/* Copyright 1995-2014,2016,2018-2020 Free Software Foundation, Inc. This file is part of Guile. Guile is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Guile is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with Guile. If not, see . */ #ifdef HAVE_CONFIG_H # include #endif #include "alist.h" #include "boolean.h" #include "continuations.h" #include "eq.h" #include "gsubr.h" #include "hashtab.h" #include "keywords.h" #include "list.h" #include "macros.h" #include "memoize.h" /* for the SCM_API declarations of 'scm_sym_' */ #include "modules.h" #include "pairs.h" #include "ports.h" #include "print.h" #include "srcprop.h" #include "strings.h" #include "symbols.h" #include "throw.h" #include "variable.h" #include "vectors.h" #include "expand.h" SCM scm_exp_vtable_vtable; static SCM exp_vtables[SCM_NUM_EXPANDED_TYPES]; static size_t exp_nfields[SCM_NUM_EXPANDED_TYPES]; static SCM const_unbound; static const char* exp_names[SCM_NUM_EXPANDED_TYPES]; static const char** exp_field_names[SCM_NUM_EXPANDED_TYPES]; /* The trailing underscores on these first to are to avoid spurious conflicts with macros defined on MinGW. */ #define VOID_(src) \ SCM_MAKE_EXPANDED_VOID(src) #define CONST_(src, exp) \ SCM_MAKE_EXPANDED_CONST(src, exp) #define PRIMITIVE_REF(src, name) \ SCM_MAKE_EXPANDED_PRIMITIVE_REF(src, name) #define LEXICAL_REF(src, name, gensym) \ SCM_MAKE_EXPANDED_LEXICAL_REF(src, name, gensym) #define LEXICAL_SET(src, name, gensym, exp) \ SCM_MAKE_EXPANDED_LEXICAL_SET(src, name, gensym, exp) #define MODULE_REF(src, mod, name, public) \ SCM_MAKE_EXPANDED_MODULE_REF(src, mod, name, public) #define MODULE_SET(src, mod, name, public, exp) \ SCM_MAKE_EXPANDED_MODULE_SET(src, mod, name, public, exp) #define TOPLEVEL_REF(src, mod, name) \ SCM_MAKE_EXPANDED_TOPLEVEL_REF(src, mod, name) #define TOPLEVEL_SET(src, mod, name, exp) \ SCM_MAKE_EXPANDED_TOPLEVEL_SET(src, mod, name, exp) #define TOPLEVEL_DEFINE(src, mod, name, exp) \ SCM_MAKE_EXPANDED_TOPLEVEL_DEFINE(src, mod, name, exp) #define CONDITIONAL(src, test, consequent, alternate) \ SCM_MAKE_EXPANDED_CONDITIONAL(src, test, consequent, alternate) #define PRIMCALL(src, name, exps) \ SCM_MAKE_EXPANDED_PRIMCALL(src, name, exps) #define CALL(src, proc, exps) \ SCM_MAKE_EXPANDED_CALL(src, proc, exps) #define SEQ(src, head, tail) \ SCM_MAKE_EXPANDED_SEQ(src, head, tail) #define LAMBDA(src, meta, body) \ SCM_MAKE_EXPANDED_LAMBDA(src, meta, body) #define LAMBDA_CASE(src, req, opt, rest, kw, inits, gensyms, body, alternate) \ SCM_MAKE_EXPANDED_LAMBDA_CASE(src, req, opt, rest, kw, inits, gensyms, body, alternate) #define LET(src, names, gensyms, vals, body) \ SCM_MAKE_EXPANDED_LET(src, names, gensyms, vals, body) #define LETREC(src, in_order_p, names, gensyms, vals, body) \ SCM_MAKE_EXPANDED_LETREC(src, in_order_p, names, gensyms, vals, body) #define CAR(x) SCM_CAR(x) #define CDR(x) SCM_CDR(x) #define CAAR(x) SCM_CAAR(x) #define CADR(x) SCM_CADR(x) #define CDAR(x) SCM_CDAR(x) #define CDDR(x) SCM_CDDR(x) #define CADDR(x) SCM_CADDR(x) #define CDDDR(x) SCM_CDDDR(x) #define CADDDR(x) SCM_CADDDR(x) /* Abbreviate SCM_EXPANDED_REF. */ #define REF(x,type,field) \ (scm_struct_ref (x, SCM_I_MAKINUM (SCM_EXPANDED_##type##_##field))) static const char s_bad_expression[] = "Bad expression"; static const char s_expression[] = "Missing or extra expression in"; static const char s_missing_expression[] = "Missing expression in"; static const char s_extra_expression[] = "Extra expression in"; static const char s_bad_define[] = "Bad define placement"; static const char s_missing_clauses[] = "Missing clauses"; static const char s_misplaced_else_clause[] = "Misplaced else clause"; static const char s_bad_cond_clause[] = "Bad cond clause"; static const char s_missing_recipient[] = "Missing recipient in"; static const char s_bad_variable[] = "Bad variable"; static const char s_bad_bindings[] = "Bad bindings"; static const char s_bad_binding[] = "Bad binding"; static const char s_duplicate_binding[] = "Duplicate binding"; static const char s_bad_formals[] = "Bad formals"; static const char s_bad_formal[] = "Bad formal"; static const char s_duplicate_formal[] = "Duplicate formal"; static void syntax_error (const char* const, const SCM, const SCM) SCM_NORETURN; SCM_SYMBOL (syntax_error_key, "syntax-error"); /* Shortcut macros to simplify syntax error handling. */ #define ASSERT_SYNTAX(cond, message, form) \ { if (SCM_UNLIKELY (!(cond))) \ syntax_error (message, form, SCM_UNDEFINED); } #define ASSERT_SYNTAX_2(cond, message, form, expr) \ { if (SCM_UNLIKELY (!(cond))) \ syntax_error (message, form, expr); } /* Primitive syntax. */ #define SCM_SYNTAX(STR, CFN) \ SCM_SNARF_HERE(static SCM CFN (SCM xorig, SCM env)) \ SCM_SNARF_INIT(scm_c_define (STR, scm_i_make_primitive_macro (STR, CFN))) /* True primitive syntax */ SCM_SYNTAX ("@", expand_at); SCM_SYNTAX ("@@", expand_atat); SCM_SYNTAX ("begin", expand_begin); SCM_SYNTAX ("define", expand_define); SCM_SYNTAX ("eval-when", expand_eval_when); SCM_SYNTAX ("if", expand_if); SCM_SYNTAX ("lambda", expand_lambda); SCM_SYNTAX ("let", expand_let); SCM_SYNTAX ("quote", expand_quote); SCM_SYNTAX ("set!", expand_set_x); /* Convenient syntax during boot, expands to primitive syntax. Replaced after psyntax boots. */ SCM_SYNTAX ("and", expand_and); SCM_SYNTAX ("cond", expand_cond); SCM_SYNTAX ("letrec", expand_letrec); SCM_SYNTAX ("letrec*", expand_letrec_star); SCM_SYNTAX ("let*", expand_letstar); SCM_SYNTAX ("or", expand_or); SCM_SYNTAX ("lambda*", expand_lambda_star); SCM_SYNTAX ("case-lambda", expand_case_lambda); SCM_SYNTAX ("case-lambda*", expand_case_lambda_star); SCM_GLOBAL_SYMBOL (scm_sym_arrow, "=>"); SCM_GLOBAL_SYMBOL (scm_sym_at, "@"); SCM_GLOBAL_SYMBOL (scm_sym_atat, "@@"); SCM_GLOBAL_SYMBOL (scm_sym_begin, "begin"); SCM_GLOBAL_SYMBOL (scm_sym_case, "case"); SCM_GLOBAL_SYMBOL (scm_sym_cond, "cond"); SCM_GLOBAL_SYMBOL (scm_sym_define, "define"); SCM_GLOBAL_SYMBOL (scm_sym_else, "else"); SCM_GLOBAL_SYMBOL (scm_sym_eval_when, "eval-when"); SCM_GLOBAL_SYMBOL (scm_sym_if, "if"); SCM_GLOBAL_SYMBOL (scm_sym_lambda, "lambda"); SCM_GLOBAL_SYMBOL (scm_sym_let, "let"); SCM_GLOBAL_SYMBOL (scm_sym_letrec, "letrec"); SCM_GLOBAL_SYMBOL (scm_sym_letstar, "let*"); SCM_GLOBAL_SYMBOL (scm_sym_or, "or"); SCM_SYMBOL (sym_call_with_prompt, "call-with-prompt"); SCM_GLOBAL_SYMBOL (scm_sym_quote, "quote"); SCM_GLOBAL_SYMBOL (scm_sym_set_x, "set!"); SCM_SYMBOL (sym_lambda_star, "lambda*"); SCM_SYMBOL (sym_eval, "eval"); SCM_SYMBOL (sym_load, "load"); SCM_SYMBOL (sym_primitive, "primitive"); SCM_GLOBAL_SYMBOL (scm_sym_unquote, "unquote"); SCM_GLOBAL_SYMBOL (scm_sym_quasiquote, "quasiquote"); SCM_GLOBAL_SYMBOL (scm_sym_uq_splicing, "unquote-splicing"); SCM_KEYWORD (kw_allow_other_keys, "allow-other-keys"); SCM_KEYWORD (kw_optional, "optional"); SCM_KEYWORD (kw_key, "key"); SCM_KEYWORD (kw_rest, "rest"); /* Signal a syntax error. We distinguish between the form that caused the * error and the enclosing expression. The error message will print out as * shown in the following pattern. The file name and line number are only * given when they can be determined from the erroneous form or from the * enclosing expression. * * : In procedure memoization: * : In file , line : in . */ static void syntax_error (const char* const msg, const SCM form, const SCM expr) { SCM msg_string = scm_from_utf8_string (msg); SCM filename = SCM_BOOL_F; SCM linenr = SCM_BOOL_F; const char *format; SCM args; if (scm_is_pair (form)) { filename = scm_source_property (form, scm_sym_filename); linenr = scm_source_property (form, scm_sym_line); } if (scm_is_false (filename) && scm_is_false (linenr) && scm_is_pair (expr)) { filename = scm_source_property (expr, scm_sym_filename); linenr = scm_source_property (expr, scm_sym_line); } if (!SCM_UNBNDP (expr)) { if (scm_is_true (filename)) { format = "In file ~S, line ~S: ~A ~S in expression ~S."; args = scm_list_5 (filename, linenr, msg_string, form, expr); } else if (scm_is_true (linenr)) { format = "In line ~S: ~A ~S in expression ~S."; args = scm_list_4 (linenr, msg_string, form, expr); } else { format = "~A ~S in expression ~S."; args = scm_list_3 (msg_string, form, expr); } } else { if (scm_is_true (filename)) { format = "In file ~S, line ~S: ~A ~S."; args = scm_list_4 (filename, linenr, msg_string, form); } else if (scm_is_true (linenr)) { format = "In line ~S: ~A ~S."; args = scm_list_3 (linenr, msg_string, form); } else { format = "~A ~S."; args = scm_list_2 (msg_string, form); } } scm_error (syntax_error_key, "memoization", format, args, SCM_BOOL_F); } static int expand_env_var_is_free (SCM env, SCM x) { for (; scm_is_pair (env); env = CDR (env)) if (scm_is_eq (x, CAAR (env))) return 0; /* bound */ return 1; /* free */ } static SCM expand_env_ref_macro (SCM env, SCM x) { SCM var; if (!expand_env_var_is_free (env, x)) return SCM_BOOL_F; /* lexical */ var = scm_module_variable (scm_current_module (), x); if (scm_is_true (var) && scm_is_true (scm_variable_bound_p (var)) && scm_is_true (scm_macro_p (scm_variable_ref (var)))) return scm_variable_ref (var); else return SCM_BOOL_F; /* anything else */ } static SCM expand_env_lexical_gensym (SCM env, SCM name) { for (; scm_is_pair (env); env = CDR (env)) if (scm_is_eq (name, CAAR (env))) return CDAR (env); /* bound */ return SCM_BOOL_F; /* free */ } static SCM expand_env_extend (SCM env, SCM names, SCM vars) { while (scm_is_pair (names)) { env = scm_acons (CAR (names), CAR (vars), env); names = CDR (names); vars = CDR (vars); } return env; } static SCM expand (SCM exp, SCM env) { if (scm_is_pair (exp)) { SCM car; scm_t_macro_primitive trans = NULL; SCM macro = SCM_BOOL_F; car = CAR (exp); if (scm_is_symbol (car)) macro = expand_env_ref_macro (env, car); if (scm_is_true (macro)) trans = scm_i_macro_primitive (macro); if (trans) return trans (exp, env); else { SCM arg_exps = SCM_EOL; SCM args = SCM_EOL; SCM proc = expand (CAR (exp), env); for (arg_exps = CDR (exp); scm_is_pair (arg_exps); arg_exps = CDR (arg_exps)) args = scm_cons (expand (CAR (arg_exps), env), args); args = scm_reverse_x (args, SCM_UNDEFINED); if (!scm_is_null (arg_exps)) syntax_error ("expected a proper list", exp, SCM_UNDEFINED); if (SCM_EXPANDED_TYPE (proc) == SCM_EXPANDED_PRIMITIVE_REF) return PRIMCALL (scm_source_properties (exp), SCM_EXPANDED_REF (proc, PRIMITIVE_REF, NAME), args); else return CALL (scm_source_properties (exp), proc, args); } } else if (scm_is_symbol (exp)) { SCM gensym = expand_env_lexical_gensym (env, exp); if (scm_is_true (gensym)) return LEXICAL_REF (SCM_BOOL_F, exp, gensym); else return TOPLEVEL_REF (SCM_BOOL_F, SCM_BOOL_F, exp); } else return CONST_ (SCM_BOOL_F, exp); } static SCM expand_exprs (SCM forms, const SCM env) { SCM ret = SCM_EOL; for (; !scm_is_null (forms); forms = CDR (forms)) ret = scm_cons (expand (CAR (forms), env), ret); return scm_reverse_x (ret, SCM_UNDEFINED); } static SCM expand_sequence (const SCM forms, const SCM env) { ASSERT_SYNTAX (scm_ilength (forms) >= 1, s_bad_expression, scm_cons (scm_sym_begin, forms)); if (scm_is_null (CDR (forms))) return expand (CAR (forms), env); else return SEQ (scm_source_properties (forms), expand (CAR (forms), env), expand_sequence (CDR (forms), env)); } static SCM expand_at (SCM expr, SCM env SCM_UNUSED) { ASSERT_SYNTAX (scm_ilength (expr) == 3, s_bad_expression, expr); ASSERT_SYNTAX (scm_ilength (CADR (expr)) > 0, s_bad_expression, expr); ASSERT_SYNTAX (scm_is_symbol (CADDR (expr)), s_bad_expression, expr); return MODULE_REF (scm_source_properties (expr), CADR (expr), CADDR (expr), SCM_BOOL_T); } static SCM expand_atat (SCM expr, SCM env SCM_UNUSED) { ASSERT_SYNTAX (scm_ilength (expr) == 3, s_bad_expression, expr); ASSERT_SYNTAX (scm_is_symbol (CADDR (expr)), s_bad_expression, expr); if (scm_is_eq (CADR (expr), sym_primitive)) return PRIMITIVE_REF (scm_source_properties (expr), CADDR (expr)); ASSERT_SYNTAX (scm_ilength (CADR (expr)) > 0, s_bad_expression, expr); return MODULE_REF (scm_source_properties (expr), CADR (expr), CADDR (expr), SCM_BOOL_F); } static SCM expand_and (SCM expr, SCM env) { const SCM cdr_expr = CDR (expr); if (scm_is_null (cdr_expr)) return CONST_ (SCM_BOOL_F, SCM_BOOL_T); ASSERT_SYNTAX (scm_is_pair (cdr_expr), s_bad_expression, expr); if (scm_is_null (CDR (cdr_expr))) return expand (CAR (cdr_expr), env); else return CONDITIONAL (scm_source_properties (expr), expand (CAR (cdr_expr), env), expand_and (cdr_expr, env), CONST_ (SCM_BOOL_F, SCM_BOOL_F)); } static SCM expand_begin (SCM expr, SCM env) { const SCM cdr_expr = CDR (expr); ASSERT_SYNTAX (scm_ilength (cdr_expr) >= 1, s_bad_expression, expr); return expand_sequence (cdr_expr, env); } static SCM expand_cond_clauses (SCM clause, SCM rest, int elp, int alp, SCM env) { SCM test; const long length = scm_ilength (clause); ASSERT_SYNTAX (length >= 1, s_bad_cond_clause, clause); test = CAR (clause); if (scm_is_eq (test, scm_sym_else) && elp) { const int last_clause_p = scm_is_null (rest); ASSERT_SYNTAX (length >= 2, s_bad_cond_clause, clause); ASSERT_SYNTAX (last_clause_p, s_misplaced_else_clause, clause); return expand_sequence (CDR (clause), env); } if (scm_is_null (rest)) rest = VOID_ (SCM_BOOL_F); else rest = expand_cond_clauses (CAR (rest), CDR (rest), elp, alp, env); if (length >= 2 && scm_is_eq (CADR (clause), scm_sym_arrow) && alp) { SCM tmp = scm_gensym (scm_from_utf8_string ("cond ")); SCM new_env = scm_acons (tmp, tmp, env); ASSERT_SYNTAX (length > 2, s_missing_recipient, clause); ASSERT_SYNTAX (length == 3, s_extra_expression, clause); return LET (SCM_BOOL_F, scm_list_1 (tmp), scm_list_1 (tmp), scm_list_1 (expand (test, env)), CONDITIONAL (SCM_BOOL_F, LEXICAL_REF (SCM_BOOL_F, tmp, tmp), CALL (SCM_BOOL_F, expand (CADDR (clause), new_env), scm_list_1 (LEXICAL_REF (SCM_BOOL_F, tmp, tmp))), rest)); } /* FIXME length == 1 case */ else return CONDITIONAL (SCM_BOOL_F, expand (test, env), expand_sequence (CDR (clause), env), rest); } static SCM expand_cond (SCM expr, SCM env) { const int else_literal_p = expand_env_var_is_free (env, scm_sym_else); const int arrow_literal_p = expand_env_var_is_free (env, scm_sym_arrow); const SCM clauses = CDR (expr); ASSERT_SYNTAX (scm_ilength (clauses) >= 0, s_bad_expression, expr); ASSERT_SYNTAX (scm_ilength (clauses) >= 1, s_missing_clauses, expr); return expand_cond_clauses (CAR (clauses), CDR (clauses), else_literal_p, arrow_literal_p, env); } /* lone forward decl */ static SCM expand_lambda (SCM expr, SCM env); /* According to Section 5.2.1 of R5RS we first have to make sure that the variable is bound, and then perform the `(set! variable expression)' operation. However, EXPRESSION _can_ be evaluated before VARIABLE is bound. This means that EXPRESSION won't necessarily be able to assign values to VARIABLE as in `(define foo (begin (set! foo 1) (+ foo 1)))'. */ static SCM expand_define (SCM expr, SCM env) { const SCM cdr_expr = CDR (expr); SCM body; SCM variable; ASSERT_SYNTAX (scm_ilength (cdr_expr) >= 0, s_bad_expression, expr); ASSERT_SYNTAX (scm_ilength (cdr_expr) >= 2, s_missing_expression, expr); ASSERT_SYNTAX (!scm_is_pair (env), s_bad_define, expr); body = CDR (cdr_expr); variable = CAR (cdr_expr); if (scm_is_pair (variable)) { ASSERT_SYNTAX_2 (scm_is_symbol (CAR (variable)), s_bad_variable, variable, expr); return TOPLEVEL_DEFINE (scm_source_properties (expr), SCM_BOOL_F, CAR (variable), expand_lambda (scm_cons (scm_sym_lambda, scm_cons (CDR (variable), body)), env)); } ASSERT_SYNTAX_2 (scm_is_symbol (variable), s_bad_variable, variable, expr); ASSERT_SYNTAX (scm_ilength (body) == 1, s_expression, expr); return TOPLEVEL_DEFINE (scm_source_properties (expr), SCM_BOOL_F, variable, expand (CAR (body), env)); } static SCM expand_eval_when (SCM expr, SCM env) { ASSERT_SYNTAX (scm_ilength (expr) >= 3, s_bad_expression, expr); ASSERT_SYNTAX (scm_ilength (CADR (expr)) > 0, s_bad_expression, expr); if (scm_is_true (scm_memq (sym_eval, CADR (expr))) || scm_is_true (scm_memq (sym_load, CADR (expr)))) return expand_sequence (CDDR (expr), env); else return VOID_ (scm_source_properties (expr)); } static SCM expand_if (SCM expr, SCM env SCM_UNUSED) { const SCM cdr_expr = CDR (expr); const long length = scm_ilength (cdr_expr); ASSERT_SYNTAX (length == 2 || length == 3, s_expression, expr); return CONDITIONAL (scm_source_properties (expr), expand (CADR (expr), env), expand (CADDR (expr), env), ((length == 3) ? expand (CADDDR (expr), env) : VOID_ (SCM_BOOL_F))); } /* A helper function for expand_lambda to support checking for duplicate * formal arguments: Return true if OBJ is `eq?' to one of the elements of * LIST or to the CDR of the last cons. Therefore, LIST may have any of the * forms that a formal argument can have: * , ( ...), ( ... . ) */ static int c_improper_memq (SCM obj, SCM list) { for (; scm_is_pair (list); list = CDR (list)) { if (scm_is_eq (CAR (list), obj)) return 1; } return scm_is_eq (list, obj); } static SCM expand_lambda_case (SCM clause, SCM alternate, SCM env) { SCM formals; SCM rest; SCM req = SCM_EOL; SCM vars = SCM_EOL; SCM body; int nreq = 0; ASSERT_SYNTAX (scm_is_pair (clause) && scm_is_pair (CDR (clause)), s_bad_expression, scm_cons (scm_sym_lambda, clause)); /* Before iterating the list of formal arguments, make sure the formals * actually are given as either a symbol or a non-cyclic list. */ formals = CAR (clause); if (scm_is_pair (formals)) { /* Dirk:FIXME:: We should check for a cyclic list of formals, and if * detected, report a 'Bad formals' error. */ } else ASSERT_SYNTAX_2 (scm_is_symbol (formals) || scm_is_null (formals), s_bad_formals, formals, scm_cons (scm_sym_lambda, clause)); /* Now iterate the list of formal arguments to check if all formals are * symbols, and that there are no duplicates. */ while (scm_is_pair (formals)) { const SCM formal = CAR (formals); formals = CDR (formals); ASSERT_SYNTAX_2 (scm_is_symbol (formal), s_bad_formal, formal, scm_cons (scm_sym_lambda, clause)); ASSERT_SYNTAX_2 (!c_improper_memq (formal, formals), s_duplicate_formal, formal, scm_cons (scm_sym_lambda, clause)); nreq++; req = scm_cons (formal, req); vars = scm_cons (scm_gensym (SCM_UNDEFINED), vars); env = scm_acons (formal, CAR (vars), env); } ASSERT_SYNTAX_2 (scm_is_null (formals) || scm_is_symbol (formals), s_bad_formal, formals, scm_cons (scm_sym_lambda, clause)); if (scm_is_symbol (formals)) { rest = formals; vars = scm_cons (scm_gensym (SCM_UNDEFINED), vars); env = scm_acons (rest, CAR (vars), env); } else rest = SCM_BOOL_F; body = expand_sequence (CDR (clause), env); req = scm_reverse_x (req, SCM_UNDEFINED); vars = scm_reverse_x (vars, SCM_UNDEFINED); if (scm_is_true (alternate) && !(SCM_EXPANDED_P (alternate) && SCM_EXPANDED_TYPE (alternate) == SCM_EXPANDED_LAMBDA_CASE)) abort (); return LAMBDA_CASE (SCM_BOOL_F, req, SCM_BOOL_F, rest, SCM_BOOL_F, SCM_EOL, vars, body, alternate); } static SCM expand_lambda (SCM expr, SCM env) { return LAMBDA (scm_source_properties (expr), SCM_EOL, expand_lambda_case (CDR (expr), SCM_BOOL_F, env)); } static SCM expand_lambda_star_case (SCM clause, SCM alternate, SCM env) { SCM req, opt, kw, allow_other_keys, rest, formals, vars, body, tmp; SCM inits; int nreq, nopt; const long length = scm_ilength (clause); ASSERT_SYNTAX (length >= 1, s_bad_expression, scm_cons (sym_lambda_star, clause)); ASSERT_SYNTAX (length >= 2, s_missing_expression, scm_cons (sym_lambda_star, clause)); formals = CAR (clause); body = CDR (clause); nreq = nopt = 0; req = opt = kw = SCM_EOL; rest = allow_other_keys = SCM_BOOL_F; while (scm_is_pair (formals) && scm_is_symbol (CAR (formals))) { nreq++; req = scm_cons (CAR (formals), req); formals = scm_cdr (formals); } if (scm_is_pair (formals) && scm_is_eq (CAR (formals), kw_optional)) { formals = CDR (formals); while (scm_is_pair (formals) && (scm_is_symbol (CAR (formals)) || scm_is_pair (CAR (formals)))) { nopt++; opt = scm_cons (CAR (formals), opt); formals = scm_cdr (formals); } } if (scm_is_pair (formals) && scm_is_eq (CAR (formals), kw_key)) { formals = CDR (formals); while (scm_is_pair (formals) && (scm_is_symbol (CAR (formals)) || scm_is_pair (CAR (formals)))) { kw = scm_cons (CAR (formals), kw); formals = scm_cdr (formals); } } if (scm_is_pair (formals) && scm_is_eq (CAR (formals), kw_allow_other_keys)) { formals = CDR (formals); allow_other_keys = SCM_BOOL_T; } if (scm_is_pair (formals) && scm_is_eq (CAR (formals), kw_rest)) { ASSERT_SYNTAX (scm_ilength (formals) == 2, s_bad_formals, CAR (clause)); rest = CADR (formals); } else if (scm_is_symbol (formals)) rest = formals; else { ASSERT_SYNTAX (scm_is_null (formals), s_bad_formals, CAR (clause)); rest = SCM_BOOL_F; } /* Now, iterate through them a second time, building up an expansion-time environment, checking, expanding and canonicalizing the opt/kw init forms, and eventually memoizing the body as well. Note that the rest argument, if any, is expanded before keyword args, thus necessitating the second pass. Also note that the specific environment during expansion of init expressions here needs to coincide with the environment when psyntax expands. A lot of effort for something that is only used in the bootstrap expandr, you say? Yes. Yes it is. */ vars = SCM_EOL; req = scm_reverse_x (req, SCM_EOL); for (tmp = req; scm_is_pair (tmp); tmp = scm_cdr (tmp)) { vars = scm_cons (scm_gensym (SCM_UNDEFINED), vars); env = scm_acons (CAR (tmp), CAR (vars), env); } /* Build up opt inits and env */ inits = SCM_EOL; opt = scm_reverse_x (opt, SCM_EOL); for (tmp = opt; scm_is_pair (tmp); tmp = scm_cdr (tmp)) { SCM x = CAR (tmp); vars = scm_cons (scm_gensym (SCM_UNDEFINED), vars); env = scm_acons (x, CAR (vars), env); if (scm_is_symbol (x)) inits = scm_cons (CONST_ (SCM_BOOL_F, SCM_BOOL_F), inits); else { ASSERT_SYNTAX (scm_ilength (x) == 2 && scm_is_symbol (CAR (x)), s_bad_formals, CAR (clause)); inits = scm_cons (expand (CADR (x), env), inits); } env = scm_acons (scm_is_symbol (x) ? x : CAR (x), CAR (vars), env); } if (scm_is_null (opt)) opt = SCM_BOOL_F; /* Process rest before keyword args */ if (scm_is_true (rest)) { vars = scm_cons (scm_gensym (SCM_UNDEFINED), vars); env = scm_acons (rest, CAR (vars), env); } /* Build up kw inits, env, and kw-canon list */ if (scm_is_null (kw)) kw = SCM_BOOL_F; else { SCM kw_canon = SCM_EOL; kw = scm_reverse_x (kw, SCM_UNDEFINED); for (tmp = kw; scm_is_pair (tmp); tmp = scm_cdr (tmp)) { SCM x, sym, k, init; x = CAR (tmp); if (scm_is_symbol (x)) { sym = x; init = SCM_BOOL_F; k = scm_symbol_to_keyword (sym); } else if (scm_ilength (x) == 2 && scm_is_symbol (CAR (x))) { sym = CAR (x); init = CADR (x); k = scm_symbol_to_keyword (sym); } else if (scm_ilength (x) == 3 && scm_is_symbol (CAR (x)) && scm_is_keyword (CADDR (x))) { sym = CAR (x); init = CADR (x); k = CADDR (x); } else syntax_error (s_bad_formals, CAR (clause), SCM_UNDEFINED); inits = scm_cons (expand (init, env), inits); vars = scm_cons (scm_gensym (SCM_UNDEFINED), vars); kw_canon = scm_cons (scm_list_3 (k, sym, CAR (vars)), kw_canon); env = scm_acons (sym, CAR (vars), env); } kw_canon = scm_reverse_x (kw_canon, SCM_UNDEFINED); kw = scm_cons (allow_other_keys, kw_canon); } /* We should check for no duplicates, but given that psyntax does this already, we can punt on it here... */ vars = scm_reverse_x (vars, SCM_UNDEFINED); inits = scm_reverse_x (inits, SCM_UNDEFINED); body = expand_sequence (body, env); return LAMBDA_CASE (SCM_BOOL_F, req, opt, rest, kw, inits, vars, body, alternate); } static SCM expand_lambda_star (SCM expr, SCM env) { return LAMBDA (scm_source_properties (expr), SCM_EOL, expand_lambda_star_case (CDR (expr), SCM_BOOL_F, env)); } static SCM expand_case_lambda_clauses (SCM expr, SCM rest, SCM env) { SCM alt; if (scm_is_pair (rest)) alt = expand_case_lambda_clauses (CAR (rest), CDR (rest), env); else alt = SCM_BOOL_F; return expand_lambda_case (expr, alt, env); } static SCM expand_case_lambda (SCM expr, SCM env) { ASSERT_SYNTAX (scm_is_pair (CDR (expr)), s_missing_expression, expr); return LAMBDA (scm_source_properties (expr), SCM_EOL, expand_case_lambda_clauses (CADR (expr), CDDR (expr), env)); } static SCM expand_case_lambda_star_clauses (SCM expr, SCM rest, SCM env) { SCM alt; if (scm_is_pair (rest)) alt = expand_case_lambda_star_clauses (CAR (rest), CDR (rest), env); else alt = SCM_BOOL_F; return expand_lambda_star_case (expr, alt, env); } static SCM expand_case_lambda_star (SCM expr, SCM env) { ASSERT_SYNTAX (scm_is_pair (CDR (expr)), s_missing_expression, expr); return LAMBDA (scm_source_properties (expr), SCM_EOL, expand_case_lambda_star_clauses (CADR (expr), CDDR (expr), env)); } /* Check if the format of the bindings is (( ) ...). */ static void check_bindings (const SCM bindings, const SCM expr) { SCM binding_idx; ASSERT_SYNTAX_2 (scm_ilength (bindings) >= 0, s_bad_bindings, bindings, expr); binding_idx = bindings; for (; !scm_is_null (binding_idx); binding_idx = CDR (binding_idx)) { SCM name; /* const */ const SCM binding = CAR (binding_idx); ASSERT_SYNTAX_2 (scm_ilength (binding) == 2, s_bad_binding, binding, expr); name = CAR (binding); ASSERT_SYNTAX_2 (scm_is_symbol (name), s_bad_variable, name, expr); } } /* The bindings, which must have the format ((v1 i1) (v2 i2) ... (vn in)), are * transformed to the lists (vn .. v2 v1) and (i1 i2 ... in). If a duplicate * variable name is detected, an error is signalled. */ static void transform_bindings (const SCM bindings, const SCM expr, SCM *const names, SCM *const vars, SCM *const initptr) { SCM rnames = SCM_EOL; SCM rvars = SCM_EOL; SCM rinits = SCM_EOL; SCM binding_idx = bindings; for (; !scm_is_null (binding_idx); binding_idx = CDR (binding_idx)) { const SCM binding = CAR (binding_idx); const SCM CDR_binding = CDR (binding); const SCM name = CAR (binding); ASSERT_SYNTAX_2 (scm_is_false (scm_c_memq (name, rnames)), s_duplicate_binding, name, expr); rnames = scm_cons (name, rnames); rvars = scm_cons (scm_gensym (SCM_UNDEFINED), rvars); rinits = scm_cons (CAR (CDR_binding), rinits); } *names = scm_reverse_x (rnames, SCM_UNDEFINED); *vars = scm_reverse_x (rvars, SCM_UNDEFINED); *initptr = scm_reverse_x (rinits, SCM_UNDEFINED); } /* FIXME: Remove named let in this boot expander. */ static SCM expand_named_let (const SCM expr, SCM env) { SCM var_names, var_syms, inits; SCM inner_env; SCM name_sym; const SCM cdr_expr = CDR (expr); const SCM name = CAR (cdr_expr); const SCM cddr_expr = CDR (cdr_expr); const SCM bindings = CAR (cddr_expr); check_bindings (bindings, expr); transform_bindings (bindings, expr, &var_names, &var_syms, &inits); name_sym = scm_gensym (SCM_UNDEFINED); inner_env = scm_acons (name, name_sym, env); inner_env = expand_env_extend (inner_env, var_names, var_syms); return LETREC (scm_source_properties (expr), SCM_BOOL_F, scm_list_1 (name), scm_list_1 (name_sym), scm_list_1 (LAMBDA (SCM_BOOL_F, SCM_EOL, LAMBDA_CASE (SCM_BOOL_F, var_names, SCM_EOL, SCM_BOOL_F, SCM_BOOL_F, SCM_EOL, var_syms, expand_sequence (CDDDR (expr), inner_env), SCM_BOOL_F))), CALL (SCM_BOOL_F, LEXICAL_REF (SCM_BOOL_F, name, name_sym), expand_exprs (inits, env))); } static SCM expand_let (SCM expr, SCM env) { SCM bindings; const SCM cdr_expr = CDR (expr); const long length = scm_ilength (cdr_expr); ASSERT_SYNTAX (length >= 0, s_bad_expression, expr); ASSERT_SYNTAX (length >= 2, s_missing_expression, expr); bindings = CAR (cdr_expr); if (scm_is_symbol (bindings)) { ASSERT_SYNTAX (length >= 3, s_missing_expression, expr); return expand_named_let (expr, env); } check_bindings (bindings, expr); if (scm_is_null (bindings)) return expand_sequence (CDDR (expr), env); else { SCM var_names, var_syms, inits; transform_bindings (bindings, expr, &var_names, &var_syms, &inits); return LET (SCM_BOOL_F, var_names, var_syms, expand_exprs (inits, env), expand_sequence (CDDR (expr), expand_env_extend (env, var_names, var_syms))); } } static SCM expand_letrec_helper (SCM expr, SCM env, SCM in_order_p) { SCM bindings; const SCM cdr_expr = CDR (expr); const long length = scm_ilength (cdr_expr); ASSERT_SYNTAX (length >= 0, s_bad_expression, expr); ASSERT_SYNTAX (length >= 2, s_missing_expression, expr); bindings = CAR (cdr_expr); check_bindings (bindings, expr); if (scm_is_null (bindings)) return expand_sequence (CDDR (expr), env); else { SCM var_names, var_syms, inits; transform_bindings (bindings, expr, &var_names, &var_syms, &inits); env = expand_env_extend (env, var_names, var_syms); return LETREC (SCM_BOOL_F, in_order_p, var_names, var_syms, expand_exprs (inits, env), expand_sequence (CDDR (expr), env)); } } static SCM expand_letrec (SCM expr, SCM env) { return expand_letrec_helper (expr, env, SCM_BOOL_F); } static SCM expand_letrec_star (SCM expr, SCM env) { return expand_letrec_helper (expr, env, SCM_BOOL_T); } static SCM expand_letstar_clause (SCM bindings, SCM body, SCM env SCM_UNUSED) { if (scm_is_null (bindings)) return expand_sequence (body, env); else { SCM bind, name, sym, init; ASSERT_SYNTAX (scm_is_pair (bindings), s_bad_expression, bindings); bind = CAR (bindings); ASSERT_SYNTAX (scm_ilength (bind) == 2, s_bad_binding, bind); name = CAR (bind); sym = scm_gensym (SCM_UNDEFINED); init = CADR (bind); return LET (SCM_BOOL_F, scm_list_1 (name), scm_list_1 (sym), scm_list_1 (expand (init, env)), expand_letstar_clause (CDR (bindings), body, scm_acons (name, sym, env))); } } static SCM expand_letstar (SCM expr, SCM env SCM_UNUSED) { const SCM cdr_expr = CDR (expr); ASSERT_SYNTAX (scm_ilength (cdr_expr) >= 0, s_bad_expression, expr); ASSERT_SYNTAX (scm_ilength (cdr_expr) >= 2, s_missing_expression, expr); return expand_letstar_clause (CADR (expr), CDDR (expr), env); } static SCM expand_or (SCM expr, SCM env SCM_UNUSED) { SCM tail = CDR (expr); const long length = scm_ilength (tail); ASSERT_SYNTAX (length >= 0, s_bad_expression, expr); if (scm_is_null (CDR (expr))) return CONST_ (SCM_BOOL_F, SCM_BOOL_F); else { SCM tmp = scm_gensym (SCM_UNDEFINED); return LET (SCM_BOOL_F, scm_list_1 (tmp), scm_list_1 (tmp), scm_list_1 (expand (CADR (expr), env)), CONDITIONAL (SCM_BOOL_F, LEXICAL_REF (SCM_BOOL_F, tmp, tmp), LEXICAL_REF (SCM_BOOL_F, tmp, tmp), expand_or (CDR (expr), scm_acons (tmp, tmp, env)))); } } static SCM expand_quote (SCM expr, SCM env SCM_UNUSED) { SCM quotee; const SCM cdr_expr = CDR (expr); ASSERT_SYNTAX (scm_ilength (cdr_expr) >= 0, s_bad_expression, expr); ASSERT_SYNTAX (scm_ilength (cdr_expr) == 1, s_expression, expr); quotee = CAR (cdr_expr); return CONST_ (scm_source_properties (expr), quotee); } static SCM expand_set_x (SCM expr, SCM env) { SCM variable; SCM vmem; const SCM cdr_expr = CDR (expr); ASSERT_SYNTAX (scm_ilength (cdr_expr) >= 0, s_bad_expression, expr); ASSERT_SYNTAX (scm_ilength (cdr_expr) == 2, s_expression, expr); variable = CAR (cdr_expr); vmem = expand (variable, env); switch (SCM_EXPANDED_TYPE (vmem)) { case SCM_EXPANDED_LEXICAL_REF: return LEXICAL_SET (scm_source_properties (expr), SCM_EXPANDED_REF (vmem, LEXICAL_REF, NAME), SCM_EXPANDED_REF (vmem, LEXICAL_REF, GENSYM), expand (CADDR (expr), env)); case SCM_EXPANDED_TOPLEVEL_REF: return TOPLEVEL_SET (scm_source_properties (expr), SCM_EXPANDED_REF (vmem, TOPLEVEL_REF, MOD), SCM_EXPANDED_REF (vmem, TOPLEVEL_REF, NAME), expand (CADDR (expr), env)); case SCM_EXPANDED_MODULE_REF: return MODULE_SET (scm_source_properties (expr), SCM_EXPANDED_REF (vmem, MODULE_REF, MOD), SCM_EXPANDED_REF (vmem, MODULE_REF, NAME), SCM_EXPANDED_REF (vmem, MODULE_REF, PUBLIC), expand (CADDR (expr), env)); default: syntax_error (s_bad_variable, variable, expr); } } /* This is the boot expander. It is later replaced with psyntax's sc-expand. */ SCM_DEFINE (scm_macroexpand, "macroexpand", 1, 0, 0, (SCM exp), "Expand the expression @var{exp}.") #define FUNC_NAME s_scm_macroexpand { return expand (exp, scm_current_module ()); } #undef FUNC_NAME SCM_DEFINE (scm_macroexpanded_p, "macroexpanded?", 1, 0, 0, (SCM exp), "Return @code{#t} if @var{exp} is an expanded expression.") #define FUNC_NAME s_scm_macroexpanded_p { return scm_from_bool (SCM_EXPANDED_P (exp)); } #undef FUNC_NAME static void compute_assigned (SCM exp, SCM assigned) { if (scm_is_null (exp) || scm_is_false (exp)) return; if (scm_is_pair (exp)) { compute_assigned (CAR (exp), assigned); compute_assigned (CDR (exp), assigned); return; } if (!SCM_EXPANDED_P (exp)) abort (); switch (SCM_EXPANDED_TYPE (exp)) { case SCM_EXPANDED_VOID: case SCM_EXPANDED_CONST: case SCM_EXPANDED_PRIMITIVE_REF: case SCM_EXPANDED_LEXICAL_REF: case SCM_EXPANDED_MODULE_REF: case SCM_EXPANDED_TOPLEVEL_REF: return; case SCM_EXPANDED_LEXICAL_SET: scm_hashq_set_x (assigned, REF (exp, LEXICAL_SET, GENSYM), SCM_BOOL_T); compute_assigned (REF (exp, LEXICAL_SET, EXP), assigned); return; case SCM_EXPANDED_MODULE_SET: compute_assigned (REF (exp, MODULE_SET, EXP), assigned); return; case SCM_EXPANDED_TOPLEVEL_SET: compute_assigned (REF (exp, TOPLEVEL_SET, EXP), assigned); return; case SCM_EXPANDED_TOPLEVEL_DEFINE: compute_assigned (REF (exp, TOPLEVEL_DEFINE, EXP), assigned); return; case SCM_EXPANDED_CONDITIONAL: compute_assigned (REF (exp, CONDITIONAL, TEST), assigned); compute_assigned (REF (exp, CONDITIONAL, CONSEQUENT), assigned); compute_assigned (REF (exp, CONDITIONAL, ALTERNATE), assigned); return; case SCM_EXPANDED_CALL: compute_assigned (REF (exp, CALL, PROC), assigned); compute_assigned (REF (exp, CALL, ARGS), assigned); return; case SCM_EXPANDED_PRIMCALL: compute_assigned (REF (exp, PRIMCALL, ARGS), assigned); return; case SCM_EXPANDED_SEQ: compute_assigned (REF (exp, SEQ, HEAD), assigned); compute_assigned (REF (exp, SEQ, TAIL), assigned); return; case SCM_EXPANDED_LAMBDA: compute_assigned (REF (exp, LAMBDA, BODY), assigned); return; case SCM_EXPANDED_LAMBDA_CASE: compute_assigned (REF (exp, LAMBDA_CASE, INITS), assigned); compute_assigned (REF (exp, LAMBDA_CASE, BODY), assigned); compute_assigned (REF (exp, LAMBDA_CASE, ALTERNATE), assigned); return; case SCM_EXPANDED_LET: compute_assigned (REF (exp, LET, VALS), assigned); compute_assigned (REF (exp, LET, BODY), assigned); return; case SCM_EXPANDED_LETREC: { SCM syms = REF (exp, LETREC, GENSYMS); /* We lower letrec in this same pass, so mark these variables as assigned. */ for (; scm_is_pair (syms); syms = CDR (syms)) scm_hashq_set_x (assigned, CAR (syms), SCM_BOOL_T); } compute_assigned (REF (exp, LETREC, VALS), assigned); compute_assigned (REF (exp, LETREC, BODY), assigned); return; default: abort (); } } static SCM box_value (SCM exp) { return PRIMCALL (SCM_BOOL_F, scm_from_latin1_symbol ("make-variable"), scm_list_1 (exp)); } static SCM box_lexical (SCM name, SCM sym) { return LEXICAL_SET (SCM_BOOL_F, name, sym, box_value (LEXICAL_REF (SCM_BOOL_F, name, sym))); } static SCM init_if_unbound (SCM src, SCM name, SCM sym, SCM init) { return CONDITIONAL (src, PRIMCALL (src, scm_from_latin1_symbol ("eq?"), scm_list_2 (LEXICAL_REF (src, name, sym), const_unbound)), LEXICAL_SET (src, name, sym, init), VOID_ (src)); } static SCM init_boxes (SCM names, SCM syms, SCM vals, SCM body) { if (scm_is_null (names)) return body; return SEQ (SCM_BOOL_F, PRIMCALL (SCM_BOOL_F, scm_from_latin1_symbol ("variable-set!"), scm_list_2 (LEXICAL_REF (SCM_BOOL_F, CAR (names), CAR (syms)), CAR (vals))), init_boxes (CDR (names), CDR (syms), CDR (vals), body)); } static SCM convert_assignment (SCM exp, SCM assigned) { if (scm_is_null (exp) || scm_is_false (exp)) return exp; if (scm_is_pair (exp)) return scm_cons (convert_assignment (CAR (exp), assigned), convert_assignment (CDR (exp), assigned)); if (!SCM_EXPANDED_P (exp)) abort (); switch (SCM_EXPANDED_TYPE (exp)) { case SCM_EXPANDED_VOID: case SCM_EXPANDED_CONST: case SCM_EXPANDED_PRIMITIVE_REF: case SCM_EXPANDED_MODULE_REF: case SCM_EXPANDED_TOPLEVEL_REF: return exp; case SCM_EXPANDED_LEXICAL_REF: { SCM sym = REF (exp, LEXICAL_REF, GENSYM); if (scm_is_true (scm_hashq_ref (assigned, sym, SCM_BOOL_F))) return PRIMCALL (REF (exp, LEXICAL_REF, SRC), scm_from_latin1_symbol ("variable-ref"), scm_list_1 (exp)); return exp; } case SCM_EXPANDED_LEXICAL_SET: return PRIMCALL (REF (exp, LEXICAL_SET, SRC), scm_from_latin1_symbol ("variable-set!"), scm_list_2 (LEXICAL_REF (REF (exp, LEXICAL_SET, SRC), REF (exp, LEXICAL_SET, NAME), REF (exp, LEXICAL_SET, GENSYM)), convert_assignment (REF (exp, LEXICAL_SET, EXP), assigned))); case SCM_EXPANDED_MODULE_SET: return MODULE_SET (REF (exp, MODULE_SET, SRC), REF (exp, MODULE_SET, MOD), REF (exp, MODULE_SET, NAME), REF (exp, MODULE_SET, PUBLIC), convert_assignment (REF (exp, MODULE_SET, EXP), assigned)); case SCM_EXPANDED_TOPLEVEL_SET: return TOPLEVEL_SET (REF (exp, TOPLEVEL_SET, SRC), REF (exp, TOPLEVEL_SET, MOD), REF (exp, TOPLEVEL_SET, NAME), convert_assignment (REF (exp, TOPLEVEL_SET, EXP), assigned)); case SCM_EXPANDED_TOPLEVEL_DEFINE: return TOPLEVEL_DEFINE (REF (exp, TOPLEVEL_DEFINE, SRC), REF (exp, TOPLEVEL_DEFINE, MOD), REF (exp, TOPLEVEL_DEFINE, NAME), convert_assignment (REF (exp, TOPLEVEL_DEFINE, EXP), assigned)); case SCM_EXPANDED_CONDITIONAL: return CONDITIONAL (REF (exp, CONDITIONAL, SRC), convert_assignment (REF (exp, CONDITIONAL, TEST), assigned), convert_assignment (REF (exp, CONDITIONAL, CONSEQUENT), assigned), convert_assignment (REF (exp, CONDITIONAL, ALTERNATE), assigned)); case SCM_EXPANDED_CALL: return CALL (REF (exp, CALL, SRC), convert_assignment (REF (exp, CALL, PROC), assigned), convert_assignment (REF (exp, CALL, ARGS), assigned)); case SCM_EXPANDED_PRIMCALL: return PRIMCALL (REF (exp, PRIMCALL, SRC), REF (exp, PRIMCALL, NAME), convert_assignment (REF (exp, PRIMCALL, ARGS), assigned)); case SCM_EXPANDED_SEQ: return SEQ (REF (exp, SEQ, SRC), convert_assignment (REF (exp, SEQ, HEAD), assigned), convert_assignment (REF (exp, SEQ, TAIL), assigned)); case SCM_EXPANDED_LAMBDA: return LAMBDA (REF (exp, LAMBDA, SRC), REF (exp, LAMBDA, META), scm_is_false (REF (exp, LAMBDA, BODY)) /* Give a body to case-lambda with no clauses. */ ? LAMBDA_CASE (SCM_BOOL_F, SCM_EOL, SCM_EOL, SCM_BOOL_F, SCM_BOOL_F, SCM_EOL, SCM_EOL, PRIMCALL (SCM_BOOL_F, scm_from_latin1_symbol ("throw"), scm_list_5 (CONST_ (SCM_BOOL_F, scm_args_number_key), CONST_ (SCM_BOOL_F, SCM_BOOL_F), CONST_ (SCM_BOOL_F, scm_from_latin1_string ("Wrong number of arguments")), CONST_ (SCM_BOOL_F, SCM_EOL), CONST_ (SCM_BOOL_F, SCM_BOOL_F))), SCM_BOOL_F) : convert_assignment (REF (exp, LAMBDA, BODY), assigned)); case SCM_EXPANDED_LAMBDA_CASE: { SCM src, req, opt, rest, kw, inits, syms, body, alt; SCM namewalk, symwalk, new_inits, seq; /* Box assigned formals. Since initializers can capture previous formals, we convert initializers to be in the body instead of in the "header". */ src = REF (exp, LAMBDA_CASE, SRC); req = REF (exp, LAMBDA_CASE, REQ); opt = REF (exp, LAMBDA_CASE, OPT); rest = REF (exp, LAMBDA_CASE, REST); kw = REF (exp, LAMBDA_CASE, KW); inits = convert_assignment (REF (exp, LAMBDA_CASE, INITS), assigned); syms = REF (exp, LAMBDA_CASE, GENSYMS); body = convert_assignment (REF (exp, LAMBDA_CASE, BODY), assigned); alt = convert_assignment (REF (exp, LAMBDA_CASE, ALTERNATE), assigned); new_inits = scm_make_list (scm_length (inits), const_unbound); seq = SCM_EOL, symwalk = syms; /* Required arguments may need boxing. */ for (namewalk = req; scm_is_pair (namewalk); namewalk = CDR (namewalk), symwalk = CDR (symwalk)) { SCM name = CAR (namewalk), sym = CAR (symwalk); if (scm_is_true (scm_hashq_ref (assigned, sym, SCM_BOOL_F))) seq = scm_cons (box_lexical (name, sym), seq); } /* Optional arguments may need initialization and/or boxing. */ for (namewalk = opt; scm_is_pair (namewalk); namewalk = CDR (namewalk), symwalk = CDR (symwalk), inits = CDR (inits)) { SCM name = CAR (namewalk), sym = CAR (symwalk), init = CAR (inits); seq = scm_cons (init_if_unbound (src, name, sym, init), seq); if (scm_is_true (scm_hashq_ref (assigned, sym, SCM_BOOL_F))) seq = scm_cons (box_lexical (name, sym), seq); } /* Rest arguments may need boxing. */ if (scm_is_true (rest)) { SCM sym = CAR (symwalk); symwalk = CDR (symwalk); if (scm_is_true (scm_hashq_ref (assigned, sym, SCM_BOOL_F))) seq = scm_cons (box_lexical (rest, sym), seq); } /* The rest of the arguments, if any, are keyword arguments, which may need initialization and/or boxing. */ for (; scm_is_pair (symwalk); symwalk = CDR (symwalk), inits = CDR (inits)) { SCM sym = CAR (symwalk), init = CAR (inits); seq = scm_cons (init_if_unbound (src, SCM_BOOL_F, sym, init), seq); if (scm_is_true (scm_hashq_ref (assigned, sym, SCM_BOOL_F))) seq = scm_cons (box_lexical (SCM_BOOL_F, sym), seq); } for (; scm_is_pair (seq); seq = CDR (seq)) body = SEQ (src, CAR (seq), body); return LAMBDA_CASE (src, req, opt, rest, kw, new_inits, syms, body, alt); } case SCM_EXPANDED_LET: { SCM src, names, syms, vals, body, new_vals, walk; src = REF (exp, LET, SRC); names = REF (exp, LET, NAMES); syms = REF (exp, LET, GENSYMS); vals = convert_assignment (REF (exp, LET, VALS), assigned); body = convert_assignment (REF (exp, LET, BODY), assigned); for (new_vals = SCM_EOL, walk = syms; scm_is_pair (vals); vals = CDR (vals), walk = CDR (walk)) { SCM sym = CAR (walk), val = CAR (vals); if (scm_is_true (scm_hashq_ref (assigned, sym, SCM_BOOL_F))) new_vals = scm_cons (box_value (val), new_vals); else new_vals = scm_cons (val, new_vals); } new_vals = scm_reverse (new_vals); return LET (src, names, syms, new_vals, body); } case SCM_EXPANDED_LETREC: { SCM src, names, syms, vals, empty_box, boxes, body; src = REF (exp, LETREC, SRC); names = REF (exp, LETREC, NAMES); syms = REF (exp, LETREC, GENSYMS); vals = convert_assignment (REF (exp, LETREC, VALS), assigned); body = convert_assignment (REF (exp, LETREC, BODY), assigned); empty_box = PRIMCALL (SCM_BOOL_F, scm_from_latin1_symbol ("make-undefined-variable"), SCM_EOL); boxes = scm_make_list (scm_length (names), empty_box); if (scm_is_true (REF (exp, LETREC, IN_ORDER_P))) return LET (src, names, syms, boxes, init_boxes (names, syms, vals, body)); else { SCM walk, tmps = SCM_EOL, inits = SCM_EOL; for (walk = syms; scm_is_pair (walk); walk = CDR (walk)) { SCM tmp = scm_gensym (SCM_UNDEFINED); tmps = scm_cons (tmp, tmps); inits = scm_cons (LEXICAL_REF (SCM_BOOL_F, SCM_BOOL_F, tmp), inits); } tmps = scm_reverse (tmps); inits = scm_reverse (inits); return LET (src, names, syms, boxes, SEQ (src, LET (src, names, tmps, vals, init_boxes (names, syms, inits, VOID_ (src))), body)); } } default: abort (); } } SCM scm_convert_assignment (SCM exp) { SCM assigned = scm_c_make_hash_table (0); compute_assigned (exp, assigned); return convert_assignment (exp, assigned); } #define DEFINE_NAMES(type) \ { \ static const char *fields[] = SCM_EXPANDED_##type##_FIELD_NAMES; \ exp_field_names[SCM_EXPANDED_##type] = fields; \ exp_names[SCM_EXPANDED_##type] = SCM_EXPANDED_##type##_TYPE_NAME; \ exp_nfields[SCM_EXPANDED_##type] = SCM_NUM_EXPANDED_##type##_FIELDS; \ } static SCM make_exp_vtable (size_t n) { SCM layout, printer, name, code, fields; layout = scm_string_to_symbol (scm_string_append (scm_make_list (scm_from_size_t (exp_nfields[n]), scm_from_utf8_string ("pw")))); printer = SCM_BOOL_F; name = scm_from_utf8_symbol (exp_names[n]); code = scm_from_size_t (n); fields = SCM_EOL; { size_t m = exp_nfields[n]; while (m--) fields = scm_cons (scm_from_utf8_symbol (exp_field_names[n][m]), fields); } return scm_c_make_struct (scm_exp_vtable_vtable, 0, 5, SCM_UNPACK (layout), SCM_UNPACK (printer), SCM_UNPACK (name), SCM_UNPACK (code), SCM_UNPACK (fields)); } void scm_init_expand () { size_t n; SCM exp_vtable_list = SCM_EOL; DEFINE_NAMES (VOID); DEFINE_NAMES (CONST); DEFINE_NAMES (PRIMITIVE_REF); DEFINE_NAMES (LEXICAL_REF); DEFINE_NAMES (LEXICAL_SET); DEFINE_NAMES (MODULE_REF); DEFINE_NAMES (MODULE_SET); DEFINE_NAMES (TOPLEVEL_REF); DEFINE_NAMES (TOPLEVEL_SET); DEFINE_NAMES (TOPLEVEL_DEFINE); DEFINE_NAMES (CONDITIONAL); DEFINE_NAMES (CALL); DEFINE_NAMES (PRIMCALL); DEFINE_NAMES (SEQ); DEFINE_NAMES (LAMBDA); DEFINE_NAMES (LAMBDA_CASE); DEFINE_NAMES (LET); DEFINE_NAMES (LETREC); scm_exp_vtable_vtable = scm_make_vtable (scm_from_utf8_string (SCM_VTABLE_BASE_LAYOUT "pwuwpw"), SCM_BOOL_F); for (n = 0; n < SCM_NUM_EXPANDED_TYPES; n++) exp_vtables[n] = make_exp_vtable (n); /* Now walk back down, consing in reverse. */ while (n--) exp_vtable_list = scm_cons (exp_vtables[n], exp_vtable_list); const_unbound = CONST_ (SCM_BOOL_F, scm_list_1 (scm_from_latin1_symbol ("unbound"))); scm_c_define_gsubr ("convert-assignment", 1, 0, 0, scm_convert_assignment); scm_c_define ("%expanded-vtables", scm_vector (exp_vtable_list)); #include "expand.x" }