, contents, element_type);
SCM_BYTEVECTOR_SET_PARENT (ret, parent);
return ret;
}
/* Shrink BV to C_NEW_LEN (which is assumed to be smaller than its current
size) and return the new bytevector (possibly different from BV). */
SCM
scm_c_shrink_bytevector (SCM bv, size_t c_new_len)
{
SCM new_bv;
size_t c_len;
if (SCM_UNLIKELY (c_new_len % SCM_BYTEVECTOR_TYPE_SIZE (bv)))
/* This would be an internal Guile programming error */
abort ();
c_len = SCM_BYTEVECTOR_LENGTH (bv);
if (SCM_UNLIKELY (c_new_len > c_len))
abort ();
SCM_BYTEVECTOR_SET_LENGTH (bv, c_new_len);
if (SCM_BYTEVECTOR_CONTIGUOUS_P (bv))
{
signed char *c_bv;
c_bv = scm_gc_realloc (SCM2PTR (bv),
c_len + SCM_BYTEVECTOR_HEADER_BYTES,
c_new_len + SCM_BYTEVECTOR_HEADER_BYTES,
SCM_GC_BYTEVECTOR);
new_bv = PTR2SCM (c_bv);
SCM_BYTEVECTOR_SET_CONTENTS (new_bv, c_bv + SCM_BYTEVECTOR_HEADER_BYTES);
}
else
{
signed char *c_bv;
c_bv = scm_gc_realloc (SCM_BYTEVECTOR_CONTENTS (bv),
c_len, c_new_len, SCM_GC_BYTEVECTOR);
SCM_BYTEVECTOR_SET_CONTENTS (bv, c_bv);
new_bv = bv;
}
return new_bv;
}
int
scm_is_bytevector (SCM obj)
{
return SCM_BYTEVECTOR_P (obj);
}
size_t
scm_c_bytevector_length (SCM bv)
#define FUNC_NAME "scm_c_bytevector_length"
{
SCM_VALIDATE_BYTEVECTOR (1, bv);
return SCM_BYTEVECTOR_LENGTH (bv);
}
#undef FUNC_NAME
uint8_t
scm_c_bytevector_ref (SCM bv, size_t index)
#define FUNC_NAME "scm_c_bytevector_ref"
{
size_t c_len;
const uint8_t *c_bv;
SCM_VALIDATE_BYTEVECTOR (1, bv);
c_len = SCM_BYTEVECTOR_LENGTH (bv);
c_bv = (uint8_t *) SCM_BYTEVECTOR_CONTENTS (bv);
if (SCM_UNLIKELY (index >= c_len))
scm_out_of_range (FUNC_NAME, scm_from_size_t (index));
return c_bv[index];
}
#undef FUNC_NAME
void
scm_c_bytevector_set_x (SCM bv, size_t index, uint8_t value)
#define FUNC_NAME "scm_c_bytevector_set_x"
{
size_t c_len;
uint8_t *c_bv;
SCM_VALIDATE_MUTABLE_BYTEVECTOR (1, bv);
c_len = SCM_BYTEVECTOR_LENGTH (bv);
c_bv = (uint8_t *) SCM_BYTEVECTOR_CONTENTS (bv);
if (SCM_UNLIKELY (index >= c_len))
scm_out_of_range (FUNC_NAME, scm_from_size_t (index));
c_bv[index] = value;
}
#undef FUNC_NAME
int
scm_i_print_bytevector (SCM bv, SCM port, scm_print_state *pstate SCM_UNUSED)
{
ssize_t ubnd, inc, i;
scm_t_array_handle h;
scm_array_get_handle (bv, &h);
scm_putc ('#', port);
scm_write (scm_array_handle_element_type (&h), port);
scm_putc ('(', port);
for (i = h.dims[0].lbnd, ubnd = h.dims[0].ubnd, inc = h.dims[0].inc;
i <= ubnd; i += inc)
{
if (i > 0)
scm_putc (' ', port);
scm_write (scm_array_handle_ref (&h, i), port);
}
scm_putc (')', port);
return 1;
}
/* General operations. */
static SCM sym_big;
static SCM sym_little;
SCM scm_endianness_big, scm_endianness_little;
/* Host endianness (a symbol). */
SCM scm_i_native_endianness = SCM_UNSPECIFIED;
/* Byte-swapping. */
#ifndef bswap_24
# define bswap_24(_x) \
((((_x) & 0xff0000) >> 16) | \
(((_x) & 0x00ff00)) | \
(((_x) & 0x0000ff) << 16))
#endif
SCM_DEFINE (scm_native_endianness, "native-endianness", 0, 0, 0,
(void),
"Return a symbol denoting the machine's native endianness.")
#define FUNC_NAME s_scm_native_endianness
{
return scm_i_native_endianness;
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_p, "bytevector?", 1, 0, 0,
(SCM obj),
"Return true if @var{obj} is a bytevector.")
#define FUNC_NAME s_scm_bytevector_p
{
return scm_from_bool (scm_is_bytevector (obj));
}
#undef FUNC_NAME
SCM_DEFINE (scm_make_bytevector, "make-bytevector", 1, 1, 0,
(SCM len, SCM fill),
"Return a newly allocated bytevector of @var{len} bytes, "
"optionally filled with @var{fill}.")
#define FUNC_NAME s_scm_make_bytevector
{
SCM bv;
size_t c_len;
uint8_t c_fill = 0;
SCM_VALIDATE_SIZE_COPY (1, len, c_len);
if (!scm_is_eq (fill, SCM_UNDEFINED))
{
int value;
value = scm_to_int (fill);
if (SCM_UNLIKELY ((value < -128) || (value > 255)))
scm_out_of_range (FUNC_NAME, fill);
c_fill = (uint8_t) value;
}
bv = make_bytevector (c_len, SCM_ARRAY_ELEMENT_TYPE_VU8);
if (!scm_is_eq (fill, SCM_UNDEFINED))
{
size_t i;
uint8_t *contents;
contents = (uint8_t *) SCM_BYTEVECTOR_CONTENTS (bv);
for (i = 0; i < c_len; i++)
contents[i] = c_fill;
}
else
memset (SCM_BYTEVECTOR_CONTENTS (bv), 0, c_len);
return bv;
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_length, "bytevector-length", 1, 0, 0,
(SCM bv),
"Return the length (in bytes) of @var{bv}.")
#define FUNC_NAME s_scm_bytevector_length
{
return scm_from_size_t (scm_c_bytevector_length (bv));
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_eq_p, "bytevector=?", 2, 0, 0,
(SCM bv1, SCM bv2),
"Return is @var{bv1} equals to @var{bv2}---i.e., if they "
"have the same length and contents.")
#define FUNC_NAME s_scm_bytevector_eq_p
{
SCM result = SCM_BOOL_F;
size_t c_len1, c_len2;
SCM_VALIDATE_BYTEVECTOR (1, bv1);
SCM_VALIDATE_BYTEVECTOR (2, bv2);
c_len1 = SCM_BYTEVECTOR_LENGTH (bv1);
c_len2 = SCM_BYTEVECTOR_LENGTH (bv2);
if (c_len1 == c_len2 && (SCM_BYTEVECTOR_ELEMENT_TYPE (bv1)
== SCM_BYTEVECTOR_ELEMENT_TYPE (bv2)))
{
signed char *c_bv1, *c_bv2;
c_bv1 = SCM_BYTEVECTOR_CONTENTS (bv1);
c_bv2 = SCM_BYTEVECTOR_CONTENTS (bv2);
result = scm_from_bool (!memcmp (c_bv1, c_bv2, c_len1));
}
return result;
}
#undef FUNC_NAME
static SCM scm_bytevector_fill_partial_x (SCM bv, SCM fill, SCM start, SCM end);
SCM_DEFINE (scm_bytevector_fill_partial_x, "bytevector-fill!", 2, 2, 0,
(SCM bv, SCM fill, SCM start, SCM end),
"Fill positions [@var{start} ... @var{end}) of bytevector "
"@var{bv} with @var{fill}, a byte. @var{start} defaults to 0 "
"and @var{end} defaults to the length of @var{bv}. "
"The return value is unspecified.")
#define FUNC_NAME s_scm_bytevector_fill_partial_x
{
SCM_VALIDATE_MUTABLE_BYTEVECTOR (1, bv);
int value = scm_to_int (fill);
if (SCM_UNLIKELY ((value < -128) || (value > 255)))
scm_out_of_range (FUNC_NAME, fill);
size_t i = 0;
size_t c_end = SCM_BYTEVECTOR_LENGTH (bv);
uint8_t *c_bv = (uint8_t *) SCM_BYTEVECTOR_CONTENTS (bv);
if (!SCM_UNBNDP (start))
i = scm_to_unsigned_integer (start, 0, c_end);
if (!SCM_UNBNDP (end))
c_end = scm_to_unsigned_integer (end, i, c_end);
memset (c_bv + i, value, c_end-i);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM
scm_bytevector_fill_x (SCM bv, SCM fill)
#define FUNC_NAME s_scm_bytevector_fill_x
{
return scm_bytevector_fill_partial_x (bv, fill, SCM_UNDEFINED, SCM_UNDEFINED);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_copy_x, "bytevector-copy!", 5, 0, 0,
(SCM source, SCM source_start, SCM target, SCM target_start,
SCM len),
"Copy @var{len} bytes from @var{source} into @var{target}, "
"reading from a block starting at @var{source_start} (a positive "
"index within @var{source}) and writing to a block starting at "
"@var{target_start}.\n\n"
"It is permitted for the @var{source} and @var{target} regions to "
"overlap. In that case, copying takes place as if the source is "
"first copied into a temporary bytevector and then into the "
"destination. ")
#define FUNC_NAME s_scm_bytevector_copy_x
{
size_t c_len, c_source_len, c_target_len;
size_t c_source_start, c_target_start;
signed char *c_source, *c_target;
SCM_VALIDATE_BYTEVECTOR (1, source);
SCM_VALIDATE_MUTABLE_BYTEVECTOR (3, target);
c_len = scm_to_size_t (len);
c_source_start = scm_to_size_t (source_start);
c_target_start = scm_to_size_t (target_start);
c_source = SCM_BYTEVECTOR_CONTENTS (source);
c_target = SCM_BYTEVECTOR_CONTENTS (target);
c_source_len = SCM_BYTEVECTOR_LENGTH (source);
c_target_len = SCM_BYTEVECTOR_LENGTH (target);
if (SCM_UNLIKELY (c_source_len < c_source_start
|| (c_source_len - c_source_start < c_len)))
scm_out_of_range (FUNC_NAME, source_start);
if (SCM_UNLIKELY (c_target_len < c_target_start
|| (c_target_len - c_target_start < c_len)))
scm_out_of_range (FUNC_NAME, target_start);
memmove (c_target + c_target_start,
c_source + c_source_start,
c_len);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_copy, "bytevector-copy", 1, 0, 0,
(SCM bv),
"Return a newly allocated copy of @var{bv}.")
#define FUNC_NAME s_scm_bytevector_copy
{
SCM copy;
size_t c_len;
signed char *c_bv, *c_copy;
SCM_VALIDATE_BYTEVECTOR (1, bv);
c_len = SCM_BYTEVECTOR_LENGTH (bv);
c_bv = SCM_BYTEVECTOR_CONTENTS (bv);
copy = make_bytevector (c_len, SCM_ARRAY_ELEMENT_TYPE_VU8);
c_copy = SCM_BYTEVECTOR_CONTENTS (copy);
memcpy (c_copy, c_bv, c_len);
return copy;
}
#undef FUNC_NAME
SCM_DEFINE (scm_uniform_array_to_bytevector, "uniform-array->bytevector",
1, 0, 0, (SCM array),
"Return a newly allocated bytevector whose contents\n"
"will be copied from the uniform array @var{array}.")
#define FUNC_NAME s_scm_uniform_array_to_bytevector
{
SCM contents, ret;
size_t len, sz, byte_len;
scm_t_array_handle h;
const void *elts;
contents = scm_array_contents (array, SCM_BOOL_T);
if (scm_is_false (contents))
scm_wrong_type_arg_msg (FUNC_NAME, 0, array, "uniform contiguous array");
scm_array_get_handle (contents, &h);
assert (h.base == 0);
elts = h.elements;
len = h.dims->inc * (h.dims->ubnd - h.dims->lbnd + 1);
sz = scm_array_handle_uniform_element_bit_size (&h);
if (sz >= 8 && ((sz % 8) == 0))
byte_len = len * (sz / 8);
else if (sz < 8)
/* Elements of sub-byte size (bitvectors) are addressed in 32-bit
units. */
byte_len = ((len * sz + 31) / 32) * 4;
else
/* an internal guile error, really */
SCM_MISC_ERROR ("uniform elements larger than 8 bits must fill whole bytes", SCM_EOL);
ret = make_bytevector (byte_len, SCM_ARRAY_ELEMENT_TYPE_VU8);
if (byte_len != 0)
/* Empty arrays may have elements == NULL. We must avoid passing
NULL to memcpy, even if the length is zero, to avoid undefined
behavior. */
memcpy (SCM_BYTEVECTOR_CONTENTS (ret), elts, byte_len);
scm_array_handle_release (&h);
return ret;
}
#undef FUNC_NAME
/* Operations on bytes and octets. */
SCM_DEFINE (scm_bytevector_u8_ref, "bytevector-u8-ref", 2, 0, 0,
(SCM bv, SCM index),
"Return the octet located at @var{index} in @var{bv}.")
#define FUNC_NAME s_scm_bytevector_u8_ref
{
INTEGER_NATIVE_REF (8, unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s8_ref, "bytevector-s8-ref", 2, 0, 0,
(SCM bv, SCM index),
"Return the byte located at @var{index} in @var{bv}.")
#define FUNC_NAME s_scm_bytevector_s8_ref
{
INTEGER_NATIVE_REF (8, signed);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_u8_set_x, "bytevector-u8-set!", 3, 0, 0,
(SCM bv, SCM index, SCM value),
"Return the octet located at @var{index} in @var{bv}.")
#define FUNC_NAME s_scm_bytevector_u8_set_x
{
INTEGER_NATIVE_SET (8, unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s8_set_x, "bytevector-s8-set!", 3, 0, 0,
(SCM bv, SCM index, SCM value),
"Return the octet located at @var{index} in @var{bv}.")
#define FUNC_NAME s_scm_bytevector_s8_set_x
{
INTEGER_NATIVE_SET (8, signed);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_to_u8_list, "bytevector->u8-list", 1, 0, 0,
(SCM bv),
"Return a newly allocated list of octets containing the "
"contents of @var{bv}.")
#define FUNC_NAME s_scm_bytevector_to_u8_list
{
SCM lst, pair;
size_t c_len, i;
uint8_t *c_bv;
SCM_VALIDATE_BYTEVECTOR (1, bv);
c_len = SCM_BYTEVECTOR_LENGTH (bv);
c_bv = (uint8_t *) SCM_BYTEVECTOR_CONTENTS (bv);
lst = scm_make_list (scm_from_size_t (c_len), SCM_UNSPECIFIED);
for (i = 0, pair = lst;
i < c_len;
i++, pair = SCM_CDR (pair))
{
SCM_SETCAR (pair, SCM_I_MAKINUM (c_bv[i]));
}
return lst;
}
#undef FUNC_NAME
SCM_DEFINE (scm_u8_list_to_bytevector, "u8-list->bytevector", 1, 0, 0,
(SCM lst),
"Turn @var{lst}, a list of octets, into a bytevector.")
#define FUNC_NAME s_scm_u8_list_to_bytevector
{
SCM bv, item;
size_t c_len, i;
uint8_t *c_bv;
SCM_VALIDATE_LIST_COPYLEN (1, lst, c_len);
bv = make_bytevector (c_len, SCM_ARRAY_ELEMENT_TYPE_VU8);
c_bv = (uint8_t *) SCM_BYTEVECTOR_CONTENTS (bv);
for (i = 0; i < c_len; lst = SCM_CDR (lst), i++)
{
item = SCM_CAR (lst);
if (SCM_LIKELY (SCM_I_INUMP (item)))
{
scm_t_signed_bits c_item;
c_item = SCM_I_INUM (item);
if (SCM_LIKELY ((c_item >= 0) && (c_item < 256)))
c_bv[i] = (uint8_t) c_item;
else
goto type_error;
}
else
goto type_error;
}
return bv;
type_error:
scm_wrong_type_arg (FUNC_NAME, 1, item);
return SCM_BOOL_F;
}
#undef FUNC_NAME
/* Compute the two's complement of VALUE (a positive integer) on SIZE octets
using (2^(SIZE * 8) - VALUE). */
static inline void
twos_complement (mpz_t value, size_t size)
{
unsigned long bit_count;
/* We expect BIT_COUNT to fit in a unsigned long thanks to the range
checking on SIZE performed earlier. */
bit_count = (unsigned long) size << 3UL;
if (SCM_LIKELY (bit_count < sizeof (unsigned long)))
mpz_ui_sub (value, 1UL << bit_count, value);
else
{
mpz_t max;
mpz_init (max);
mpz_ui_pow_ui (max, 2, bit_count);
mpz_sub (value, max, value);
mpz_clear (max);
}
}
static inline SCM
bytevector_large_ref (const char *c_bv, size_t c_size, int signed_p,
SCM endianness)
{
SCM result;
mpz_t c_mpz;
int c_endianness, negative_p = 0;
if (signed_p)
{
if (scm_is_eq (endianness, sym_big))
negative_p = c_bv[0] & 0x80;
else
negative_p = c_bv[c_size - 1] & 0x80;
}
c_endianness = scm_is_eq (endianness, sym_big) ? 1 : -1;
mpz_init (c_mpz);
mpz_import (c_mpz, 1 /* 1 word */, 1 /* word order doesn't matter */,
c_size /* word is C_SIZE-byte long */,
c_endianness,
0 /* nails */, c_bv);
if (signed_p && negative_p)
{
twos_complement (c_mpz, c_size);
mpz_neg (c_mpz, c_mpz);
}
result = scm_from_mpz (c_mpz);
mpz_clear (c_mpz); /* FIXME: Needed? */
return result;
}
static inline int
bytevector_large_set (char *c_bv, size_t c_size, int signed_p,
SCM value, SCM endianness)
{
mpz_t c_mpz;
int c_endianness, c_sign, err = 0;
c_endianness = scm_is_eq (endianness, sym_big) ? 1 : -1;
mpz_init (c_mpz);
scm_to_mpz (value, c_mpz);
c_sign = mpz_sgn (c_mpz);
if (c_sign < 0)
{
if (SCM_LIKELY (signed_p))
{
mpz_neg (c_mpz, c_mpz);
twos_complement (c_mpz, c_size);
}
else
{
err = -1;
goto finish;
}
}
if (c_sign == 0)
/* Zero. */
memset (c_bv, 0, c_size);
else
{
size_t word_count, value_words;
value_words = ((mpz_sizeinbase (c_mpz, 2) + (8 * c_size) - 1) /
(8 * c_size));
if (SCM_UNLIKELY (value_words > 1))
{
err = -2;
goto finish;
}
mpz_export (c_bv, &word_count, 1 /* word order doesn't matter */,
c_size, c_endianness,
0 /* nails */, c_mpz);
if (SCM_UNLIKELY (word_count != 1))
/* Shouldn't happen since we already checked with VALUE_SIZE. */
abort ();
}
finish:
mpz_clear (c_mpz);
return err;
}
#define GENERIC_INTEGER_ACCESSOR_PROLOGUE(validate, _sign) \
size_t c_len, c_index, c_size; \
char *c_bv; \
\
SCM_VALIDATE_##validate (1, bv); \
c_index = scm_to_size_t (index); \
c_size = scm_to_size_t (size); \
\
c_len = SCM_BYTEVECTOR_LENGTH (bv); \
c_bv = (char *) SCM_BYTEVECTOR_CONTENTS (bv); \
\
/* C_SIZE must have its 3 higher bits set to zero so that \
multiplying it by 8 yields a number that fits in a \
size_t. */ \
if (SCM_UNLIKELY (c_size == 0 || c_size >= (SIZE_MAX >> 3))) \
scm_out_of_range (FUNC_NAME, size); \
if (SCM_UNLIKELY (c_len < c_index \
|| (c_len - c_index < c_size))) \
scm_out_of_range (FUNC_NAME, index);
#define GENERIC_INTEGER_GETTER_PROLOGUE(_sign) \
GENERIC_INTEGER_ACCESSOR_PROLOGUE (BYTEVECTOR, _sign)
#define GENERIC_INTEGER_SETTER_PROLOGUE(_sign) \
GENERIC_INTEGER_ACCESSOR_PROLOGUE (MUTABLE_BYTEVECTOR, _sign)
/* Template of an integer reference function. */
#define GENERIC_INTEGER_REF(_sign) \
SCM result; \
\
if (c_size < 3) \
{ \
int swap; \
_sign int value; \
\
swap = !scm_is_eq (endianness, scm_i_native_endianness); \
switch (c_size) \
{ \
case 1: \
{ \
_sign char c_value8; \
memcpy (&c_value8, c_bv, 1); \
value = c_value8; \
} \
break; \
case 2: \
{ \
INT_TYPE (16, _sign) c_value16; \
memcpy (&c_value16, c_bv, 2); \
if (swap) \
value = (INT_TYPE (16, _sign)) bswap_16 (c_value16); \
else \
value = c_value16; \
} \
break; \
default: \
abort (); \
} \
\
result = SCM_I_MAKINUM ((_sign int) value); \
} \
else \
result = bytevector_large_ref ((char *) c_bv, \
c_size, SIGNEDNESS (_sign), \
endianness); \
\
return result;
static inline SCM
bytevector_signed_ref (const char *c_bv, size_t c_size, SCM endianness)
{
GENERIC_INTEGER_REF (signed);
}
static inline SCM
bytevector_unsigned_ref (const char *c_bv, size_t c_size, SCM endianness)
{
GENERIC_INTEGER_REF (unsigned);
}
/* Template of an integer assignment function. */
#define GENERIC_INTEGER_SET(_sign) \
if (c_size < 3) \
{ \
scm_t_signed_bits c_value; \
\
if (SCM_UNLIKELY (!SCM_I_INUMP (value))) \
goto range_error; \
\
c_value = SCM_I_INUM (value); \
switch (c_size) \
{ \
case 1: \
if (SCM_LIKELY (INT_VALID_P (8, _sign) (c_value))) \
{ \
_sign char c_value8; \
c_value8 = (_sign char) c_value; \
memcpy (c_bv, &c_value8, 1); \
} \
else \
goto range_error; \
break; \
\
case 2: \
if (SCM_LIKELY (INT_VALID_P (16, _sign) (c_value))) \
{ \
int swap; \
INT_TYPE (16, _sign) c_value16; \
\
swap = !scm_is_eq (endianness, scm_i_native_endianness); \
\
if (swap) \
c_value16 = (INT_TYPE (16, _sign)) bswap_16 (c_value); \
else \
c_value16 = c_value; \
\
memcpy (c_bv, &c_value16, 2); \
} \
else \
goto range_error; \
break; \
\
default: \
abort (); \
} \
} \
else \
{ \
int err; \
\
err = bytevector_large_set (c_bv, c_size, \
SIGNEDNESS (_sign), \
value, endianness); \
if (err) \
goto range_error; \
} \
\
return; \
\
range_error: \
scm_out_of_range (FUNC_NAME, value); \
return;
static inline void
bytevector_signed_set (char *c_bv, size_t c_size,
SCM value, SCM endianness,
const char *func_name)
#define FUNC_NAME func_name
{
GENERIC_INTEGER_SET (signed);
}
#undef FUNC_NAME
static inline void
bytevector_unsigned_set (char *c_bv, size_t c_size,
SCM value, SCM endianness,
const char *func_name)
#define FUNC_NAME func_name
{
GENERIC_INTEGER_SET (unsigned);
}
#undef FUNC_NAME
#undef GENERIC_INTEGER_SET
#undef GENERIC_INTEGER_REF
SCM_DEFINE (scm_bytevector_uint_ref, "bytevector-uint-ref", 4, 0, 0,
(SCM bv, SCM index, SCM endianness, SCM size),
"Return the @var{size}-octet long unsigned integer at index "
"@var{index} in @var{bv}.")
#define FUNC_NAME s_scm_bytevector_uint_ref
{
GENERIC_INTEGER_GETTER_PROLOGUE (unsigned);
return (bytevector_unsigned_ref (&c_bv[c_index], c_size, endianness));
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_sint_ref, "bytevector-sint-ref", 4, 0, 0,
(SCM bv, SCM index, SCM endianness, SCM size),
"Return the @var{size}-octet long unsigned integer at index "
"@var{index} in @var{bv}.")
#define FUNC_NAME s_scm_bytevector_sint_ref
{
GENERIC_INTEGER_GETTER_PROLOGUE (signed);
return (bytevector_signed_ref (&c_bv[c_index], c_size, endianness));
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_uint_set_x, "bytevector-uint-set!", 5, 0, 0,
(SCM bv, SCM index, SCM value, SCM endianness, SCM size),
"Set the @var{size}-octet long unsigned integer at @var{index} "
"to @var{value}.")
#define FUNC_NAME s_scm_bytevector_uint_set_x
{
GENERIC_INTEGER_SETTER_PROLOGUE (unsigned);
bytevector_unsigned_set (&c_bv[c_index], c_size, value, endianness,
FUNC_NAME);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_sint_set_x, "bytevector-sint-set!", 5, 0, 0,
(SCM bv, SCM index, SCM value, SCM endianness, SCM size),
"Set the @var{size}-octet long signed integer at @var{index} "
"to @var{value}.")
#define FUNC_NAME s_scm_bytevector_sint_set_x
{
GENERIC_INTEGER_SETTER_PROLOGUE (signed);
bytevector_signed_set (&c_bv[c_index], c_size, value, endianness,
FUNC_NAME);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
/* Operations on integers of arbitrary size. */
#define INTEGERS_TO_LIST(_sign) \
SCM lst, pair; \
size_t i, c_len, c_size; \
\
SCM_VALIDATE_BYTEVECTOR (1, bv); \
SCM_VALIDATE_SYMBOL (2, endianness); \
c_size = scm_to_unsigned_integer (size, 1, (size_t) -1); \
\
c_len = SCM_BYTEVECTOR_LENGTH (bv); \
if (SCM_UNLIKELY (c_len % c_size != 0)) \
scm_wrong_type_arg_msg \
(FUNC_NAME, 0, size, \
"an exact positive integer that divides the bytevector length"); \
else if (SCM_UNLIKELY (c_len == 0)) \
lst = SCM_EOL; \
else \
{ \
const char *c_bv; \
\
c_bv = (char *) SCM_BYTEVECTOR_CONTENTS (bv); \
\
lst = scm_make_list (scm_from_size_t (c_len / c_size), \
SCM_UNSPECIFIED); \
for (i = 0, pair = lst; \
i <= c_len - c_size; \
i += c_size, c_bv += c_size, pair = SCM_CDR (pair)) \
{ \
SCM_SETCAR (pair, \
bytevector_ ## _sign ## _ref (c_bv, c_size, \
endianness)); \
} \
} \
\
return lst;
SCM_DEFINE (scm_bytevector_to_sint_list, "bytevector->sint-list",
3, 0, 0,
(SCM bv, SCM endianness, SCM size),
"Return a list of signed integers of @var{size} octets "
"representing the contents of @var{bv}.")
#define FUNC_NAME s_scm_bytevector_to_sint_list
{
INTEGERS_TO_LIST (signed);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_to_uint_list, "bytevector->uint-list",
3, 0, 0,
(SCM bv, SCM endianness, SCM size),
"Return a list of unsigned integers of @var{size} octets "
"representing the contents of @var{bv}.")
#define FUNC_NAME s_scm_bytevector_to_uint_list
{
INTEGERS_TO_LIST (unsigned);
}
#undef FUNC_NAME
#undef INTEGER_TO_LIST
#define INTEGER_LIST_TO_BYTEVECTOR(_sign) \
SCM bv; \
size_t c_len; \
size_t c_size; \
char *c_bv, *c_bv_ptr; \
\
SCM_VALIDATE_LIST_COPYLEN (1, lst, c_len); \
SCM_VALIDATE_SYMBOL (2, endianness); \
c_size = scm_to_size_t (size); \
\
if (SCM_UNLIKELY (c_size == 0 || c_size >= (SIZE_MAX >> 3))) \
scm_out_of_range (FUNC_NAME, size); \
\
bv = make_bytevector (c_len * c_size, SCM_ARRAY_ELEMENT_TYPE_VU8); \
c_bv = (char *) SCM_BYTEVECTOR_CONTENTS (bv); \
\
for (c_bv_ptr = c_bv; \
!scm_is_null (lst); \
lst = SCM_CDR (lst), c_bv_ptr += c_size) \
{ \
bytevector_ ## _sign ## _set (c_bv_ptr, c_size, \
SCM_CAR (lst), endianness, \
FUNC_NAME); \
} \
\
return bv;
SCM_DEFINE (scm_uint_list_to_bytevector, "uint-list->bytevector",
3, 0, 0,
(SCM lst, SCM endianness, SCM size),
"Return a bytevector containing the unsigned integers "
"listed in @var{lst} and encoded on @var{size} octets "
"according to @var{endianness}.")
#define FUNC_NAME s_scm_uint_list_to_bytevector
{
INTEGER_LIST_TO_BYTEVECTOR (unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_sint_list_to_bytevector, "sint-list->bytevector",
3, 0, 0,
(SCM lst, SCM endianness, SCM size),
"Return a bytevector containing the signed integers "
"listed in @var{lst} and encoded on @var{size} octets "
"according to @var{endianness}.")
#define FUNC_NAME s_scm_sint_list_to_bytevector
{
INTEGER_LIST_TO_BYTEVECTOR (signed);
}
#undef FUNC_NAME
#undef INTEGER_LIST_TO_BYTEVECTOR
/* Operations on 16-bit integers. */
SCM_DEFINE (scm_bytevector_u16_ref, "bytevector-u16-ref",
3, 0, 0,
(SCM bv, SCM index, SCM endianness),
"Return the unsigned 16-bit integer from @var{bv} at "
"@var{index}.")
#define FUNC_NAME s_scm_bytevector_u16_ref
{
INTEGER_REF (16, unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s16_ref, "bytevector-s16-ref",
3, 0, 0,
(SCM bv, SCM index, SCM endianness),
"Return the signed 16-bit integer from @var{bv} at "
"@var{index}.")
#define FUNC_NAME s_scm_bytevector_s16_ref
{
INTEGER_REF (16, signed);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_u16_native_ref, "bytevector-u16-native-ref",
2, 0, 0,
(SCM bv, SCM index),
"Return the unsigned 16-bit integer from @var{bv} at "
"@var{index} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_u16_native_ref
{
INTEGER_NATIVE_REF (16, unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s16_native_ref, "bytevector-s16-native-ref",
2, 0, 0,
(SCM bv, SCM index),
"Return the unsigned 16-bit integer from @var{bv} at "
"@var{index} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_s16_native_ref
{
INTEGER_NATIVE_REF (16, signed);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_u16_set_x, "bytevector-u16-set!",
4, 0, 0,
(SCM bv, SCM index, SCM value, SCM endianness),
"Store @var{value} in @var{bv} at @var{index} according to "
"@var{endianness}.")
#define FUNC_NAME s_scm_bytevector_u16_set_x
{
INTEGER_SET (16, unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s16_set_x, "bytevector-s16-set!",
4, 0, 0,
(SCM bv, SCM index, SCM value, SCM endianness),
"Store @var{value} in @var{bv} at @var{index} according to "
"@var{endianness}.")
#define FUNC_NAME s_scm_bytevector_s16_set_x
{
INTEGER_SET (16, signed);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_u16_native_set_x, "bytevector-u16-native-set!",
3, 0, 0,
(SCM bv, SCM index, SCM value),
"Store the unsigned integer @var{value} at index @var{index} "
"of @var{bv} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_u16_native_set_x
{
INTEGER_NATIVE_SET (16, unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s16_native_set_x, "bytevector-s16-native-set!",
3, 0, 0,
(SCM bv, SCM index, SCM value),
"Store the signed integer @var{value} at index @var{index} "
"of @var{bv} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_s16_native_set_x
{
INTEGER_NATIVE_SET (16, signed);
}
#undef FUNC_NAME
/* Operations on 32-bit integers. */
/* Unfortunately, on 32-bit machines `SCM' is not large enough to hold
arbitrary 32-bit integers. Thus we fall back to using the
`large_{ref,set}' variants on 32-bit machines. */
#define LARGE_INTEGER_REF(_len, _sign) \
INTEGER_GETTER_PROLOGUE(_len, _sign); \
SCM_VALIDATE_SYMBOL (3, endianness); \
\
return (bytevector_large_ref ((char *) c_bv + c_index, _len / 8, \
SIGNEDNESS (_sign), endianness));
#define LARGE_INTEGER_SET(_len, _sign) \
int err; \
INTEGER_SETTER_PROLOGUE (_len, _sign); \
SCM_VALIDATE_SYMBOL (4, endianness); \
\
err = bytevector_large_set ((char *) c_bv + c_index, _len / 8, \
SIGNEDNESS (_sign), value, endianness); \
if (SCM_UNLIKELY (err)) \
scm_out_of_range (FUNC_NAME, value); \
\
return SCM_UNSPECIFIED;
#define LARGE_INTEGER_NATIVE_REF(_len, _sign) \
INTEGER_GETTER_PROLOGUE(_len, _sign); \
return (bytevector_large_ref ((char *) c_bv + c_index, _len / 8, \
SIGNEDNESS (_sign), scm_i_native_endianness));
#define LARGE_INTEGER_NATIVE_SET(_len, _sign) \
int err; \
INTEGER_SETTER_PROLOGUE (_len, _sign); \
\
err = bytevector_large_set ((char *) c_bv + c_index, _len / 8, \
SIGNEDNESS (_sign), value, \
scm_i_native_endianness); \
if (SCM_UNLIKELY (err)) \
scm_out_of_range (FUNC_NAME, value); \
\
return SCM_UNSPECIFIED;
SCM_DEFINE (scm_bytevector_u32_ref, "bytevector-u32-ref",
3, 0, 0,
(SCM bv, SCM index, SCM endianness),
"Return the unsigned 32-bit integer from @var{bv} at "
"@var{index}.")
#define FUNC_NAME s_scm_bytevector_u32_ref
{
#if SIZEOF_VOID_P > 4
INTEGER_REF (32, unsigned);
#else
LARGE_INTEGER_REF (32, unsigned);
#endif
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s32_ref, "bytevector-s32-ref",
3, 0, 0,
(SCM bv, SCM index, SCM endianness),
"Return the signed 32-bit integer from @var{bv} at "
"@var{index}.")
#define FUNC_NAME s_scm_bytevector_s32_ref
{
#if SIZEOF_VOID_P > 4
INTEGER_REF (32, signed);
#else
LARGE_INTEGER_REF (32, signed);
#endif
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_u32_native_ref, "bytevector-u32-native-ref",
2, 0, 0,
(SCM bv, SCM index),
"Return the unsigned 32-bit integer from @var{bv} at "
"@var{index} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_u32_native_ref
{
#if SIZEOF_VOID_P > 4
INTEGER_NATIVE_REF (32, unsigned);
#else
LARGE_INTEGER_NATIVE_REF (32, unsigned);
#endif
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s32_native_ref, "bytevector-s32-native-ref",
2, 0, 0,
(SCM bv, SCM index),
"Return the unsigned 32-bit integer from @var{bv} at "
"@var{index} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_s32_native_ref
{
#if SIZEOF_VOID_P > 4
INTEGER_NATIVE_REF (32, signed);
#else
LARGE_INTEGER_NATIVE_REF (32, signed);
#endif
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_u32_set_x, "bytevector-u32-set!",
4, 0, 0,
(SCM bv, SCM index, SCM value, SCM endianness),
"Store @var{value} in @var{bv} at @var{index} according to "
"@var{endianness}.")
#define FUNC_NAME s_scm_bytevector_u32_set_x
{
#if SIZEOF_VOID_P > 4
INTEGER_SET (32, unsigned);
#else
LARGE_INTEGER_SET (32, unsigned);
#endif
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s32_set_x, "bytevector-s32-set!",
4, 0, 0,
(SCM bv, SCM index, SCM value, SCM endianness),
"Store @var{value} in @var{bv} at @var{index} according to "
"@var{endianness}.")
#define FUNC_NAME s_scm_bytevector_s32_set_x
{
#if SIZEOF_VOID_P > 4
INTEGER_SET (32, signed);
#else
LARGE_INTEGER_SET (32, signed);
#endif
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_u32_native_set_x, "bytevector-u32-native-set!",
3, 0, 0,
(SCM bv, SCM index, SCM value),
"Store the unsigned integer @var{value} at index @var{index} "
"of @var{bv} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_u32_native_set_x
{
#if SIZEOF_VOID_P > 4
INTEGER_NATIVE_SET (32, unsigned);
#else
LARGE_INTEGER_NATIVE_SET (32, unsigned);
#endif
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s32_native_set_x, "bytevector-s32-native-set!",
3, 0, 0,
(SCM bv, SCM index, SCM value),
"Store the signed integer @var{value} at index @var{index} "
"of @var{bv} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_s32_native_set_x
{
#if SIZEOF_VOID_P > 4
INTEGER_NATIVE_SET (32, signed);
#else
LARGE_INTEGER_NATIVE_SET (32, signed);
#endif
}
#undef FUNC_NAME
/* Operations on 64-bit integers. */
/* For 64-bit integers, we use only the `large_{ref,set}' variant. */
SCM_DEFINE (scm_bytevector_u64_ref, "bytevector-u64-ref",
3, 0, 0,
(SCM bv, SCM index, SCM endianness),
"Return the unsigned 64-bit integer from @var{bv} at "
"@var{index}.")
#define FUNC_NAME s_scm_bytevector_u64_ref
{
LARGE_INTEGER_REF (64, unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s64_ref, "bytevector-s64-ref",
3, 0, 0,
(SCM bv, SCM index, SCM endianness),
"Return the signed 64-bit integer from @var{bv} at "
"@var{index}.")
#define FUNC_NAME s_scm_bytevector_s64_ref
{
LARGE_INTEGER_REF (64, signed);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_u64_native_ref, "bytevector-u64-native-ref",
2, 0, 0,
(SCM bv, SCM index),
"Return the unsigned 64-bit integer from @var{bv} at "
"@var{index} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_u64_native_ref
{
LARGE_INTEGER_NATIVE_REF (64, unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s64_native_ref, "bytevector-s64-native-ref",
2, 0, 0,
(SCM bv, SCM index),
"Return the unsigned 64-bit integer from @var{bv} at "
"@var{index} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_s64_native_ref
{
LARGE_INTEGER_NATIVE_REF (64, signed);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_u64_set_x, "bytevector-u64-set!",
4, 0, 0,
(SCM bv, SCM index, SCM value, SCM endianness),
"Store @var{value} in @var{bv} at @var{index} according to "
"@var{endianness}.")
#define FUNC_NAME s_scm_bytevector_u64_set_x
{
LARGE_INTEGER_SET (64, unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s64_set_x, "bytevector-s64-set!",
4, 0, 0,
(SCM bv, SCM index, SCM value, SCM endianness),
"Store @var{value} in @var{bv} at @var{index} according to "
"@var{endianness}.")
#define FUNC_NAME s_scm_bytevector_s64_set_x
{
LARGE_INTEGER_SET (64, signed);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_u64_native_set_x, "bytevector-u64-native-set!",
3, 0, 0,
(SCM bv, SCM index, SCM value),
"Store the unsigned integer @var{value} at index @var{index} "
"of @var{bv} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_u64_native_set_x
{
LARGE_INTEGER_NATIVE_SET (64, unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s64_native_set_x, "bytevector-s64-native-set!",
3, 0, 0,
(SCM bv, SCM index, SCM value),
"Store the signed integer @var{value} at index @var{index} "
"of @var{bv} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_s64_native_set_x
{
LARGE_INTEGER_NATIVE_SET (64, signed);
}
#undef FUNC_NAME
/* Operations on IEEE-754 numbers. */
/* There are two possible word endians, visible in glibc's .
However, in R6RS, when the endianness is `little', little endian is
assumed for both the byte order and the word order. This is clear from
Section 2.1 of R6RS-lib (in response to
http://www.r6rs.org/formal-comments/comment-187.txt). */
union scm_ieee754_float
{
float f;
uint32_t i;
};
union scm_ieee754_double
{
double d;
uint64_t i;
};
/* Convert to/from a floating-point number with different endianness. This
method is probably not the most efficient but it should be portable. */
static inline void
float_to_foreign_endianness (union scm_ieee754_float *target,
float source)
{
union scm_ieee754_float input;
input.f = source;
target->i = bswap_32 (input.i);
}
static inline float
float_from_foreign_endianness (const union scm_ieee754_float *source)
{
union scm_ieee754_float result;
result.i = bswap_32 (source->i);
return (result.f);
}
static inline void
double_to_foreign_endianness (union scm_ieee754_double *target,
double source)
{
union scm_ieee754_double input;
input.d = source;
target->i = bswap_64 (input.i);
}
static inline double
double_from_foreign_endianness (const union scm_ieee754_double *source)
{
union scm_ieee754_double result;
result.i = bswap_64 (source->i);
return (result.d);
}
/* Template macros to abstract over doubles and floats.
XXX: Guile can only convert to/from doubles. */
#define IEEE754_UNION(_c_type) union scm_ieee754_ ## _c_type
#define IEEE754_TO_SCM(_c_type) scm_from_double
#define IEEE754_FROM_SCM(_c_type) scm_to_double
#define IEEE754_FROM_FOREIGN_ENDIANNESS(_c_type) \
_c_type ## _from_foreign_endianness
#define IEEE754_TO_FOREIGN_ENDIANNESS(_c_type) \
_c_type ## _to_foreign_endianness
/* FIXME: SCM_VALIDATE_REAL rejects integers, etc. grrr */
#define VALIDATE_REAL(pos, v) \
do { \
SCM_ASSERT_TYPE (scm_is_real (v), v, pos, FUNC_NAME, "real"); \
} while (0)
/* Templace getters and setters. */
#define IEEE754_GETTER_PROLOGUE(_type) \
INTEGER_GETTER_PROLOGUE (sizeof (_type) << 3UL, signed);
#define IEEE754_SETTER_PROLOGUE(_type) \
INTEGER_SETTER_PROLOGUE (sizeof (_type) << 3UL, signed);
#define IEEE754_REF(_type) \
_type c_result; \
\
IEEE754_GETTER_PROLOGUE (_type); \
SCM_VALIDATE_SYMBOL (3, endianness); \
\
if (scm_is_eq (endianness, scm_i_native_endianness)) \
memcpy (&c_result, &c_bv[c_index], sizeof (c_result)); \
else \
{ \
IEEE754_UNION (_type) c_raw; \
\
memcpy (&c_raw, &c_bv[c_index], sizeof (c_raw)); \
c_result = \
IEEE754_FROM_FOREIGN_ENDIANNESS (_type) (&c_raw); \
} \
\
return (IEEE754_TO_SCM (_type) (c_result));
#define IEEE754_NATIVE_REF(_type) \
_type c_result; \
\
IEEE754_GETTER_PROLOGUE (_type); \
\
memcpy (&c_result, &c_bv[c_index], sizeof (c_result)); \
return (IEEE754_TO_SCM (_type) (c_result));
#define IEEE754_SET(_type) \
_type c_value; \
\
IEEE754_SETTER_PROLOGUE (_type); \
VALIDATE_REAL (3, value); \
SCM_VALIDATE_SYMBOL (4, endianness); \
c_value = IEEE754_FROM_SCM (_type) (value); \
\
if (scm_is_eq (endianness, scm_i_native_endianness)) \
memcpy (&c_bv[c_index], &c_value, sizeof (c_value)); \
else \
{ \
IEEE754_UNION (_type) c_raw; \
\
IEEE754_TO_FOREIGN_ENDIANNESS (_type) (&c_raw, c_value); \
memcpy (&c_bv[c_index], &c_raw, sizeof (c_raw)); \
} \
\
return SCM_UNSPECIFIED;
#define IEEE754_NATIVE_SET(_type) \
_type c_value; \
\
IEEE754_SETTER_PROLOGUE (_type); \
VALIDATE_REAL (3, value); \
c_value = IEEE754_FROM_SCM (_type) (value); \
\
memcpy (&c_bv[c_index], &c_value, sizeof (c_value)); \
return SCM_UNSPECIFIED;
/* Single precision. */
SCM_DEFINE (scm_bytevector_ieee_single_ref,
"bytevector-ieee-single-ref",
3, 0, 0,
(SCM bv, SCM index, SCM endianness),
"Return the IEEE-754 single from @var{bv} at "
"@var{index}.")
#define FUNC_NAME s_scm_bytevector_ieee_single_ref
{
IEEE754_REF (float);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_ieee_single_native_ref,
"bytevector-ieee-single-native-ref",
2, 0, 0,
(SCM bv, SCM index),
"Return the IEEE-754 single from @var{bv} at "
"@var{index} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_ieee_single_native_ref
{
IEEE754_NATIVE_REF (float);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_ieee_single_set_x,
"bytevector-ieee-single-set!",
4, 0, 0,
(SCM bv, SCM index, SCM value, SCM endianness),
"Store real @var{value} in @var{bv} at @var{index} according to "
"@var{endianness}.")
#define FUNC_NAME s_scm_bytevector_ieee_single_set_x
{
IEEE754_SET (float);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_ieee_single_native_set_x,
"bytevector-ieee-single-native-set!",
3, 0, 0,
(SCM bv, SCM index, SCM value),
"Store the real @var{value} at index @var{index} "
"of @var{bv} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_ieee_single_native_set_x
{
IEEE754_NATIVE_SET (float);
}
#undef FUNC_NAME
/* Double precision. */
SCM_DEFINE (scm_bytevector_ieee_double_ref,
"bytevector-ieee-double-ref",
3, 0, 0,
(SCM bv, SCM index, SCM endianness),
"Return the IEEE-754 double from @var{bv} at "
"@var{index}.")
#define FUNC_NAME s_scm_bytevector_ieee_double_ref
{
IEEE754_REF (double);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_ieee_double_native_ref,
"bytevector-ieee-double-native-ref",
2, 0, 0,
(SCM bv, SCM index),
"Return the IEEE-754 double from @var{bv} at "
"@var{index} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_ieee_double_native_ref
{
IEEE754_NATIVE_REF (double);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_ieee_double_set_x,
"bytevector-ieee-double-set!",
4, 0, 0,
(SCM bv, SCM index, SCM value, SCM endianness),
"Store real @var{value} in @var{bv} at @var{index} according to "
"@var{endianness}.")
#define FUNC_NAME s_scm_bytevector_ieee_double_set_x
{
IEEE754_SET (double);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_ieee_double_native_set_x,
"bytevector-ieee-double-native-set!",
3, 0, 0,
(SCM bv, SCM index, SCM value),
"Store the real @var{value} at index @var{index} "
"of @var{bv} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_ieee_double_native_set_x
{
IEEE754_NATIVE_SET (double);
}
#undef FUNC_NAME
#undef IEEE754_UNION
#undef IEEE754_TO_SCM
#undef IEEE754_FROM_SCM
#undef IEEE754_FROM_FOREIGN_ENDIANNESS
#undef IEEE754_TO_FOREIGN_ENDIANNESS
#undef IEEE754_REF
#undef IEEE754_NATIVE_REF
#undef IEEE754_SET
#undef IEEE754_NATIVE_SET
/* Operations on strings. */
/* Produce a function that returns the length of a UTF-encoded string. */
#define UTF_STRLEN_FUNCTION(_utf_width) \
static inline size_t \
utf ## _utf_width ## _strlen (const uint ## _utf_width ## _t *str) \
{ \
size_t len = 0; \
const uint ## _utf_width ## _t *ptr; \
for (ptr = str; \
*ptr != 0; \
ptr++) \
{ \
len++; \
} \
\
return (len * ((_utf_width) / 8)); \
}
UTF_STRLEN_FUNCTION (8)
/* Return the length (in bytes) of STR, a UTF-(UTF_WIDTH) encoded string. */
#define UTF_STRLEN(_utf_width, _str) \
utf ## _utf_width ## _strlen (_str)
/* Return the "portable" name of the UTF encoding of size UTF_WIDTH and
ENDIANNESS (Gnulib's `iconv_open' module guarantees the portability of the
encoding name). */
static inline void
utf_encoding_name (char *name, size_t utf_width, SCM endianness)
{
strcpy (name, "UTF-");
strcat (name, ((utf_width == 8)
? "8"
: ((utf_width == 16)
? "16"
: ((utf_width == 32)
? "32"
: "??"))));
strcat (name,
((scm_is_eq (endianness, sym_big))
? "BE"
: ((scm_is_eq (endianness, sym_little))
? "LE"
: "unknown")));
}
/* Maximum length of a UTF encoding name. */
#define MAX_UTF_ENCODING_NAME_LEN 16
/* Produce the body of a `string->utf' function. */
#define STRING_TO_UTF(_utf_width) \
SCM utf; \
int err; \
char c_utf_name[MAX_UTF_ENCODING_NAME_LEN]; \
char *c_utf = NULL; \
size_t c_strlen, c_utf_len = 0; \
\
SCM_VALIDATE_STRING (1, str); \
if (scm_is_eq (endianness, SCM_UNDEFINED)) \
endianness = sym_big; \
else \
SCM_VALIDATE_SYMBOL (2, endianness); \
\
utf_encoding_name (c_utf_name, (_utf_width), endianness); \
\
c_strlen = scm_i_string_length (str); \
if (scm_i_is_narrow_string (str)) \
{ \
err = mem_iconveh (scm_i_string_chars (str), c_strlen, \
"ISO-8859-1", c_utf_name, \
iconveh_question_mark, NULL, \
&c_utf, &c_utf_len); \
if (SCM_UNLIKELY (err)) \
scm_syserror_msg (FUNC_NAME, "failed to convert string: ~A", \
scm_list_1 (str), err); \
} \
else \
{ \
const scm_t_wchar *wbuf = scm_i_string_wide_chars (str); \
c_utf = u32_conv_to_encoding (c_utf_name, \
iconveh_question_mark, \
(uint32_t *) wbuf, \
c_strlen, NULL, NULL, &c_utf_len); \
if (SCM_UNLIKELY (c_utf == NULL)) \
scm_syserror_msg (FUNC_NAME, "failed to convert string: ~A", \
scm_list_1 (str), errno); \
} \
scm_dynwind_begin (0); \
scm_dynwind_free (c_utf); \
utf = make_bytevector (c_utf_len, SCM_ARRAY_ELEMENT_TYPE_VU8); \
memcpy (SCM_BYTEVECTOR_CONTENTS (utf), c_utf, c_utf_len); \
scm_dynwind_end (); \
\
return (utf);
SCM_DEFINE (scm_string_to_utf8, "string->utf8",
1, 0, 0,
(SCM str),
"Return a newly allocated bytevector that contains the UTF-8 "
"encoding of @var{str}.")
#define FUNC_NAME s_scm_string_to_utf8
{
SCM utf;
uint8_t *c_utf;
size_t c_utf_len = 0;
SCM_VALIDATE_STRING (1, str);
c_utf = (uint8_t *) scm_to_utf8_stringn (str, &c_utf_len);
utf = make_bytevector (c_utf_len, SCM_ARRAY_ELEMENT_TYPE_VU8);
memcpy (SCM_BYTEVECTOR_CONTENTS (utf), c_utf, c_utf_len);
free (c_utf);
return (utf);
}
#undef FUNC_NAME
SCM_DEFINE (scm_string_to_utf16, "string->utf16",
1, 1, 0,
(SCM str, SCM endianness),
"Return a newly allocated bytevector that contains the UTF-16 "
"encoding of @var{str}.")
#define FUNC_NAME s_scm_string_to_utf16
{
STRING_TO_UTF (16);
}
#undef FUNC_NAME
static void
swap_u32 (scm_t_wchar *vals, size_t len)
{
size_t n;
for (n = 0; n < len; n++)
vals[n] = bswap_32 (vals[n]);
}
SCM_DEFINE (scm_string_to_utf32, "string->utf32",
1, 1, 0,
(SCM str, SCM endianness),
"Return a newly allocated bytevector that contains the UTF-32 "
"encoding of @var{str}.")
#define FUNC_NAME s_scm_string_to_utf32
{
SCM bv;
scm_t_wchar *wchars;
size_t wchar_len, bytes_len;
wchars = scm_to_utf32_stringn (str, &wchar_len);
bytes_len = wchar_len * sizeof (scm_t_wchar);
if (!scm_is_eq (SCM_UNBNDP (endianness) ? scm_endianness_big : endianness,
scm_i_native_endianness))
swap_u32 (wchars, wchar_len);
bv = make_bytevector (bytes_len, SCM_ARRAY_ELEMENT_TYPE_VU8);
memcpy (SCM_BYTEVECTOR_CONTENTS (bv), wchars, bytes_len);
free (wchars);
return bv;
}
#undef FUNC_NAME
/* Produce the body of a function that converts a UTF-encoded bytevector to a
string. */
#define UTF_TO_STRING(_utf_width) \
SCM str = SCM_BOOL_F; \
int err; \
char *c_str = NULL; \
char c_utf_name[MAX_UTF_ENCODING_NAME_LEN]; \
char *c_utf; \
size_t c_strlen = 0, c_utf_len = 0; \
\
SCM_VALIDATE_BYTEVECTOR (1, utf); \
if (scm_is_eq (endianness, SCM_UNDEFINED)) \
endianness = sym_big; \
else \
SCM_VALIDATE_SYMBOL (2, endianness); \
\
c_utf_len = SCM_BYTEVECTOR_LENGTH (utf); \
c_utf = (char *) SCM_BYTEVECTOR_CONTENTS (utf); \
utf_encoding_name (c_utf_name, (_utf_width), endianness); \
\
err = mem_iconveh (c_utf, c_utf_len, \
c_utf_name, "UTF-8", \
iconveh_question_mark, NULL, \
&c_str, &c_strlen); \
if (SCM_UNLIKELY (err)) \
scm_syserror_msg (FUNC_NAME, "failed to convert to string: ~A", \
scm_list_1 (utf), err); \
else \
{ \
str = scm_from_utf8_stringn (c_str, c_strlen); \
free (c_str); \
} \
return (str);
SCM_DEFINE (scm_utf8_to_string, "utf8->string",
1, 0, 0,
(SCM utf),
"Return a newly allocate string that contains from the UTF-8-"
"encoded contents of bytevector @var{utf}.")
#define FUNC_NAME s_scm_utf8_to_string
{
SCM str;
const char *c_utf;
size_t c_utf_len = 0;
SCM_VALIDATE_BYTEVECTOR (1, utf);
c_utf_len = SCM_BYTEVECTOR_LENGTH (utf);
c_utf = (char *) SCM_BYTEVECTOR_CONTENTS (utf);
str = scm_from_utf8_stringn (c_utf, c_utf_len);
return (str);
}
#undef FUNC_NAME
SCM_DEFINE (scm_utf16_to_string, "utf16->string",
1, 1, 0,
(SCM utf, SCM endianness),
"Return a newly allocate string that contains from the UTF-16-"
"encoded contents of bytevector @var{utf}.")
#define FUNC_NAME s_scm_utf16_to_string
{
UTF_TO_STRING (16);
}
#undef FUNC_NAME
SCM_DEFINE (scm_utf32_to_string, "utf32->string",
1, 1, 0,
(SCM utf, SCM endianness),
"Return a newly allocate string that contains from the UTF-32-"
"encoded contents of bytevector @var{utf}.")
#define FUNC_NAME s_scm_utf32_to_string
{
UTF_TO_STRING (32);
}
#undef FUNC_NAME
/* Initialization. */
void
scm_bootstrap_bytevectors (void)
{
/* This must be instantiated here because the generalized-vector API may
want to access bytevectors even though `(rnrs bytevectors)' hasn't been
loaded. */
scm_null_bytevector = make_bytevector (0, SCM_ARRAY_ELEMENT_TYPE_VU8);
scm_endianness_big = sym_big = scm_from_latin1_symbol ("big");
scm_endianness_little = sym_little = scm_from_latin1_symbol ("little");
#ifdef WORDS_BIGENDIAN
scm_i_native_endianness = sym_big;
#else
scm_i_native_endianness = sym_little;
#endif
scm_c_register_extension ("libguile-" SCM_EFFECTIVE_VERSION,
"scm_init_bytevectors",
(scm_t_extension_init_func) scm_init_bytevectors,
NULL);
scm_i_register_vector_constructor
(scm_i_array_element_types[SCM_ARRAY_ELEMENT_TYPE_VU8],
scm_make_bytevector);
}
void
scm_init_bytevectors (void)
{
#include "bytevectors.x"
}