summaryrefslogtreecommitdiff
path: root/NEWS
blob: 22105450f8cf6b131f8a6a2964c7986b9a541988 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
Guile NEWS --- history of user-visible changes.  -*- text -*-
Copyright (C) 1996, 1997, 1998, 1999 Free Software Foundation, Inc.
See the end for copying conditions.

Please send Guile bug reports to bug-guile@gnu.org.

Changes since Guile 1.3:

* Changes to mailing lists

** Some of the Guile mailing lists have moved to sourceware.cygnus.com.

See the README file to find current addresses for all the Guile
mailing lists.

* Changes to the distribution

** Readline support is no longer included with Guile by default.

Based on the different license terms of Guile and Readline, we
concluded that Guile should not *by default* cause the linking of
Readline into an application program.  Readline support is now offered
as a separate module, which is linked into an application only when
you explicitly specify it.

Although Guile is GNU software, its distribution terms add a special
exception to the usual GNU General Public License (GPL).  Guile's
license includes a clause that allows you to link Guile with non-free
programs.  We add this exception so as not to put Guile at a
disadvantage vis-a-vis other extensibility packages that support other
languages.

In contrast, the GNU Readline library is distributed under the GNU
General Public License pure and simple.  This means that you may not
link Readline, even dynamically, into an application unless it is
distributed under a free software license that is compatible the GPL.

Because of this difference in distribution terms, an application that
can use Guile may not be able to use Readline.  Now users will be
explicitly offered two independent decisions about the use of these
two packages.

You can activate the readline support by issuing

    (use-modules (readline-activator))
    (activate-readline)

from your ".guile" file, for example.

* Changes to the stand-alone interpreter

** All builtins now print as primitives.
Previously builtin procedures not belonging to the fundamental subr
types printed as #<compiled closure #<primitive-procedure gsubr-apply>>.
Now, they print as #<primitive-procedure NAME>.

** Backtraces slightly more intelligible.
gsubr-apply and macro transformer application frames no longer appear
in backtraces.

* Changes to Scheme functions and syntax

** Guile now correctly handles internal defines by rewriting them into
their equivalent letrec.  Previously, internal defines would
incrementally add to the innermost environment, without checking
whether the restrictions specified in RnRS were met.  This lead to the
correct behaviour when these restriction actually were met, but didn't
catch all illegal uses.  Such an illegal use could lead to crashes of
the Guile interpreter or or other unwanted results.  An example of
incorrect internal defines that made Guile behave erratically:

  (let ()
    (define a 1)
    (define (b) a)
    (define c (1+ (b)))
    (define d 3)

    (b))

  => 2

The problem with this example is that the definition of `c' uses the
value of `b' directly.  This confuses the meoization machine of Guile
so that the second call of `b' (this time in a larger environment that
also contains bindings for `c' and `d') refers to the binding of `c'
instead of `a'.  You could also make Guile crash with a variation on
this theme:

    (define (foo flag)
      (define a 1)
      (define (b flag) (if flag a 1))
      (define c (1+ (b flag)))
      (define d 3)

      (b #t))

    (foo #f)
    (foo #t)

From now on, Guile will issue an `Unbound variable: b' error message
for both examples.

** Hooks

A hook contains a list of functions which should be called on
particular occasions in an existing program.  Hooks are used for
customization.

A window manager might have a hook before-window-map-hook.  The window
manager uses the function run-hooks to call all functions stored in
before-window-map-hook each time a window is mapped.  The user can
store functions in the hook using add-hook!.

In Guile, hooks are first class objects.

*** New function: make-hook [N_ARGS]

Return a hook for hook functions which can take N_ARGS arguments.
The default value for N_ARGS is 0.

(See also scm_make_named_hook below.)

*** New function: add-hook! HOOK PROC [APPEND_P]

Put PROC at the beginning of the list of functions stored in HOOK.
If APPEND_P is supplied, and non-false, put PROC at the end instead.

PROC must be able to take the number of arguments specified when the
hook was created.

If PROC already exists in HOOK, then remove it first.

*** New function: remove-hook! HOOK PROC

Remove PROC from the list of functions in HOOK.

*** New function: reset-hook! HOOK

Clear the list of hook functions stored in HOOK.

*** New function: run-hook HOOK ARG1 ...

Run all hook functions stored in HOOK with arguments ARG1 ... .
The number of arguments supplied must correspond to the number given
when the hook was created.

** The function `dynamic-link' now takes optional keyword arguments.
   The only keyword argument that is currently defined is `:global
   BOOL'.  With it, you can control whether the shared library will be
   linked in global mode or not.  In global mode, the symbols from the
   linked library can be used to resolve references from other
   dynamically linked libraries.  In non-global mode, the linked
   library is essentially invisible and can only be accessed via
   `dynamic-func', etc.  The default is now to link in global mode.
   Previously, the default has been non-global mode.

   The `#:global' keyword is only effective on platforms that support
   the dlopen family of functions.

** New function `provided?'

 - Function: provided? FEATURE
     Return true iff FEATURE is supported by this installation of
     Guile.  FEATURE must be a symbol naming a feature; the global
     variable `*features*' is a list of available features.

** Changes to the module (ice-9 expect):

*** The expect-strings macro now matches `$' in a regular expression
    only at a line-break or end-of-file by default.  Previously it would
    match the end of the string accumulated so far. The old behaviour
    can be obtained by setting the variable `expect-strings-exec-flags'
    to 0.

*** The expect-strings macro now uses a variable `expect-strings-exec-flags'
    for the regexp-exec flags.  If `regexp/noteol' is included, then `$'
    in a regular expression will still match before a line-break or
    end-of-file.  The default is `regexp/noteol'.

*** The expect-strings macro now uses a variable 
    `expect-strings-compile-flags' for the flags to be supplied to
    `make-regexp'.  The default is `regexp/newline', which was previously
    hard-coded.

*** The expect macro now supplies two arguments to a match procedure:
    the current accumulated string and a flag to indicate whether
    end-of-file has been reached.  Previously only the string was supplied.
    If end-of-file is reached, the match procedure will be called an
    additional time with the same accumulated string as the previous call
    but with the flag set.

** New module (ice-9 format), implementing the Common Lisp `format' function.

This code, and the documentation for it that appears here, was
borrowed from SLIB, with minor adaptations for Guile.

 - Function: format DESTINATION FORMAT-STRING . ARGUMENTS
     An almost complete implementation of Common LISP format description
     according to the CL reference book `Common LISP' from Guy L.
     Steele, Digital Press.  Backward compatible to most of the
     available Scheme format implementations.

     Returns `#t', `#f' or a string; has side effect of printing
     according to FORMAT-STRING.  If DESTINATION is `#t', the output is
     to the current output port and `#t' is returned.  If DESTINATION
     is `#f', a formatted string is returned as the result of the call.
     NEW: If DESTINATION is a string, DESTINATION is regarded as the
     format string; FORMAT-STRING is then the first argument and the
     output is returned as a string. If DESTINATION is a number, the
     output is to the current error port if available by the
     implementation. Otherwise DESTINATION must be an output port and
     `#t' is returned.

     FORMAT-STRING must be a string.  In case of a formatting error
     format returns `#f' and prints a message on the current output or
     error port.  Characters are output as if the string were output by
     the `display' function with the exception of those prefixed by a
     tilde (~).  For a detailed description of the FORMAT-STRING syntax
     please consult a Common LISP format reference manual.  For a test
     suite to verify this format implementation load `formatst.scm'.
     Please send bug reports to `lutzeb@cs.tu-berlin.de'.

     Note: `format' is not reentrant, i.e. only one `format'-call may
     be executed at a time.


*** Format Specification (Format version 3.0)

   Please consult a Common LISP format reference manual for a detailed
description of the format string syntax.  For a demonstration of the
implemented directives see `formatst.scm'.

   This implementation supports directive parameters and modifiers (`:'
and `@' characters). Multiple parameters must be separated by a comma
(`,').  Parameters can be numerical parameters (positive or negative),
character parameters (prefixed by a quote character (`''), variable
parameters (`v'), number of rest arguments parameter (`#'), empty and
default parameters.  Directive characters are case independent. The
general form of a directive is:

DIRECTIVE ::= ~{DIRECTIVE-PARAMETER,}[:][@]DIRECTIVE-CHARACTER

DIRECTIVE-PARAMETER ::= [ [-|+]{0-9}+ | 'CHARACTER | v | # ]

*** Implemented CL Format Control Directives

   Documentation syntax: Uppercase characters represent the
corresponding control directive characters. Lowercase characters
represent control directive parameter descriptions.

`~A'
     Any (print as `display' does).
    `~@A'
          left pad.

    `~MINCOL,COLINC,MINPAD,PADCHARA'
          full padding.

`~S'
     S-expression (print as `write' does).
    `~@S'
          left pad.

    `~MINCOL,COLINC,MINPAD,PADCHARS'
          full padding.

`~D'
     Decimal.
    `~@D'
          print number sign always.

    `~:D'
          print comma separated.

    `~MINCOL,PADCHAR,COMMACHARD'
          padding.

`~X'
     Hexadecimal.
    `~@X'
          print number sign always.

    `~:X'
          print comma separated.

    `~MINCOL,PADCHAR,COMMACHARX'
          padding.

`~O'
     Octal.
    `~@O'
          print number sign always.

    `~:O'
          print comma separated.

    `~MINCOL,PADCHAR,COMMACHARO'
          padding.

`~B'
     Binary.
    `~@B'
          print number sign always.

    `~:B'
          print comma separated.

    `~MINCOL,PADCHAR,COMMACHARB'
          padding.

`~NR'
     Radix N.
    `~N,MINCOL,PADCHAR,COMMACHARR'
          padding.

`~@R'
     print a number as a Roman numeral.

`~:@R'
     print a number as an "old fashioned" Roman numeral.

`~:R'
     print a number as an ordinal English number.

`~:@R'
     print a number as a cardinal English number.

`~P'
     Plural.
    `~@P'
          prints `y' and `ies'.

    `~:P'
          as `~P but jumps 1 argument backward.'

    `~:@P'
          as `~@P but jumps 1 argument backward.'

`~C'
     Character.
    `~@C'
          prints a character as the reader can understand it (i.e. `#\'
          prefixing).

    `~:C'
          prints a character as emacs does (eg. `^C' for ASCII 03).

`~F'
     Fixed-format floating-point (prints a flonum like MMM.NNN).
    `~WIDTH,DIGITS,SCALE,OVERFLOWCHAR,PADCHARF'
    `~@F'
          If the number is positive a plus sign is printed.

`~E'
     Exponential floating-point (prints a flonum like MMM.NNN`E'EE).
    `~WIDTH,DIGITS,EXPONENTDIGITS,SCALE,OVERFLOWCHAR,PADCHAR,EXPONENTCHARE'
    `~@E'
          If the number is positive a plus sign is printed.

`~G'
     General floating-point (prints a flonum either fixed or
     exponential).
    `~WIDTH,DIGITS,EXPONENTDIGITS,SCALE,OVERFLOWCHAR,PADCHAR,EXPONENTCHARG'
    `~@G'
          If the number is positive a plus sign is printed.

`~$'
     Dollars floating-point (prints a flonum in fixed with signs
     separated).
    `~DIGITS,SCALE,WIDTH,PADCHAR$'
    `~@$'
          If the number is positive a plus sign is printed.

    `~:@$'
          A sign is always printed and appears before the padding.

    `~:$'
          The sign appears before the padding.

`~%'
     Newline.
    `~N%'
          print N newlines.

`~&'
     print newline if not at the beginning of the output line.
    `~N&'
          prints `~&' and then N-1 newlines.

`~|'
     Page Separator.
    `~N|'
          print N page separators.

`~~'
     Tilde.
    `~N~'
          print N tildes.

`~'<newline>
     Continuation Line.
    `~:'<newline>
          newline is ignored, white space left.

    `~@'<newline>
          newline is left, white space ignored.

`~T'
     Tabulation.
    `~@T'
          relative tabulation.

    `~COLNUM,COLINCT'
          full tabulation.

`~?'
     Indirection (expects indirect arguments as a list).
    `~@?'
          extracts indirect arguments from format arguments.

`~(STR~)'
     Case conversion (converts by `string-downcase').
    `~:(STR~)'
          converts by `string-capitalize'.

    `~@(STR~)'
          converts by `string-capitalize-first'.

    `~:@(STR~)'
          converts by `string-upcase'.

`~*'
     Argument Jumping (jumps 1 argument forward).
    `~N*'
          jumps N arguments forward.

    `~:*'
          jumps 1 argument backward.

    `~N:*'
          jumps N arguments backward.

    `~@*'
          jumps to the 0th argument.

    `~N@*'
          jumps to the Nth argument (beginning from 0)

`~[STR0~;STR1~;...~;STRN~]'
     Conditional Expression (numerical clause conditional).
    `~N['
          take argument from N.

    `~@['
          true test conditional.

    `~:['
          if-else-then conditional.

    `~;'
          clause separator.

    `~:;'
          default clause follows.

`~{STR~}'
     Iteration (args come from the next argument (a list)).
    `~N{'
          at most N iterations.

    `~:{'
          args from next arg (a list of lists).

    `~@{'
          args from the rest of arguments.

    `~:@{'
          args from the rest args (lists).

`~^'
     Up and out.
    `~N^'
          aborts if N = 0

    `~N,M^'
          aborts if N = M

    `~N,M,K^'
          aborts if N <= M <= K

*** Not Implemented CL Format Control Directives

`~:A'
     print `#f' as an empty list (see below).

`~:S'
     print `#f' as an empty list (see below).

`~<~>'
     Justification.

`~:^'
     (sorry I don't understand its semantics completely)

*** Extended, Replaced and Additional Control Directives

`~MINCOL,PADCHAR,COMMACHAR,COMMAWIDTHD'
`~MINCOL,PADCHAR,COMMACHAR,COMMAWIDTHX'
`~MINCOL,PADCHAR,COMMACHAR,COMMAWIDTHO'
`~MINCOL,PADCHAR,COMMACHAR,COMMAWIDTHB'
`~N,MINCOL,PADCHAR,COMMACHAR,COMMAWIDTHR'
     COMMAWIDTH is the number of characters between two comma
     characters.

`~I'
     print a R4RS complex number as `~F~@Fi' with passed parameters for
     `~F'.

`~Y'
     Pretty print formatting of an argument for scheme code lists.

`~K'
     Same as `~?.'

`~!'
     Flushes the output if format DESTINATION is a port.

`~_'
     Print a `#\space' character
    `~N_'
          print N `#\space' characters.

`~/'
     Print a `#\tab' character
    `~N/'
          print N `#\tab' characters.

`~NC'
     Takes N as an integer representation for a character. No arguments
     are consumed. N is converted to a character by `integer->char'.  N
     must be a positive decimal number.

`~:S'
     Print out readproof.  Prints out internal objects represented as
     `#<...>' as strings `"#<...>"' so that the format output can always
     be processed by `read'.

`~:A'
     Print out readproof.  Prints out internal objects represented as
     `#<...>' as strings `"#<...>"' so that the format output can always
     be processed by `read'.

`~Q'
     Prints information and a copyright notice on the format
     implementation.
    `~:Q'
          prints format version.

`~F, ~E, ~G, ~$'
     may also print number strings, i.e. passing a number as a string
     and format it accordingly.

*** Configuration Variables

   The format module exports some configuration variables to suit the
systems and users needs. There should be no modification necessary for
the configuration that comes with Guile.  Format detects automatically
if the running scheme system implements floating point numbers and
complex numbers.

format:symbol-case-conv
     Symbols are converted by `symbol->string' so the case type of the
     printed symbols is implementation dependent.
     `format:symbol-case-conv' is a one arg closure which is either
     `#f' (no conversion), `string-upcase', `string-downcase' or
     `string-capitalize'. (default `#f')

format:iobj-case-conv
     As FORMAT:SYMBOL-CASE-CONV but applies for the representation of
     implementation internal objects. (default `#f')

format:expch
     The character prefixing the exponent value in `~E' printing.
     (default `#\E')

*** Compatibility With Other Format Implementations

SLIB format 2.x:
     See `format.doc'.

SLIB format 1.4:
     Downward compatible except for padding support and `~A', `~S',
     `~P', `~X' uppercase printing.  SLIB format 1.4 uses C-style
     `printf' padding support which is completely replaced by the CL
     `format' padding style.

MIT C-Scheme 7.1:
     Downward compatible except for `~', which is not documented
     (ignores all characters inside the format string up to a newline
     character).  (7.1 implements `~a', `~s', ~NEWLINE, `~~', `~%',
     numerical and variable parameters and `:/@' modifiers in the CL
     sense).

Elk 1.5/2.0:
     Downward compatible except for `~A' and `~S' which print in
     uppercase.  (Elk implements `~a', `~s', `~~', and `~%' (no
     directive parameters or modifiers)).

Scheme->C 01nov91:
     Downward compatible except for an optional destination parameter:
     S2C accepts a format call without a destination which returns a
     formatted string. This is equivalent to a #f destination in S2C.
     (S2C implements `~a', `~s', `~c', `~%', and `~~' (no directive
     parameters or modifiers)).


** Changes to string-handling functions.

These functions were added to support the (ice-9 format) module, above.

*** New function: string-upcase STRING
*** New function: string-downcase STRING

These are non-destructive versions of the existing string-upcase! and
string-downcase! functions.

*** New function: string-capitalize! STRING
*** New function: string-capitalize STRING

These functions convert the first letter of each word in the string to
upper case.  Thus:

      (string-capitalize "howdy there")
      => "Howdy There"

As with the other functions, string-capitalize! modifies the string in
place, while string-capitalize returns a modified copy of its argument.

*** New function: string-ci->symbol STRING

Return a symbol whose name is STRING, but having the same case as if
the symbol had be read by `read'.

Guile can be configured to be sensitive or insensitive to case
differences in Scheme identifiers.  If Guile is case-insensitive, all
symbols are converted to lower case on input.  The `string-ci->symbol'
function returns a symbol whose name in STRING, transformed as Guile
would if STRING were input.

*** New function: substring-move! STRING1 START END STRING2 START

Copy the substring of STRING1 from START (inclusive) to END
(exclusive) to STRING2 at START.  STRING1 and STRING2 may be the same
string, and the source and destination areas may overlap; in all
cases, the function behaves as if all the characters were copied
simultanously.

*** Extended functions: substring-move-left! substring-move-right! 

These functions now correctly copy arbitrarily overlapping substrings;
they are both synonyms for substring-move!.


** New module (ice-9 getopt-long), with the function `getopt-long'.

getopt-long is a function for parsing command-line arguments in a
manner consistent with other GNU programs.

(getopt-long ARGS GRAMMAR)
Parse the arguments ARGS according to the argument list grammar GRAMMAR.

ARGS should be a list of strings.  Its first element should be the
name of the program; subsequent elements should be the arguments
that were passed to the program on the command line.  The
`program-arguments' procedure returns a list of this form.

GRAMMAR is a list of the form:
((OPTION (PROPERTY VALUE) ...) ...)

Each OPTION should be a symbol.  `getopt-long' will accept a
command-line option named `--OPTION'.
Each option can have the following (PROPERTY VALUE) pairs:

  (single-char CHAR) --- Accept `-CHAR' as a single-character
            equivalent to `--OPTION'.  This is how to specify traditional
            Unix-style flags.
  (required? BOOL) --- If BOOL is true, the option is required.
            getopt-long will raise an error if it is not found in ARGS.
  (value BOOL) --- If BOOL is #t, the option accepts a value; if
            it is #f, it does not; and if it is the symbol
            `optional', the option may appear in ARGS with or
            without a value. 
  (predicate FUNC) --- If the option accepts a value (i.e. you
            specified `(value #t)' for this option), then getopt
            will apply FUNC to the value, and throw an exception
            if it returns #f.  FUNC should be a procedure which
            accepts a string and returns a boolean value; you may
            need to use quasiquotes to get it into GRAMMAR.

The (PROPERTY VALUE) pairs may occur in any order, but each
property may occur only once.  By default, options do not have
single-character equivalents, are not required, and do not take
values.

In ARGS, single-character options may be combined, in the usual
Unix fashion: ("-x" "-y") is equivalent to ("-xy").  If an option
accepts values, then it must be the last option in the
combination; the value is the next argument.  So, for example, using
the following grammar:
     ((apples    (single-char #\a))
      (blimps    (single-char #\b) (value #t))
      (catalexis (single-char #\c) (value #t)))
the following argument lists would be acceptable:
   ("-a" "-b" "bang" "-c" "couth")     ("bang" and "couth" are the values
                                        for "blimps" and "catalexis")
   ("-ab" "bang" "-c" "couth")         (same)
   ("-ac" "couth" "-b" "bang")         (same)
   ("-abc" "couth" "bang")             (an error, since `-b' is not the
                                        last option in its combination)

If an option's value is optional, then `getopt-long' decides
whether it has a value by looking at what follows it in ARGS.  If
the next element is a string, and it does not appear to be an
option itself, then that string is the option's value.

The value of a long option can appear as the next element in ARGS,
or it can follow the option name, separated by an `=' character.
Thus, using the same grammar as above, the following argument lists
are equivalent:
  ("--apples" "Braeburn" "--blimps" "Goodyear")
  ("--apples=Braeburn" "--blimps" "Goodyear")
  ("--blimps" "Goodyear" "--apples=Braeburn")

If the option "--" appears in ARGS, argument parsing stops there;
subsequent arguments are returned as ordinary arguments, even if
they resemble options.  So, in the argument list:
        ("--apples" "Granny Smith" "--" "--blimp" "Goodyear")
`getopt-long' will recognize the `apples' option as having the
value "Granny Smith", but it will not recognize the `blimp'
option; it will return the strings "--blimp" and "Goodyear" as
ordinary argument strings.

The `getopt-long' function returns the parsed argument list as an
assocation list, mapping option names --- the symbols from GRAMMAR
--- onto their values, or #t if the option does not accept a value.
Unused options do not appear in the alist.

All arguments that are not the value of any option are returned
as a list, associated with the empty list.

`getopt-long' throws an exception if:
- it finds an unrecognized option in ARGS
- a required option is omitted
- an option that requires an argument doesn't get one
- an option that doesn't accept an argument does get one (this can
  only happen using the long option `--opt=value' syntax)
- an option predicate fails

So, for example:

(define grammar
  `((lockfile-dir (required? #t)
                  (value #t)
                  (single-char #\k)
                  (predicate ,file-is-directory?))
    (verbose (required? #f)
             (single-char #\v)
             (value #f))
    (x-includes (single-char #\x))
    (rnet-server (single-char #\y) 
                 (predicate ,string?))))

(getopt-long '("my-prog" "-vk" "/tmp" "foo1" "--x-includes=/usr/include" 
               "--rnet-server=lamprod" "--" "-fred" "foo2" "foo3")
               grammar)
=> ((() "foo1" "-fred" "foo2" "foo3")
    (rnet-server . "lamprod")
    (x-includes . "/usr/include")
    (lockfile-dir . "/tmp")
    (verbose . #t))

** The (ice-9 getopt-gnu-style) module is obsolete; use (ice-9 getopt-long).

It will be removed in a few releases.

** New syntax: lambda*
** New syntax: define*
** New syntax: define*-public   
** New syntax: defmacro*
** New syntax: defmacro*-public
Guile now supports optional arguments. 

`lambda*', `define*', `define*-public', `defmacro*' and
`defmacro*-public' are identical to the non-* versions except that
they use an extended type of parameter list that has the following BNF
syntax (parentheses are literal, square brackets indicate grouping,
and `*', `+' and `?' have the usual meaning):

   ext-param-list ::= ( [identifier]* [#&optional [ext-var-decl]+]?
      [#&key [ext-var-decl]+ [#&allow-other-keys]?]? 
      [[#&rest identifier]|[. identifier]]? ) | [identifier]

   ext-var-decl ::= identifier | ( identifier expression )  

The semantics are best illustrated with the following documentation
and examples for `lambda*':

 lambda* args . body
   lambda extended for optional and keyword arguments
   
 lambda* creates a procedure that takes optional arguments. These
 are specified by putting them inside brackets at the end of the
 paramater list, but before any dotted rest argument. For example,
   (lambda* (a b #&optional c d . e) '())
 creates a procedure with fixed arguments a and b, optional arguments c
 and d, and rest argument e. If the optional arguments are omitted
 in a call, the variables for them are unbound in the procedure. This
 can be checked with the bound? macro.

 lambda* can also take keyword arguments. For example, a procedure
 defined like this:
   (lambda* (#&key xyzzy larch) '())
 can be called with any of the argument lists (#:xyzzy 11)
 (#:larch 13) (#:larch 42 #:xyzzy 19) (). Whichever arguments
 are given as keywords are bound to values.

 Optional and keyword arguments can also be given default values
 which they take on when they are not present in a call, by giving a
 two-item list in place of an optional argument, for example in:
   (lambda* (foo #&optional (bar 42) #&key (baz 73)) (list foo bar baz)) 
 foo is a fixed argument, bar is an optional argument with default
 value 42, and baz is a keyword argument with default value 73.
 Default value expressions are not evaluated unless they are needed
 and until the procedure is called.  

 lambda* now supports two more special parameter list keywords.

 lambda*-defined procedures now throw an error by default if a
 keyword other than one of those specified is found in the actual
 passed arguments. However, specifying #&allow-other-keys
 immediately after the kyword argument declarations restores the
 previous behavior of ignoring unknown keywords. lambda* also now
 guarantees that if the same keyword is passed more than once, the
 last one passed is the one that takes effect. For example,
  ((lambda* (#&key (heads 0) (tails 0)) (display (list heads tails)))
    #:heads 37 #:tails 42 #:heads 99)
 would result in (99 47) being displayed.

 #&rest is also now provided as a synonym for the dotted syntax rest
 argument. The argument lists (a . b) and (a #&rest b) are equivalent in
 all respects to lambda*. This is provided for more similarity to DSSSL,
 MIT-Scheme and Kawa among others, as well as for refugees from other
 Lisp dialects.

Further documentation may be found in the optargs.scm file itself.

The optional argument module also exports the macros `let-optional',
`let-optional*', `let-keywords', `let-keywords*' and `bound?'. These
are not documented here because they may be removed in the future, but
full documentation is still available in optargs.scm.

** New syntax: and-let*
Guile now supports the `and-let*' form, described in the draft SRFI-2.

Syntax: (land* (<clause> ...) <body> ...)
Each <clause> should have one of the following forms:
  (<variable> <expression>)
  (<expression>)
  <bound-variable>
Each <variable> or <bound-variable> should be an identifier.  Each
<expression> should be a valid expression.  The <body> should be a
possibly empty sequence of expressions, like the <body> of a
lambda form.

Semantics: A LAND* expression is evaluated by evaluating the
<expression> or <bound-variable> of each of the <clause>s from
left to right.  The value of the first <expression> or
<bound-variable> that evaluates to a false value is returned; the
remaining <expression>s and <bound-variable>s are not evaluated.
The <body> forms are evaluated iff all the <expression>s and
<bound-variable>s evaluate to true values.

The <expression>s and the <body> are evaluated in an environment
binding each <variable> of the preceding (<variable> <expression>)
clauses to the value of the <expression>.  Later bindings
shadow earlier bindings.

Guile's and-let* macro was contributed by Michael Livshin.

** New sorting functions

*** New function: sorted? SEQUENCE LESS?
Returns `#t' when the sequence argument is in non-decreasing order
according to LESS? (that is, there is no adjacent pair `... x y
...' for which `(less? y x)').

Returns `#f' when the sequence contains at least one out-of-order
pair.  It is an error if the sequence is neither a list nor a
vector.

*** New function: merge LIST1 LIST2 LESS?
LIST1 and LIST2 are sorted lists.
Returns the sorted list of all elements in LIST1 and LIST2.

Assume that the elements a and b1 in LIST1 and b2 in LIST2 are "equal"
in the sense that (LESS? x y) --> #f for x, y in {a, b1, b2},
and that a < b1 in LIST1.  Then a < b1 < b2 in the result.
(Here "<" should read "comes before".)

*** New procedure: merge! LIST1 LIST2 LESS?
Merges two lists, re-using the pairs of LIST1 and LIST2 to build
the result.  If the code is compiled, and LESS? constructs no new
pairs, no pairs at all will be allocated.  The first pair of the
result will be either the first pair of LIST1 or the first pair of
LIST2.

*** New function: sort SEQUENCE LESS?
Accepts either a list or a vector, and returns a new sequence
which is sorted.  The new sequence is the same type as the input.
Always `(sorted? (sort sequence less?) less?)'.  The original
sequence is not altered in any way.  The new sequence shares its
elements with the old one; no elements are copied.

*** New procedure: sort! SEQUENCE LESS
Returns its sorted result in the original boxes.  No new storage is
allocated at all.  Proper usage: (set! slist (sort! slist <))

*** New function: stable-sort SEQUENCE LESS?
Similar to `sort' but stable.  That is, if "equal" elements are
ordered a < b in the original sequence, they will have the same order
in the result.

*** New function: stable-sort! SEQUENCE LESS?
Similar to `sort!' but stable.
Uses temporary storage when sorting vectors.

*** New functions: sort-list, sort-list!
Added for compatibility with scsh.

** New built-in random number support

*** New function: random N [STATE]
Accepts a positive integer or real N and returns a number of the
same type between zero (inclusive) and N (exclusive).  The values
returned have a uniform distribution.

The optional argument STATE must be of the type produced by
`copy-random-state' or `seed->random-state'.  It defaults to the value
of the variable `*random-state*'.  This object is used to maintain the
state of the pseudo-random-number generator and is altered as a side
effect of the `random' operation.

*** New variable: *random-state*
Holds a data structure that encodes the internal state of the
random-number generator that `random' uses by default.  The nature
of this data structure is implementation-dependent.  It may be
printed out and successfully read back in, but may or may not
function correctly as a random-number state object in another
implementation.

*** New function: copy-random-state [STATE]
Returns a new object of type suitable for use as the value of the
variable `*random-state*' and as a second argument to `random'.
If argument STATE is given, a copy of it is returned.  Otherwise a
copy of `*random-state*' is returned.

*** New function: seed->random-state SEED
Returns a new object of type suitable for use as the value of the
variable `*random-state*' and as a second argument to `random'.
SEED is a string or a number.  A new state is generated and
initialized using SEED.

*** New function: random:uniform [STATE]
Returns an uniformly distributed inexact real random number in the
range between 0 and 1.

*** New procedure: random:solid-sphere! VECT [STATE]
Fills VECT with inexact real random numbers the sum of whose
squares is less than 1.0.  Thinking of VECT as coordinates in
space of dimension N = `(vector-length VECT)', the coordinates are
uniformly distributed within the unit N-shere.  The sum of the
squares of the numbers is returned.  VECT can be either a vector
or a uniform vector of doubles.

*** New procedure: random:hollow-sphere! VECT [STATE]
Fills VECT with inexact real random numbers the sum of whose squares
is equal to 1.0.  Thinking of VECT as coordinates in space of
dimension n = `(vector-length VECT)', the coordinates are uniformly
distributed over the surface of the unit n-shere.  VECT can be either
a vector or a uniform vector of doubles.

*** New function: random:normal [STATE]
Returns an inexact real in a normal distribution with mean 0 and
standard deviation 1.  For a normal distribution with mean M and
standard deviation D use `(+ M (* D (random:normal)))'.

*** New procedure: random:normal-vector! VECT [STATE]
Fills VECT with inexact real random numbers which are independent and
standard normally distributed (i.e., with mean 0 and variance 1).
VECT can be either a vector or a uniform vector of doubles.

*** New function: random:exp STATE
Returns an inexact real in an exponential distribution with mean 1.
For an exponential distribution with mean U use (* U (random:exp)).

** The range of logand, logior, logxor, logtest, and logbit? have changed.

These functions now operate on numbers in the range of a C unsigned
long.

These functions used to operate on numbers in the range of a C signed
long; however, this seems inappropriate, because Guile integers don't
overflow.

** New function: make-guardian
This is an implementation of guardians as described in
R. Kent Dybvig, Carl Bruggeman, and David Eby (1993) "Guardians in a
Generation-Based Garbage Collector" ACM SIGPLAN Conference on
Programming Language Design and Implementation, June 1993
ftp://ftp.cs.indiana.edu/pub/scheme-repository/doc/pubs/guardians.ps.gz

** New functions: delq1!, delv1!, delete1!
These procedures behave similar to delq! and friends but delete only
one object if at all.

** New function: unread-string STRING PORT
Unread STRING to PORT, that is, push it back onto the port so that
next read operation will work on the pushed back characters.

** unread-char can now be called multiple times
If unread-char is called multiple times, the unread characters will be
read again in last-in first-out order.

** the procedures uniform-array-read! and uniform-array-write! now
work on any kind of port, not just ports which are open on a file.

** now 'l' in a port mode requests line buffering.

** The procedure truncate-file now works on string ports as well
as file ports.  If the size argument is omitted, the current
file position is used.

** new procedure: lseek PORT/FDES OFFSET WHENCE
The arguments are the same as for the old fseek procedure, but it
works on string ports as well as random-access file ports.

** the fseek procedure now works on string ports, since it has been
redefined using lseek.

** the setvbuf procedure now uses a default size if mode is _IOFBF and
size is not supplied.

** the newline procedure no longer flushes the port if it's not
line-buffered: previously it did if it was the current output port.

** open-pipe and close-pipe are no longer primitive procedures, but
an emulation can be obtained using `(use-modules (ice-9 popen))'.

** the freopen procedure has been removed.

** new procedure: drain-input PORT
Drains PORT's read buffers (including any pushed-back characters)
and returns the contents as a single string.

** New function: map-in-order PROC LIST1 LIST2 ...
Version of `map' which guarantees that the procedure is applied to the
lists in serial order.

** Renamed `serial-array-copy!' and `serial-array-map!' to
`array-copy-in-order!' and `array-map-in-order!'.  The old names are
now obsolete and will go away in release 1.5.

** New syntax: collect BODY1 ...
Version of `begin' which returns a list of the results of the body
forms instead of the result of the last body form.  In contrast to
`begin', `collect' allows an empty body.

** New functions: read-history FILENAME, write-history FILENAME
Read/write command line history from/to file.  Returns #t on success
and #f if an error occured.

** `ls' and `lls' in module (ice-9 ls) now handle no arguments.

These procedures return a list of definitions available in the specified
argument, a relative module reference.  In the case of no argument,
`(current-module)' is now consulted for definitions to return, instead
of simply returning #f, the former behavior.

* Changes to the gh_ interface

** gh_scm2doubles

Now takes a second argument which is the result array.  If this
pointer is NULL, a new array is malloced (the old behaviour).

** gh_chars2byvect, gh_shorts2svect, gh_floats2fvect, gh_scm2chars,
   gh_scm2shorts, gh_scm2longs, gh_scm2floats

New functions.

* Changes to the scm_ interface

** Function: scm_make_named_hook (char* name, int n_args)

Creates a hook in the same way as make-hook above but also
binds a variable named NAME to it.

This is the typical way of creating a hook from C code.

Currently, the variable is created in the root module.  This will
change when we get the new module system.

** The smob interface

The interface for creating smobs has changed.  For documentation, see
data-rep.info (made from guile-core/doc/data-rep.texi).

*** Deprecated function: SCM scm_newsmob (scm_smobfuns *)

>>> This function will be removed in 1.3.4. <<<

It is replaced by:

*** Function: SCM scm_make_smob_type (const char *name, scm_sizet size)
This function adds a new smob type, named NAME, with instance size
SIZE to the system.  The return value is a tag that is used in
creating instances of the type.  If SIZE is 0, then no memory will
be allocated when instances of the smob are created, and nothing
will be freed by the default free function.
    
*** Function: void scm_set_smob_mark (long tc, SCM (*mark) (SCM))
This function sets the smob marking procedure for the smob type
specified by the tag TC. TC is the tag returned by
`scm_make_smob_type'.

*** Function: void scm_set_smob_free (long tc, SCM (*mark) (SCM))
This function sets the smob freeing procedure for the smob type
specified by the tag TC. TC is the tag returned by
`scm_make_smob_type'.

*** Function: void scm_set_smob_print (tc, print)

 - Function: void scm_set_smob_print (long tc,
			              scm_sizet (*print) (SCM,
						          SCM,
							  scm_print_state *))

This function sets the smob printing procedure for the smob type
specified by the tag TC. TC is the tag returned by
`scm_make_smob_type'.

*** Function: void scm_set_smob_equalp (long tc, SCM (*equalp) (SCM, SCM))
This function sets the smob equality-testing predicate for the
smob type specified by the tag TC. TC is the tag returned by
`scm_make_smob_type'.

*** Macro: void SCM_NEWSMOB (SCM var, long tc, void *data)
Make VALUE contain a smob instance of the type with type code TC and
smob data DATA.  VALUE must be previously declared as C type `SCM'.

*** Macro: fn_returns SCM_RETURN_NEWSMOB (long tc, void *data)
This macro expands to a block of code that creates a smob instance
of the type with type code TC and smob data DATA, and returns that
`SCM' value.  It should be the last piece of code in a block.

** The interfaces for using I/O ports and implementing port types
(ptobs) have changed significantly.  The new interface is based on
shared access to buffers and a new set of ptob procedures.

*** scm_newptob has been removed

It is replaced by:

*** Function: SCM scm_make_port_type (type_name, fill_buffer, write_flush)

- Function: SCM scm_make_port_type (char *type_name,
                                    int (*fill_buffer) (SCM port),
                                    void (*write_flush) (SCM port));

Similarly to the new smob interface, there is a set of function
setters by which the user can customize the behaviour of his port
type.  See ports.h (scm_set_port_XXX).

** scm_strport_to_string: New function: creates a new string from
a string port's buffer.

** Plug in interface for random number generators
The variable `scm_the_rng' in random.c contains a value and three
function pointers which together define the current random number
generator being used by the Scheme level interface and the random
number library functions.

The user is free to replace the default generator with the generator
of his own choice.

*** Variable: size_t scm_the_rng.rstate_size
The size of the random state type used by the current RNG
measured in chars.

*** Function: unsigned long scm_the_rng.random_bits (scm_rstate *STATE)
Given the random STATE, return 32 random bits.

*** Function: void scm_the_rng.init_rstate (scm_rstate *STATE, chars *S, int N)
Seed random state STATE using string S of length N.

*** Function: scm_rstate *scm_the_rng.copy_rstate (scm_rstate *STATE)
Given random state STATE, return a malloced copy.

** Default RNG
The default RNG is the MWC (Multiply With Carry) random number
generator described by George Marsaglia at the Department of
Statistics and Supercomputer Computations Research Institute, The
Florida State University (http://stat.fsu.edu/~geo).

It uses 64 bits, has a period of 4578426017172946943 (4.6e18), and
passes all tests in the DIEHARD test suite
(http://stat.fsu.edu/~geo/diehard.html).  The generation of 32 bits
costs one multiply and one add on platforms which either supports long
longs (gcc does this on most systems) or have 64 bit longs.  The cost
is four multiply on other systems but this can be optimized by writing
scm_i_uniform32 in assembler.

These functions are provided through the scm_the_rng interface for use
by libguile and the application.

*** Function: unsigned long scm_i_uniform32 (scm_i_rstate *STATE)
Given the random STATE, return 32 random bits.
Don't use this function directly.  Instead go through the plugin
interface (see "Plug in interface" above).

*** Function: void scm_i_init_rstate (scm_i_rstate *STATE, char *SEED, int N)
Initialize STATE using SEED of length N.

*** Function: scm_i_rstate *scm_i_copy_rstate (scm_i_rstate *STATE)
Return a malloc:ed copy of STATE.  This function can easily be re-used
in the interfaces to other RNGs.

** Random number library functions
These functions use the current RNG through the scm_the_rng interface.
It might be a good idea to use these functions from your C code so
that only one random generator is used by all code in your program.

The default random state is stored in:

*** Variable: SCM scm_var_random_state
Contains the vcell of the Scheme variable "*random-state*" which is
used as default state by all random number functions in the Scheme
level interface.

Example:

  double x = scm_c_uniform01 (SCM_RSTATE (SCM_CDR (scm_var_random_state)));

*** Function: scm_rstate *scm_c_default_rstate (void)
This is a convenience function which returns the value of
scm_var_random_state.  An error message is generated if this value
isn't a random state.

*** Function: scm_rstate *scm_c_make_rstate (char *SEED, int LENGTH)
Make a new random state from the string SEED of length LENGTH.

It is generally not a good idea to use multiple random states in a
program.  While subsequent random numbers generated from one random
state are guaranteed to be reasonably independent, there is no such
guarantee for numbers generated from different random states.

*** Macro: unsigned long scm_c_uniform32 (scm_rstate *STATE)
Return 32 random bits.

*** Function: double scm_c_uniform01 (scm_rstate *STATE)
Return a sample from the uniform(0,1) distribution.

*** Function: double scm_c_normal01 (scm_rstate *STATE)
Return a sample from the normal(0,1) distribution.

*** Function: double scm_c_exp1 (scm_rstate *STATE)
Return a sample from the exp(1) distribution.

*** Function: unsigned long scm_c_random (scm_rstate *STATE, unsigned long M)
Return a sample from the discrete uniform(0,M) distribution.

*** Function: SCM scm_c_random_bignum (scm_rstate *STATE, SCM M)
Return a sample from the discrete uniform(0,M) distribution.
M must be a bignum object.  The returned value may be an INUM.



Changes in Guile 1.3 (released Monday, October 19, 1998):

* Changes to the distribution

** We renamed the SCHEME_LOAD_PATH environment variable to GUILE_LOAD_PATH.
To avoid conflicts, programs should name environment variables after
themselves, except when there's a common practice establishing some
other convention.

For now, Guile supports both GUILE_LOAD_PATH and SCHEME_LOAD_PATH,
giving the former precedence, and printing a warning message if the
latter is set.  Guile 1.4 will not recognize SCHEME_LOAD_PATH at all.

** The header files related to multi-byte characters have been removed.
They were: libguile/extchrs.h and libguile/mbstrings.h.  Any C code
which referred to these explicitly will probably need to be rewritten,
since the support for the variant string types has been removed; see
below.

** The header files append.h and sequences.h have been removed.  These
files implemented non-R4RS operations which would encourage
non-portable programming style and less easy-to-read code.

* Changes to the stand-alone interpreter

** New procedures have been added to implement a "batch mode":

*** Function: batch-mode?

    Returns a boolean indicating whether the interpreter is in batch
    mode.

*** Function: set-batch-mode?! ARG

    If ARG is true, switches the interpreter to batch mode.  The `#f'
    case has not been implemented.

** Guile now provides full command-line editing, when run interactively.
To use this feature, you must have the readline library installed.
The Guile build process will notice it, and automatically include
support for it.

The readline library is available via anonymous FTP from any GNU
mirror site; the canonical location is "ftp://prep.ai.mit.edu/pub/gnu".

** the-last-stack is now a fluid.

* Changes to the procedure for linking libguile with your programs

** You can now use the `guile-config' utility to build programs that use Guile.

Guile now includes a command-line utility called `guile-config', which
can provide information about how to compile and link programs that
use Guile.

*** `guile-config compile' prints any C compiler flags needed to use Guile.
You should include this command's output on the command line you use
to compile C or C++ code that #includes the Guile header files.  It's
usually just a `-I' flag to help the compiler find the Guile headers.


*** `guile-config link' prints any linker flags necessary to link with Guile.

This command writes to its standard output a list of flags which you
must pass to the linker to link your code against the Guile library.
The flags include '-lguile' itself, any other libraries the Guile
library depends upon, and any `-L' flags needed to help the linker
find those libraries.

For example, here is a Makefile rule that builds a program named 'foo'
from the object files ${FOO_OBJECTS}, and links them against Guile:

  foo: ${FOO_OBJECTS}
	  ${CC} ${CFLAGS} ${FOO_OBJECTS} `guile-config link` -o foo

Previous Guile releases recommended that you use autoconf to detect
which of a predefined set of libraries were present on your system.
It is more robust to use `guile-config', since it records exactly which
libraries the installed Guile library requires.

This was originally called `build-guile', but was renamed to
`guile-config' before Guile 1.3 was released, to be consistent with
the analogous script for the GTK+ GUI toolkit, which is called
`gtk-config'.


** Use the GUILE_FLAGS macro in your configure.in file to find Guile.

If you are using the GNU autoconf package to configure your program,
you can use the GUILE_FLAGS autoconf macro to call `guile-config'
(described above) and gather the necessary values for use in your
Makefiles.

The GUILE_FLAGS macro expands to configure script code which runs the
`guile-config' script, to find out where Guile's header files and
libraries are installed.  It sets two variables, marked for
substitution, as by AC_SUBST.

  GUILE_CFLAGS --- flags to pass to a C or C++ compiler to build
    code that uses Guile header files.  This is almost always just a
    -I flag.

  GUILE_LDFLAGS --- flags to pass to the linker to link a
    program against Guile.  This includes `-lguile' for the Guile
    library itself, any libraries that Guile itself requires (like
    -lqthreads), and so on.  It may also include a -L flag to tell the
    compiler where to find the libraries.

GUILE_FLAGS is defined in the file guile.m4, in the top-level
directory of the Guile distribution.  You can copy it into your
package's aclocal.m4 file, and then use it in your configure.in file.

If you are using the `aclocal' program, distributed with GNU automake,
to maintain your aclocal.m4 file, the Guile installation process
installs guile.m4 where aclocal will find it.  All you need to do is
use GUILE_FLAGS in your configure.in file, and then run `aclocal';
this will copy the definition of GUILE_FLAGS into your aclocal.m4
file.


* Changes to Scheme functions and syntax

** Multi-byte strings have been removed, as have multi-byte and wide
ports.  We felt that these were the wrong approach to
internationalization support.

** New function: readline [PROMPT]
Read a line from the terminal, and allow the user to edit it,
prompting with PROMPT.  READLINE provides a large set of Emacs-like
editing commands, lets the user recall previously typed lines, and
works on almost every kind of terminal, including dumb terminals.

READLINE assumes that the cursor is at the beginning of the line when
it is invoked.  Thus, you can't print a prompt yourself, and then call
READLINE; you need to package up your prompt as a string, pass it to
the function, and let READLINE print the prompt itself.  This is
because READLINE needs to know the prompt's screen width.

For Guile to provide this function, you must have the readline
library, version 2.1 or later, installed on your system.  Readline is
available via anonymous FTP from prep.ai.mit.edu in pub/gnu, or from
any GNU mirror site.

See also ADD-HISTORY function.

** New function: add-history STRING
Add STRING as the most recent line in the history used by the READLINE
command.  READLINE does not add lines to the history itself; you must
call ADD-HISTORY to make previous input available to the user.

** The behavior of the read-line function has changed.

This function now uses standard C library functions to read the line,
for speed.  This means that it doesn not respect the value of
scm-line-incrementors; it assumes that lines are delimited with
#\newline.

(Note that this is read-line, the function that reads a line of text
from a port, not readline, the function that reads a line from a
terminal, providing full editing capabilities.)

** New module (ice-9 getopt-gnu-style): Parse command-line arguments.

This module provides some simple argument parsing.  It exports one
function:

Function: getopt-gnu-style ARG-LS
    Parse a list of program arguments into an alist of option
    descriptions.

    Each item in the list of program arguments is examined to see if
    it meets the syntax of a GNU long-named option.  An argument like
    `--MUMBLE' produces an element of the form (MUMBLE . #t) in the
    returned alist, where MUMBLE is a keyword object with the same
    name as the argument.  An argument like `--MUMBLE=FROB' produces
    an element of the form (MUMBLE . FROB), where FROB is a string.

    As a special case, the returned alist also contains a pair whose
    car is the symbol `rest'.  The cdr of this pair is a list
    containing all the items in the argument list that are not options
    of the form mentioned above.

    The argument `--' is treated specially: all items in the argument
    list appearing after such an argument are not examined, and are
    returned in the special `rest' list.

    This function does not parse normal single-character switches.
    You will need to parse them out of the `rest' list yourself.

** The read syntax for byte vectors and short vectors has changed.

Instead of #bytes(...), write #y(...).

Instead of #short(...), write #h(...).

This may seem nutty, but, like the other uniform vectors, byte vectors
and short vectors want to have the same print and read syntax (and,
more basic, want to have read syntax!).  Changing the read syntax to
use multiple characters after the hash sign breaks with the
conventions used in R5RS and the conventions used for the other
uniform vectors.  It also introduces complexity in the current reader,
both on the C and Scheme levels.  (The Right solution is probably to
change the syntax and prototypes for uniform vectors entirely.)


** The new module (ice-9 session) provides useful interactive functions.

*** New procedure: (apropos REGEXP OPTION ...)

Display a list of top-level variables whose names match REGEXP, and
the modules they are imported from.  Each OPTION should be one of the
following symbols:

  value  --- Show the value of each matching variable.
  shadow --- Show bindings shadowed by subsequently imported modules.
  full   --- Same as both `shadow' and `value'.

For example:

    guile> (apropos "trace" 'full)
    debug: trace    #<procedure trace args>
    debug: untrace  #<procedure untrace args>
    the-scm-module: display-backtrace       #<compiled-closure #<primitive-procedure gsubr-apply>>
    the-scm-module: before-backtrace-hook   ()
    the-scm-module: backtrace       #<primitive-procedure backtrace>
    the-scm-module: after-backtrace-hook    ()
    the-scm-module: has-shown-backtrace-hint?       #f
    guile> 

** There are new functions and syntax for working with macros.

Guile implements macros as a special object type.  Any variable whose
top-level binding is a macro object acts as a macro.  The macro object
specifies how the expression should be transformed before evaluation.

*** Macro objects now print in a reasonable way, resembling procedures.

*** New function: (macro? OBJ)
True iff OBJ is a macro object.

*** New function: (primitive-macro? OBJ)
Like (macro? OBJ), but true only if OBJ is one of the Guile primitive
macro transformers, implemented in eval.c rather than Scheme code.

Why do we have this function?
- For symmetry with procedure? and primitive-procedure?,
- to allow custom print procedures to tell whether a macro is
  primitive, and display it differently, and
- to allow compilers and user-written evaluators to distinguish
  builtin special forms from user-defined ones, which could be
  compiled.

*** New function: (macro-type OBJ)
Return a value indicating what kind of macro OBJ is.  Possible return
values are:

    The symbol `syntax' --- a macro created by procedure->syntax.
    The symbol `macro' --- a macro created by procedure->macro.
    The symbol `macro!' --- a macro created by procedure->memoizing-macro.
    The boolean #f --- if OBJ is not a macro object.  

*** New function: (macro-name MACRO)
Return the name of the macro object MACRO's procedure, as returned by
procedure-name.

*** New function: (macro-transformer MACRO)
Return the transformer procedure for MACRO.

*** New syntax: (use-syntax MODULE ... TRANSFORMER)

Specify a new macro expander to use in the current module.  Each
MODULE is a module name, with the same meaning as in the `use-modules'
form; each named module's exported bindings are added to the current
top-level environment.  TRANSFORMER is an expression evaluated in the
resulting environment which must yield a procedure to use as the
module's eval transformer: every expression evaluated in this module
is passed to this function, and the result passed to the Guile
interpreter. 

*** macro-eval! is removed.  Use local-eval instead.

** Some magic has been added to the printer to better handle user
written printing routines (like record printers, closure printers).

The problem is that these user written routines must have access to
the current `print-state' to be able to handle fancy things like
detection of circular references.  These print-states have to be
passed to the builtin printing routines (display, write, etc) to
properly continue the print chain.

We didn't want to change all existing print code so that it
explicitly passes thru a print state in addition to a port.  Instead,
we extented the possible values that the builtin printing routines
accept as a `port'.  In addition to a normal port, they now also take
a pair of a normal port and a print-state.  Printing will go to the
port and the print-state will be used to control the detection of
circular references, etc.  If the builtin function does not care for a
print-state, it is simply ignored.

User written callbacks are now called with such a pair as their
`port', but because every function now accepts this pair as a PORT
argument, you don't have to worry about that.  In fact, it is probably
safest to not check for these pairs.

However, it is sometimes necessary to continue a print chain on a
different port, for example to get a intermediate string
representation of the printed value, mangle that string somehow, and
then to finally print the mangled string.  Use the new function

    inherit-print-state OLD-PORT NEW-PORT

for this.  It constructs a new `port' that prints to NEW-PORT but
inherits the print-state of OLD-PORT.

** struct-vtable-offset renamed to vtable-offset-user

** New constants: vtable-index-layout, vtable-index-vtable, vtable-index-printer

** There is now a fourth (optional) argument to make-vtable-vtable and
   make-struct when constructing new types (vtables).  This argument
   initializes field vtable-index-printer of the vtable.

** The detection of circular references has been extended to structs.
That is, a structure that -- in the process of being printed -- prints
itself does not lead to infinite recursion.

** There is now some basic support for fluids.  Please read
"libguile/fluid.h" to find out more. It is accessible from Scheme with
the following functions and macros:

Function: make-fluid

    Create a new fluid object.  Fluids are not special variables or
    some other extension to the semantics of Scheme, but rather
    ordinary Scheme objects.  You can store them into variables (that
    are still lexically scoped, of course) or into any other place you
    like.  Every fluid has a initial value of `#f'.

Function: fluid? OBJ

    Test whether OBJ is a fluid.

Function: fluid-ref FLUID
Function: fluid-set! FLUID VAL

    Access/modify the fluid FLUID.  Modifications are only visible
    within the current dynamic root (that includes threads).

Function: with-fluids* FLUIDS VALUES THUNK

    FLUIDS is a list of fluids and VALUES a corresponding list of
    values for these fluids.  Before THUNK gets called the values are
    installed in the fluids and the old values of the fluids are 
    saved in the VALUES list.  When the flow of control leaves THUNK
    or reenters it, the values get swapped again.  You might think of
    this as a `safe-fluid-excursion'.  Note that the VALUES list is
    modified by `with-fluids*'.

Macro: with-fluids ((FLUID VALUE) ...) FORM ...

    The same as `with-fluids*' but with a different syntax.  It looks
    just like `let', but both FLUID and VALUE are evaluated.  Remember,
    fluids are not special variables but ordinary objects.  FLUID
    should evaluate to a fluid.

** Changes to system call interfaces:

*** close-port, close-input-port and close-output-port now return a
boolean instead of an `unspecified' object.  #t means that the port
was successfully closed, while #f means it was already closed.  It is
also now possible for these procedures to raise an exception if an
error occurs (some errors from write can be delayed until close.)

*** the first argument to chmod, fcntl, ftell and fseek can now be a
file descriptor.

*** the third argument to fcntl is now optional.

*** the first argument to chown can now be a file descriptor or a port.

*** the argument to stat can now be a port.

*** The following new procedures have been added (most use scsh
interfaces):

*** procedure: close PORT/FD
     Similar to close-port (*note close-port: Closing Ports.), but also
     works on file descriptors.  A side effect of closing a file
     descriptor is that any ports using that file descriptor are moved
     to a different file descriptor and have their revealed counts set
     to zero.

*** procedure: port->fdes PORT
     Returns the integer file descriptor underlying PORT.  As a side
     effect the revealed count of PORT is incremented.

*** procedure: fdes->ports FDES
     Returns a list of existing ports which have FDES as an underlying
     file descriptor, without changing their revealed counts.

*** procedure: fdes->inport FDES
     Returns an existing input port which has FDES as its underlying
     file descriptor, if one exists, and increments its revealed count.
     Otherwise, returns a new input port with a revealed count of 1.

*** procedure: fdes->outport FDES
     Returns an existing output port which has FDES as its underlying
     file descriptor, if one exists, and increments its revealed count.
     Otherwise, returns a new output port with a revealed count of 1.

   The next group of procedures perform a `dup2' system call, if NEWFD
(an integer) is supplied, otherwise a `dup'.  The file descriptor to be
duplicated can be supplied as an integer or contained in a port.  The
type of value returned varies depending on which procedure is used.

   All procedures also have the side effect when performing `dup2' that
any ports using NEWFD are moved to a different file descriptor and have
their revealed counts set to zero.

*** procedure: dup->fdes PORT/FD [NEWFD]
     Returns an integer file descriptor.

*** procedure: dup->inport PORT/FD [NEWFD]
     Returns a new input port using the new file descriptor.

*** procedure: dup->outport PORT/FD [NEWFD]
     Returns a new output port using the new file descriptor.

*** procedure: dup PORT/FD [NEWFD]
     Returns a new port if PORT/FD is a port, with the same mode as the
     supplied port, otherwise returns an integer file descriptor.

*** procedure: dup->port PORT/FD MODE [NEWFD]
     Returns a new port using the new file descriptor.  MODE supplies a
     mode string for the port (*note open-file: File Ports.).

*** procedure: setenv NAME VALUE
     Modifies the environment of the current process, which is also the
     default environment inherited by child processes.

     If VALUE is `#f', then NAME is removed from the environment.
     Otherwise, the string NAME=VALUE is added to the environment,
     replacing any existing string with name matching NAME.

     The return value is unspecified.

*** procedure: truncate-file OBJ SIZE
     Truncates the file referred to by OBJ to at most SIZE bytes.  OBJ
     can be a string containing a file name or an integer file
     descriptor or port open for output on the file.  The underlying
     system calls are `truncate' and `ftruncate'.

     The return value is unspecified.

*** procedure: setvbuf PORT MODE [SIZE]
     Set the buffering mode for PORT.  MODE can be:
    `_IONBF'
          non-buffered

    `_IOLBF'
          line buffered

    `_IOFBF'
          block buffered, using a newly allocated buffer of SIZE bytes.
          However if SIZE is zero or unspecified, the port will be made
          non-buffered.

     This procedure should not be used after I/O has been performed with
     the port.

     Ports are usually block buffered by default, with a default buffer
     size.  Procedures e.g., *Note open-file: File Ports, which accept a
     mode string allow `0' to be added to request an unbuffered port.

*** procedure: fsync PORT/FD
     Copies any unwritten data for the specified output file descriptor
     to disk.  If PORT/FD is a port, its buffer is flushed before the
     underlying file descriptor is fsync'd.  The return value is
     unspecified.

*** procedure: open-fdes PATH FLAGS [MODES]
     Similar to `open' but returns a file descriptor instead of a port.

*** procedure: execle PATH ENV [ARG] ...
     Similar to `execl', but the environment of the new process is
     specified by ENV, which must be a list of strings as returned by
     the `environ' procedure.

     This procedure is currently implemented using the `execve' system
     call, but we call it `execle' because of its Scheme calling
     interface.

*** procedure: strerror ERRNO
     Returns the Unix error message corresponding to ERRNO, an integer.

*** procedure: primitive-exit [STATUS]
     Terminate the current process without unwinding the Scheme stack.
     This is would typically be useful after a fork.  The exit status
     is STATUS if supplied, otherwise zero.

*** procedure: times
     Returns an object with information about real and processor time.
     The following procedures accept such an object as an argument and
     return a selected component:

    `tms:clock'
          The current real time, expressed as time units relative to an
          arbitrary base.

    `tms:utime'
          The CPU time units used by the calling process.

    `tms:stime'
          The CPU time units used by the system on behalf of the
          calling process.

    `tms:cutime'
          The CPU time units used by terminated child processes of the
          calling process, whose status has been collected (e.g., using
          `waitpid').

    `tms:cstime'
          Similarly, the CPU times units used by the system on behalf of
          terminated child processes.

** Removed: list-length
** Removed: list-append, list-append!
** Removed: list-reverse, list-reverse!

** array-map renamed to array-map!

** serial-array-map renamed to serial-array-map!

** catch doesn't take #f as first argument any longer

Previously, it was possible to pass #f instead of a key to `catch'.
That would cause `catch' to pass a jump buffer object to the procedure
passed as second argument.  The procedure could then use this jump
buffer objekt as an argument to throw.

This mechanism has been removed since its utility doesn't motivate the
extra complexity it introduces.

** The `#/' notation for lists now provokes a warning message from Guile.
This syntax will be removed from Guile in the near future.

To disable the warning message, set the GUILE_HUSH environment
variable to any non-empty value.

** The newline character now prints as `#\newline', following the
normal Scheme notation, not `#\nl'.

* Changes to the gh_ interface

** The gh_enter function now takes care of loading the Guile startup files.
gh_enter works by calling scm_boot_guile; see the remarks below.

** Function: void gh_write (SCM x)

Write the printed representation of the scheme object x to the current
output port.  Corresponds to the scheme level `write'.

** gh_list_length renamed to gh_length.

** vector handling routines

Several major changes.  In particular, gh_vector() now resembles
(vector ...) (with a caveat -- see manual), and gh_make_vector() now
exists and behaves like (make-vector ...).  gh_vset() and gh_vref()
have been renamed gh_vector_set_x() and gh_vector_ref().  Some missing
vector-related gh_ functions have been implemented.

** pair and list routines

Implemented several of the R4RS pair and list functions that were
missing.

** gh_scm2doubles, gh_doubles2scm, gh_doubles2dvect

New function.  Converts double arrays back and forth between Scheme
and C.

* Changes to the scm_ interface

** The function scm_boot_guile now takes care of loading the startup files.

Guile's primary initialization function, scm_boot_guile, now takes
care of loading `boot-9.scm', in the `ice-9' module, to initialize
Guile, define the module system, and put together some standard
bindings.  It also loads `init.scm', which is intended to hold
site-specific initialization code.

Since Guile cannot operate properly until boot-9.scm is loaded, there
is no reason to separate loading boot-9.scm from Guile's other
initialization processes.

This job used to be done by scm_compile_shell_switches, which didn't
make much sense; in particular, it meant that people using Guile for
non-shell-like applications had to jump through hoops to get Guile
initialized properly.

** The function scm_compile_shell_switches no longer loads the startup files.
Now, Guile always loads the startup files, whenever it is initialized;
see the notes above for scm_boot_guile and scm_load_startup_files.

** Function: scm_load_startup_files
This new function takes care of loading Guile's initialization file
(`boot-9.scm'), and the site initialization file, `init.scm'.  Since
this is always called by the Guile initialization process, it's
probably not too useful to call this yourself, but it's there anyway.

** The semantics of smob marking have changed slightly.

The smob marking function (the `mark' member of the scm_smobfuns
structure) is no longer responsible for setting the mark bit on the
smob.  The generic smob handling code in the garbage collector will
set this bit.  The mark function need only ensure that any other
objects the smob refers to get marked.

Note that this change means that the smob's GC8MARK bit is typically
already set upon entry to the mark function.  Thus, marking functions
which look like this:

	{
	  if (SCM_GC8MARKP (ptr))
	    return SCM_BOOL_F;
          SCM_SETGC8MARK (ptr);
	  ... mark objects to which the smob refers ...
	}

are now incorrect, since they will return early, and fail to mark any
other objects the smob refers to.  Some code in the Guile library used
to work this way.

** The semantics of the I/O port functions in scm_ptobfuns have changed.

If you have implemented your own I/O port type, by writing the
functions required by the scm_ptobfuns and then calling scm_newptob,
you will need to change your functions slightly.

The functions in a scm_ptobfuns structure now expect the port itself
as their argument; they used to expect the `stream' member of the
port's scm_port_table structure.  This allows functions in an
scm_ptobfuns structure to easily access the port's cell (and any flags
it its CAR), and the port's scm_port_table structure.

Guile now passes the I/O port itself as the `port' argument in the
following scm_ptobfuns functions:

  int (*free) (SCM port);
  int (*fputc) (int, SCM port);
  int (*fputs) (char *, SCM port);
  scm_sizet (*fwrite) SCM_P ((char *ptr,
			      scm_sizet size,
			      scm_sizet nitems,
			      SCM port));
  int (*fflush) (SCM port);
  int (*fgetc) (SCM port);
  int (*fclose) (SCM port);

The interfaces to the `mark', `print', `equalp', and `fgets' methods
are unchanged.

If you have existing code which defines its own port types, it is easy
to convert your code to the new interface; simply apply SCM_STREAM to
the port argument to yield the value you code used to expect.

Note that since both the port and the stream have the same type in the
C code --- they are both SCM values --- the C compiler will not remind
you if you forget to update your scm_ptobfuns functions.


** Function: int scm_internal_select (int fds,
				      SELECT_TYPE *rfds,
				      SELECT_TYPE *wfds,
				      SELECT_TYPE *efds,
				      struct timeval *timeout);

This is a replacement for the `select' function provided by the OS.
It enables I/O blocking and sleeping to happen for one cooperative
thread without blocking other threads.  It also avoids busy-loops in
these situations.  It is intended that all I/O blocking and sleeping
will finally go through this function.  Currently, this function is
only available on systems providing `gettimeofday' and `select'.

** Function: SCM scm_internal_stack_catch (SCM tag,
					   scm_catch_body_t body,
					   void *body_data,
					   scm_catch_handler_t handler,
					   void *handler_data)

A new sibling to the other two C level `catch' functions
scm_internal_catch and scm_internal_lazy_catch.  Use it if you want
the stack to be saved automatically into the variable `the-last-stack'
(scm_the_last_stack_var) on error.  This is necessary if you want to
use advanced error reporting, such as calling scm_display_error and
scm_display_backtrace.  (They both take a stack object as argument.)

** Function: SCM scm_spawn_thread (scm_catch_body_t body,
				   void *body_data,
				   scm_catch_handler_t handler,
				   void *handler_data)

Spawns a new thread.  It does a job similar to
scm_call_with_new_thread but takes arguments more suitable when
spawning threads from application C code.

** The hook scm_error_callback has been removed.  It was originally
intended as a way for the user to install his own error handler.  But
that method works badly since it intervenes between throw and catch,
thereby changing the semantics of expressions like (catch #t ...).
The correct way to do it is to use one of the C level catch functions
in throw.c: scm_internal_catch/lazy_catch/stack_catch.

** Removed functions:

scm_obj_length, scm_list_length, scm_list_append, scm_list_append_x,
scm_list_reverse, scm_list_reverse_x

** New macros: SCM_LISTn where n is one of the integers 0-9.

These can be used for pretty list creation from C.  The idea is taken
from Erick Gallesio's STk.

** scm_array_map renamed to scm_array_map_x

** mbstrings are now removed

This means that the type codes scm_tc7_mb_string and
scm_tc7_mb_substring has been removed.

** scm_gen_putc, scm_gen_puts, scm_gen_write, and scm_gen_getc have changed.

Since we no longer support multi-byte strings, these I/O functions
have been simplified, and renamed.  Here are their old names, and
their new names and arguments:

scm_gen_putc   ->   void scm_putc (int c, SCM port);
scm_gen_puts   ->   void scm_puts (char *s, SCM port);
scm_gen_write  ->   void scm_lfwrite (char *ptr, scm_sizet size, SCM port);
scm_gen_getc   ->   void scm_getc (SCM port);


** The macros SCM_TYP7D and SCM_TYP7SD has been removed.

** The macro SCM_TYP7S has taken the role of the old SCM_TYP7D

SCM_TYP7S now masks away the bit which distinguishes substrings from
strings.

** scm_catch_body_t: Backward incompatible change!

Body functions to scm_internal_catch and friends do not any longer
take a second argument.  This is because it is no longer possible to
pass a #f arg to catch.

** Calls to scm_protect_object and scm_unprotect now nest properly.

The function scm_protect_object protects its argument from being freed
by the garbage collector.  scm_unprotect_object removes that
protection.

These functions now nest properly.  That is, for every object O, there
is a counter which scm_protect_object(O) increments and
scm_unprotect_object(O) decrements, if the counter is greater than
zero.  Every object's counter is zero when it is first created.  If an
object's counter is greater than zero, the garbage collector will not
reclaim its storage.

This allows you to use scm_protect_object in your code without
worrying that some other function you call will call
scm_unprotect_object, and allow it to be freed.  Assuming that the
functions you call are well-behaved, and unprotect only those objects
they protect, you can follow the same rule and have confidence that
objects will be freed only at appropriate times.


Changes in Guile 1.2 (released Tuesday, June 24 1997):

* Changes to the distribution

** Nightly snapshots are now available from ftp.red-bean.com.
The old server, ftp.cyclic.com, has been relinquished to its rightful
owner.

Nightly snapshots of the Guile development sources are now available via
anonymous FTP from ftp.red-bean.com, as /pub/guile/guile-snap.tar.gz.

Via the web, that's:  ftp://ftp.red-bean.com/pub/guile/guile-snap.tar.gz
For getit, that's:    ftp.red-bean.com:/pub/guile/guile-snap.tar.gz

** To run Guile without installing it, the procedure has changed a bit.

If you used a separate build directory to compile Guile, you'll need
to include the build directory in SCHEME_LOAD_PATH, as well as the
source directory.  See the `INSTALL' file for examples.

* Changes to the procedure for linking libguile with your programs

** The standard Guile load path for Scheme code now includes
$(datadir)/guile (usually /usr/local/share/guile).  This means that
you can install your own Scheme files there, and Guile will find them.
(Previous versions of Guile only checked a directory whose name
contained the Guile version number, so you had to re-install or move
your Scheme sources each time you installed a fresh version of Guile.)

The load path also includes $(datadir)/guile/site; we recommend
putting individual Scheme files there.  If you want to install a
package with multiple source files, create a directory for them under
$(datadir)/guile.

** Guile 1.2 will now use the Rx regular expression library, if it is
installed on your system.  When you are linking libguile into your own
programs, this means you will have to link against -lguile, -lqt (if
you configured Guile with thread support), and -lrx.

If you are using autoconf to generate configuration scripts for your
application, the following lines should suffice to add the appropriate
libraries to your link command:

### Find Rx, quickthreads and libguile.
AC_CHECK_LIB(rx, main)
AC_CHECK_LIB(qt, main)
AC_CHECK_LIB(guile, scm_shell)

The Guile 1.2 distribution does not contain sources for the Rx
library, as Guile 1.0 did.  If you want to use Rx, you'll need to
retrieve it from a GNU FTP site and install it separately.

* Changes to Scheme functions and syntax

** The dynamic linking features of Guile are now enabled by default.
You can disable them by giving the `--disable-dynamic-linking' option
to configure.

  (dynamic-link FILENAME)

    Find the object file denoted by FILENAME (a string) and link it
    into the running Guile application.  When everything works out,
    return a Scheme object suitable for representing the linked object
    file.  Otherwise an error is thrown.  How object files are
    searched is system dependent.

  (dynamic-object? VAL)

    Determine whether VAL represents a dynamically linked object file.

  (dynamic-unlink DYNOBJ)

    Unlink the indicated object file from the application.  DYNOBJ
    should be one of the values returned by `dynamic-link'.

  (dynamic-func FUNCTION DYNOBJ)

    Search the C function indicated by FUNCTION (a string or symbol)
    in DYNOBJ and return some Scheme object that can later be used
    with `dynamic-call' to actually call this function.  Right now,
    these Scheme objects are formed by casting the address of the
    function to `long' and converting this number to its Scheme
    representation.

  (dynamic-call FUNCTION DYNOBJ)

    Call the C function indicated by FUNCTION and DYNOBJ.  The
    function is passed no arguments and its return value is ignored.
    When FUNCTION is something returned by `dynamic-func', call that
    function and ignore DYNOBJ.  When FUNCTION is a string (or symbol,
    etc.), look it up in DYNOBJ; this is equivalent to

	(dynamic-call (dynamic-func FUNCTION DYNOBJ) #f)

    Interrupts are deferred while the C function is executing (with
    SCM_DEFER_INTS/SCM_ALLOW_INTS).

  (dynamic-args-call FUNCTION DYNOBJ ARGS)

    Call the C function indicated by FUNCTION and DYNOBJ, but pass it
    some arguments and return its return value.  The C function is
    expected to take two arguments and return an `int', just like
    `main':

	int c_func (int argc, char **argv);

    ARGS must be a list of strings and is converted into an array of
    `char *'.  The array is passed in ARGV and its size in ARGC.  The
    return value is converted to a Scheme number and returned from the
    call to `dynamic-args-call'.

When dynamic linking is disabled or not supported on your system,
the above functions throw errors, but they are still available.

Here is a small example that works on GNU/Linux:

  (define libc-obj (dynamic-link "libc.so"))
  (dynamic-args-call 'rand libc-obj '())

See the file `libguile/DYNAMIC-LINKING' for additional comments.

** The #/ syntax for module names is depreciated, and will be removed
in a future version of Guile.  Instead of 

	#/foo/bar/baz

instead write

	(foo bar baz)

The latter syntax is more consistent with existing Lisp practice.

** Guile now does fancier printing of structures.  Structures are the
underlying implementation for records, which in turn are used to
implement modules, so all of these object now print differently and in
a more informative way.

The Scheme printer will examine the builtin variable *struct-printer*
whenever it needs to print a structure object.  When this variable is
not `#f' it is deemed to be a procedure and will be applied to the
structure object and the output port.  When *struct-printer* is `#f'
or the procedure return `#f' the structure object will be printed in
the boring #<struct 80458270> form.

This hook is used by some routines in ice-9/boot-9.scm to implement
type specific printing routines.  Please read the comments there about
"printing structs".

One of the more specific uses of structs are records.  The printing
procedure that could be passed to MAKE-RECORD-TYPE is now actually
called.  It should behave like a *struct-printer* procedure (described
above).

** Guile now supports a new R4RS-compliant syntax for keywords.  A
token of the form #:NAME, where NAME has the same syntax as a Scheme
symbol, is the external representation of the keyword named NAME.
Keyword objects print using this syntax as well, so values containing
keyword objects can be read back into Guile.  When used in an
expression, keywords are self-quoting objects.

Guile suports this read syntax, and uses this print syntax, regardless
of the current setting of the `keyword' read option.  The `keyword'
read option only controls whether Guile recognizes the `:NAME' syntax,
which is incompatible with R4RS.  (R4RS says such token represent
symbols.)

** Guile has regular expression support again.  Guile 1.0 included
functions for matching regular expressions, based on the Rx library.
In Guile 1.1, the Guile/Rx interface was removed to simplify the
distribution, and thus Guile had no regular expression support.  Guile
1.2 again supports the most commonly used functions, and supports all
of SCSH's regular expression functions.

If your system does not include a POSIX regular expression library,
and you have not linked Guile with a third-party regexp library such as
Rx, these functions will not be available.  You can tell whether your
Guile installation includes regular expression support by checking
whether the `*features*' list includes the `regex' symbol.

*** regexp functions

By default, Guile supports POSIX extended regular expressions.  That
means that the characters `(', `)', `+' and `?' are special, and must
be escaped if you wish to match the literal characters.

This regular expression interface was modeled after that implemented
by SCSH, the Scheme Shell.  It is intended to be upwardly compatible
with SCSH regular expressions.

**** Function: string-match PATTERN STR [START]
     Compile the string PATTERN into a regular expression and compare
     it with STR.  The optional numeric argument START specifies the
     position of STR at which to begin matching.

     `string-match' returns a "match structure" which describes what,
     if anything, was matched by the regular expression.  *Note Match
     Structures::.  If STR does not match PATTERN at all,
     `string-match' returns `#f'.

   Each time `string-match' is called, it must compile its PATTERN
argument into a regular expression structure.  This operation is
expensive, which makes `string-match' inefficient if the same regular
expression is used several times (for example, in a loop).  For better
performance, you can compile a regular expression in advance and then
match strings against the compiled regexp.

**** Function: make-regexp STR [FLAGS]
     Compile the regular expression described by STR, and return the
     compiled regexp structure.  If STR does not describe a legal
     regular expression, `make-regexp' throws a
     `regular-expression-syntax' error.

     FLAGS may be the bitwise-or of one or more of the following:

**** Constant: regexp/extended
     Use POSIX Extended Regular Expression syntax when interpreting
     STR.  If not set, POSIX Basic Regular Expression syntax is used.
     If the FLAGS argument is omitted, we assume regexp/extended.

**** Constant: regexp/icase
     Do not differentiate case.  Subsequent searches using the
     returned regular expression will be case insensitive.

**** Constant: regexp/newline
     Match-any-character operators don't match a newline.

     A non-matching list ([^...]) not containing a newline matches a
     newline.

     Match-beginning-of-line operator (^) matches the empty string
     immediately after a newline, regardless of whether the FLAGS
     passed to regexp-exec contain regexp/notbol.

     Match-end-of-line operator ($) matches the empty string
     immediately before a newline, regardless of whether the FLAGS
     passed to regexp-exec contain regexp/noteol.

**** Function: regexp-exec REGEXP STR [START [FLAGS]]
     Match the compiled regular expression REGEXP against `str'.  If
     the optional integer START argument is provided, begin matching
     from that position in the string.  Return a match structure
     describing the results of the match, or `#f' if no match could be
     found.

     FLAGS may be the bitwise-or of one or more of the following:

**** Constant: regexp/notbol
     The match-beginning-of-line operator always fails to match (but
     see the compilation flag regexp/newline above) This flag may be
     used when different portions of a string are passed to
     regexp-exec and the beginning of the string should not be
     interpreted as the beginning of the line.

**** Constant: regexp/noteol
     The match-end-of-line operator always fails to match (but see the
     compilation flag regexp/newline above)

**** Function: regexp? OBJ
     Return `#t' if OBJ is a compiled regular expression, or `#f'
     otherwise.

   Regular expressions are commonly used to find patterns in one string
and replace them with the contents of another string.

**** Function: regexp-substitute PORT MATCH [ITEM...]
     Write to the output port PORT selected contents of the match
     structure MATCH.  Each ITEM specifies what should be written, and
     may be one of the following arguments:

        * A string.  String arguments are written out verbatim.

        * An integer.  The submatch with that number is written.

        * The symbol `pre'.  The portion of the matched string preceding
          the regexp match is written.

        * The symbol `post'.  The portion of the matched string
          following the regexp match is written.

     PORT may be `#f', in which case nothing is written; instead,
     `regexp-substitute' constructs a string from the specified ITEMs
     and returns that.

**** Function: regexp-substitute/global PORT REGEXP TARGET [ITEM...]
     Similar to `regexp-substitute', but can be used to perform global
     substitutions on STR.  Instead of taking a match structure as an
     argument, `regexp-substitute/global' takes two string arguments: a
     REGEXP string describing a regular expression, and a TARGET string
     which should be matched against this regular expression.

     Each ITEM behaves as in REGEXP-SUBSTITUTE, with the following
     exceptions:

        * A function may be supplied.  When this function is called, it
          will be passed one argument: a match structure for a given
          regular expression match.  It should return a string to be
          written out to PORT.

        * The `post' symbol causes `regexp-substitute/global' to recurse
          on the unmatched portion of STR.  This *must* be supplied in
          order to perform global search-and-replace on STR; if it is
          not present among the ITEMs, then `regexp-substitute/global'
          will return after processing a single match.

*** Match Structures

   A "match structure" is the object returned by `string-match' and
`regexp-exec'.  It describes which portion of a string, if any, matched
the given regular expression.  Match structures include: a reference to
the string that was checked for matches; the starting and ending
positions of the regexp match; and, if the regexp included any
parenthesized subexpressions, the starting and ending positions of each
submatch.

   In each of the regexp match functions described below, the `match'
argument must be a match structure returned by a previous call to
`string-match' or `regexp-exec'.  Most of these functions return some
information about the original target string that was matched against a
regular expression; we will call that string TARGET for easy reference.

**** Function: regexp-match? OBJ
     Return `#t' if OBJ is a match structure returned by a previous
     call to `regexp-exec', or `#f' otherwise.

**** Function: match:substring MATCH [N]
     Return the portion of TARGET matched by subexpression number N.
     Submatch 0 (the default) represents the entire regexp match.  If
     the regular expression as a whole matched, but the subexpression
     number N did not match, return `#f'.

**** Function: match:start MATCH [N]
     Return the starting position of submatch number N.

**** Function: match:end MATCH [N]
     Return the ending position of submatch number N.

**** Function: match:prefix MATCH
     Return the unmatched portion of TARGET preceding the regexp match.

**** Function: match:suffix MATCH
     Return the unmatched portion of TARGET following the regexp match.

**** Function: match:count MATCH
     Return the number of parenthesized subexpressions from MATCH.
     Note that the entire regular expression match itself counts as a
     subexpression, and failed submatches are included in the count.

**** Function: match:string MATCH
     Return the original TARGET string.

*** Backslash Escapes

   Sometimes you will want a regexp to match characters like `*' or `$'
exactly.  For example, to check whether a particular string represents
a menu entry from an Info node, it would be useful to match it against
a regexp like `^* [^:]*::'.  However, this won't work; because the
asterisk is a metacharacter, it won't match the `*' at the beginning of
the string.  In this case, we want to make the first asterisk un-magic.

   You can do this by preceding the metacharacter with a backslash
character `\'.  (This is also called "quoting" the metacharacter, and
is known as a "backslash escape".)  When Guile sees a backslash in a
regular expression, it considers the following glyph to be an ordinary
character, no matter what special meaning it would ordinarily have.
Therefore, we can make the above example work by changing the regexp to
`^\* [^:]*::'.  The `\*' sequence tells the regular expression engine
to match only a single asterisk in the target string.

   Since the backslash is itself a metacharacter, you may force a
regexp to match a backslash in the target string by preceding the
backslash with itself.  For example, to find variable references in a
TeX program, you might want to find occurrences of the string `\let\'
followed by any number of alphabetic characters.  The regular expression
`\\let\\[A-Za-z]*' would do this: the double backslashes in the regexp
each match a single backslash in the target string.

**** Function: regexp-quote STR
     Quote each special character found in STR with a backslash, and
     return the resulting string.

   *Very important:* Using backslash escapes in Guile source code (as
in Emacs Lisp or C) can be tricky, because the backslash character has
special meaning for the Guile reader.  For example, if Guile encounters
the character sequence `\n' in the middle of a string while processing
Scheme code, it replaces those characters with a newline character.
Similarly, the character sequence `\t' is replaced by a horizontal tab.
Several of these "escape sequences" are processed by the Guile reader
before your code is executed.  Unrecognized escape sequences are
ignored: if the characters `\*' appear in a string, they will be
translated to the single character `*'.

   This translation is obviously undesirable for regular expressions,
since we want to be able to include backslashes in a string in order to
escape regexp metacharacters.  Therefore, to make sure that a backslash
is preserved in a string in your Guile program, you must use *two*
consecutive backslashes:

     (define Info-menu-entry-pattern (make-regexp "^\\* [^:]*"))

   The string in this example is preprocessed by the Guile reader before
any code is executed.  The resulting argument to `make-regexp' is the
string `^\* [^:]*', which is what we really want.

   This also means that in order to write a regular expression that
matches a single backslash character, the regular expression string in
the source code must include *four* backslashes.  Each consecutive pair
of backslashes gets translated by the Guile reader to a single
backslash, and the resulting double-backslash is interpreted by the
regexp engine as matching a single backslash character.  Hence:

     (define tex-variable-pattern (make-regexp "\\\\let\\\\=[A-Za-z]*"))

   The reason for the unwieldiness of this syntax is historical.  Both
regular expression pattern matchers and Unix string processing systems
have traditionally used backslashes with the special meanings described
above.  The POSIX regular expression specification and ANSI C standard
both require these semantics.  Attempting to abandon either convention
would cause other kinds of compatibility problems, possibly more severe
ones.  Therefore, without extending the Scheme reader to support
strings with different quoting conventions (an ungainly and confusing
extension when implemented in other languages), we must adhere to this
cumbersome escape syntax.

* Changes to the gh_ interface

* Changes to the scm_ interface

* Changes to system call interfaces:

** The value returned by `raise' is now unspecified.  It throws an exception
if an error occurs.

*** A new procedure `sigaction' can be used to install signal handlers

(sigaction signum [action] [flags])

signum is the signal number, which can be specified using the value
of SIGINT etc.

If action is omitted, sigaction returns a pair: the CAR is the current
signal hander, which will be either an integer with the value SIG_DFL
(default action) or SIG_IGN (ignore), or the Scheme procedure which
handles the signal, or #f if a non-Scheme procedure handles the
signal.  The CDR contains the current sigaction flags for the handler.

If action is provided, it is installed as the new handler for signum.
action can be a Scheme procedure taking one argument, or the value of
SIG_DFL (default action) or SIG_IGN (ignore), or #f to restore
whatever signal handler was installed before sigaction was first used.
Flags can optionally be specified for the new handler (SA_RESTART is
always used if the system provides it, so need not be specified.)  The
return value is a pair with information about the old handler as
described above.

This interface does not provide access to the "signal blocking"
facility.  Maybe this is not needed, since the thread support may
provide solutions to the problem of consistent access to data
structures.

*** A new procedure `flush-all-ports' is equivalent to running
`force-output' on every port open for output.

** Guile now provides information on how it was built, via the new
global variable, %guile-build-info.  This variable records the values
of the standard GNU makefile directory variables as an assocation
list, mapping variable names (symbols) onto directory paths (strings).
For example, to find out where the Guile link libraries were
installed, you can say:

guile -c "(display (assq-ref %guile-build-info 'libdir)) (newline)"


* Changes to the scm_ interface

** The new function scm_handle_by_message_noexit is just like the
existing scm_handle_by_message function, except that it doesn't call
exit to terminate the process.  Instead, it prints a message and just
returns #f.  This might be a more appropriate catch-all handler for
new dynamic roots and threads.


Changes in Guile 1.1 (released Friday, May 16 1997):

* Changes to the distribution.

The Guile 1.0 distribution has been split up into several smaller
pieces:
guile-core --- the Guile interpreter itself.
guile-tcltk --- the interface between the Guile interpreter and
	Tcl/Tk; Tcl is an interpreter for a stringy language, and Tk
	is a toolkit for building graphical user interfaces.
guile-rgx-ctax --- the interface between Guile and the Rx regular
	expression matcher, and the translator for the Ctax
	programming language.  These are packaged together because the
	Ctax translator uses Rx to parse Ctax source code.

This NEWS file describes the changes made to guile-core since the 1.0
release.

We no longer distribute the documentation, since it was either out of
date, or incomplete.  As soon as we have current documentation, we
will distribute it.



* Changes to the stand-alone interpreter

** guile now accepts command-line arguments compatible with SCSH, Olin
Shivers' Scheme Shell.

In general, arguments are evaluated from left to right, but there are
exceptions.  The following switches stop argument processing, and
stash all remaining command-line arguments as the value returned by
the (command-line) function.
  -s SCRIPT      load Scheme source code from FILE, and exit
  -c EXPR        evalute Scheme expression EXPR, and exit
  --             stop scanning arguments; run interactively

The switches below are processed as they are encountered.
  -l FILE        load Scheme source code from FILE
  -e FUNCTION    after reading script, apply FUNCTION to
                 command line arguments
  -ds            do -s script at this point
  --emacs        enable Emacs protocol (experimental)
  -h, --help     display this help and exit
  -v, --version  display version information and exit
  \              read arguments from following script lines

So, for example, here is a Guile script named `ekko' (thanks, Olin)
which re-implements the traditional "echo" command:

#!/usr/local/bin/guile -s
!#
(define (main args)
	(map (lambda (arg) (display arg) (display " "))
	     (cdr args))
	(newline))

(main (command-line))

Suppose we invoke this script as follows:

	ekko a speckled gecko

Through the magic of Unix script processing (triggered by the `#!'
token at the top of the file), /usr/local/bin/guile receives the
following list of command-line arguments:

	("-s" "./ekko" "a" "speckled" "gecko")

Unix inserts the name of the script after the argument specified on
the first line of the file (in this case, "-s"), and then follows that
with the arguments given to the script.  Guile loads the script, which
defines the `main' function, and then applies it to the list of
remaining command-line arguments, ("a" "speckled" "gecko").

In Unix, the first line of a script file must take the following form:

#!INTERPRETER ARGUMENT

where INTERPRETER is the absolute filename of the interpreter
executable, and ARGUMENT is a single command-line argument to pass to
the interpreter.

You may only pass one argument to the interpreter, and its length is
limited.  These restrictions can be annoying to work around, so Guile
provides a general mechanism (borrowed from, and compatible with,
SCSH) for circumventing them.

If the ARGUMENT in a Guile script is a single backslash character,
`\', Guile will open the script file, parse arguments from its second
and subsequent lines, and replace the `\' with them.  So, for example,
here is another implementation of the `ekko' script:

#!/usr/local/bin/guile \
-e main -s
!#
(define (main args)
  (for-each (lambda (arg) (display arg) (display " "))
            (cdr args))
  (newline))

If the user invokes this script as follows:

	ekko a speckled gecko

Unix expands this into

	/usr/local/bin/guile \ ekko a speckled gecko

When Guile sees the `\' argument, it replaces it with the arguments
read from the second line of the script, producing:

	/usr/local/bin/guile -e main -s ekko a speckled gecko

This tells Guile to load the `ekko' script, and apply the function
`main' to the argument list ("a" "speckled" "gecko").

Here is how Guile parses the command-line arguments:
- Each space character terminates an argument.  This means that two
  spaces in a row introduce an empty-string argument.
- The tab character is not permitted (unless you quote it with the
  backslash character, as described below), to avoid confusion.
- The newline character terminates the sequence of arguments, and will
  also terminate a final non-empty argument.  (However, a newline
  following a space will not introduce a final empty-string argument;
  it only terminates the argument list.)
- The backslash character is the escape character.  It escapes
  backslash, space, tab, and newline.  The ANSI C escape sequences
  like \n and \t are also supported.  These produce argument
  constituents; the two-character combination \n doesn't act like a
  terminating newline.  The escape sequence \NNN for exactly three
  octal digits reads as the character whose ASCII code is NNN.  As
  above, characters produced this way are argument constituents.
  Backslash followed by other characters is not allowed.

* Changes to the procedure for linking libguile with your programs

** Guile now builds and installs a shared guile library, if your
system support shared libraries.  (It still builds a static library on
all systems.)  Guile automatically detects whether your system
supports shared libraries.  To prevent Guile from buildisg shared
libraries, pass the `--disable-shared' flag to the configure script.

Guile takes longer to compile when it builds shared libraries, because
it must compile every file twice --- once to produce position-
independent object code, and once to produce normal object code.

** The libthreads library has been merged into libguile.

To link a program against Guile, you now need only link against
-lguile and -lqt; -lthreads is no longer needed.  If you are using
autoconf to generate configuration scripts for your application, the
following lines should suffice to add the appropriate libraries to
your link command:

### Find quickthreads and libguile.
AC_CHECK_LIB(qt, main)
AC_CHECK_LIB(guile, scm_shell)

* Changes to Scheme functions

** Guile Scheme's special syntax for keyword objects is now optional,
and disabled by default.

The syntax variation from R4RS made it difficult to port some
interesting packages to Guile.  The routines which accepted keyword
arguments (mostly in the module system) have been modified to also
accept symbols whose names begin with `:'.

To change the keyword syntax, you must first import the (ice-9 debug)
module:
	(use-modules (ice-9 debug))

Then you can enable the keyword syntax as follows:
	(read-set! keywords 'prefix)

To disable keyword syntax, do this:
	(read-set! keywords #f)

** Many more primitive functions accept shared substrings as
arguments.  In the past, these functions required normal, mutable
strings as arguments, although they never made use of this
restriction.

** The uniform array functions now operate on byte vectors.  These
functions are `array-fill!', `serial-array-copy!', `array-copy!',
`serial-array-map', `array-map', `array-for-each', and
`array-index-map!'.

** The new functions `trace' and `untrace' implement simple debugging
support for Scheme functions.

The `trace' function accepts any number of procedures as arguments,
and tells the Guile interpreter to display each procedure's name and
arguments each time the procedure is invoked.  When invoked with no
arguments, `trace' returns the list of procedures currently being
traced.

The `untrace' function accepts any number of procedures as arguments,
and tells the Guile interpreter not to trace them any more.  When
invoked with no arguments, `untrace' untraces all curretly traced
procedures.

The tracing in Guile has an advantage over most other systems: we
don't create new procedure objects, but mark the procedure objects
themselves.  This means that anonymous and internal procedures can be
traced.

** The function `assert-repl-prompt' has been renamed to
`set-repl-prompt!'.  It takes one argument, PROMPT.
- If PROMPT is #f, the Guile read-eval-print loop will not prompt.
- If PROMPT is a string, we use it as a prompt.
- If PROMPT is a procedure accepting no arguments, we call it, and
  display the result as a prompt.
- Otherwise, we display "> ".

** The new function `eval-string' reads Scheme expressions from a
string and evaluates them, returning the value of the last expression
in the string.  If the string contains no expressions, it returns an
unspecified value.

** The new function `thunk?' returns true iff its argument is a
procedure of zero arguments.

** `defined?' is now a builtin function, instead of syntax.  This
means that its argument should be quoted.  It returns #t iff its
argument is bound in the current module.

** The new syntax `use-modules' allows you to add new modules to your
environment without re-typing a complete `define-module' form.  It
accepts any number of module names as arguments, and imports their
public bindings into the current module.

** The new function (module-defined? NAME MODULE) returns true iff
NAME, a symbol, is defined in MODULE, a module object.

** The new function `builtin-bindings' creates and returns a hash
table containing copies of all the root module's bindings.

** The new function `builtin-weak-bindings' does the same as
`builtin-bindings', but creates a doubly-weak hash table.

** The `equal?' function now considers variable objects to be
equivalent if they have the same name and the same value.

** The new function `command-line' returns the command-line arguments
given to Guile, as a list of strings.

When using guile as a script interpreter, `command-line' returns the
script's arguments; those processed by the interpreter (like `-s' or
`-c') are omitted.  (In other words, you get the normal, expected
behavior.)  Any application that uses scm_shell to process its
command-line arguments gets this behavior as well.

** The new function `load-user-init' looks for a file called `.guile'
in the user's home directory, and loads it if it exists.  This is
mostly for use by the code generated by scm_compile_shell_switches,
but we thought it might also be useful in other circumstances.

** The new function `log10' returns the base-10 logarithm of its
argument.

** Changes to I/O functions

*** The functions `read', `primitive-load', `read-and-eval!', and 
`primitive-load-path' no longer take optional arguments controlling
case insensitivity and a `#' parser.

Case sensitivity is now controlled by a read option called
`case-insensitive'.  The user can add new `#' syntaxes with the
`read-hash-extend' function (see below).

*** The new function `read-hash-extend' allows the user to change the
syntax of Guile Scheme in a somewhat controlled way.

(read-hash-extend CHAR PROC)
  When parsing S-expressions, if we read a `#' character followed by
  the character CHAR, use PROC to parse an object from the stream.
  If PROC is #f, remove any parsing procedure registered for CHAR.

  The reader applies PROC to two arguments: CHAR and an input port.

*** The new functions read-delimited and read-delimited! provide a 
general mechanism for doing delimited input on streams.

(read-delimited DELIMS [PORT HANDLE-DELIM])
  Read until we encounter one of the characters in DELIMS (a string),
  or end-of-file.  PORT is the input port to read from; it defaults to
  the current input port.  The HANDLE-DELIM parameter determines how
  the terminating character is handled; it should be one of the
  following symbols:

    'trim     omit delimiter from result
    'peek     leave delimiter character in input stream
    'concat   append delimiter character to returned value
    'split    return a pair: (RESULT . TERMINATOR)

  HANDLE-DELIM defaults to 'peek.

(read-delimited! DELIMS BUF [PORT HANDLE-DELIM START END])
  A side-effecting variant of `read-delimited'.

  The data is written into the string BUF at the indices in the
  half-open interval [START, END); the default interval is the whole
  string: START = 0 and END = (string-length BUF).  The values of
  START and END must specify a well-defined interval in BUF, i.e.
  0 <= START <= END <= (string-length BUF).

  It returns NBYTES, the number of bytes read.  If the buffer filled
  up without a delimiter character being found, it returns #f.  If the
  port is at EOF when the read starts, it returns the EOF object.

  If an integer is returned (i.e., the read is successfully terminated
  by reading a delimiter character), then the HANDLE-DELIM parameter
  determines how to handle the terminating character.  It is described
  above, and defaults to 'peek.

(The descriptions of these functions were borrowed from the SCSH
manual, by Olin Shivers and Brian Carlstrom.)

*** The `%read-delimited!' function is the primitive used to implement
`read-delimited' and `read-delimited!'.

(%read-delimited! DELIMS BUF GOBBLE? [PORT START END])

This returns a pair of values: (TERMINATOR . NUM-READ).
- TERMINATOR describes why the read was terminated.  If it is a
  character or the eof object, then that is the value that terminated
  the read.  If it is #f, the function filled the buffer without finding
  a delimiting character.
- NUM-READ is the number of characters read into BUF.

If the read is successfully terminated by reading a delimiter
character, then the gobble? parameter determines what to do with the
terminating character.  If true, the character is removed from the
input stream; if false, the character is left in the input stream
where a subsequent read operation will retrieve it.  In either case,
the character is also the first value returned by the procedure call.

(The descriptions of this function was borrowed from the SCSH manual,
by Olin Shivers and Brian Carlstrom.)

*** The `read-line' and `read-line!' functions have changed; they now
trim the terminator by default; previously they appended it to the
returned string.  For the old behavior, use (read-line PORT 'concat).

*** The functions `uniform-array-read!' and `uniform-array-write!' now
take new optional START and END arguments, specifying the region of
the array to read and write.

*** The `ungetc-char-ready?' function has been removed.  We feel it's
inappropriate for an interface to expose implementation details this
way.

** Changes to the Unix library and system call interface

*** The new fcntl function provides access to the Unix `fcntl' system
call.

(fcntl PORT COMMAND VALUE)
  Apply COMMAND to PORT's file descriptor, with VALUE as an argument.
  Values for COMMAND are:

    F_DUPFD	duplicate a file descriptor
    F_GETFD	read the descriptor's close-on-exec flag
    F_SETFD     set the descriptor's close-on-exec flag to VALUE
    F_GETFL	read the descriptor's flags, as set on open
    F_SETFL	set the descriptor's flags, as set on open to VALUE
    F_GETOWN    return the process ID of a socket's owner, for SIGIO
    F_SETOWN    set the process that owns a socket to VALUE, for SIGIO
    FD_CLOEXEC  not sure what this is

For details, see the documentation for the fcntl system call.

*** The arguments to `select' have changed, for compatibility with
SCSH.  The TIMEOUT parameter may now be non-integral, yielding the
expected behavior.  The MILLISECONDS parameter has been changed to
MICROSECONDS, to more closely resemble the underlying system call.
The RVEC, WVEC, and EVEC arguments can now be vectors; the type of the
corresponding return set will be the same.

*** The arguments to the `mknod' system call have changed.  They are
now:

(mknod PATH TYPE PERMS DEV)
  Create a new file (`node') in the file system.  PATH is the name of
  the file to create.  TYPE is the kind of file to create; it should
  be 'fifo, 'block-special, or 'char-special.  PERMS specifies the
  permission bits to give the newly created file.  If TYPE is
  'block-special or 'char-special, DEV specifies which device the
  special file refers to; its interpretation depends on the kind of
  special file being created.

*** The `fork' function has been renamed to `primitive-fork', to avoid
clashing with various SCSH forks.

*** The `recv' and `recvfrom' functions have been renamed to `recv!'
and `recvfrom!'.  They no longer accept a size for a second argument;
you must pass a string to hold the received value.  They no longer
return the buffer.  Instead, `recv' returns the length of the message
received, and `recvfrom' returns a pair containing the packet's length
and originating address. 

*** The file descriptor datatype has been removed, as have the
`read-fd', `write-fd', `close', `lseek', and `dup' functions.
We plan to replace these functions with a SCSH-compatible interface.

*** The `create' function has been removed; it's just a special case
of `open'.

*** There are new functions to break down process termination status
values.  In the descriptions below, STATUS is a value returned by
`waitpid'.

(status:exit-val STATUS)
  If the child process exited normally, this function returns the exit
  code for the child process (i.e., the value passed to exit, or
  returned from main).  If the child process did not exit normally,
  this function returns #f.

(status:stop-sig STATUS)
  If the child process was suspended by a signal, this function
  returns the signal that suspended the child.  Otherwise, it returns
  #f.

(status:term-sig STATUS)
  If the child process terminated abnormally, this function returns
  the signal that terminated the child.  Otherwise, this function
  returns false.

POSIX promises that exactly one of these functions will return true on
a valid STATUS value.

These functions are compatible with SCSH.

*** There are new accessors and setters for the broken-out time vectors
returned by `localtime', `gmtime', and that ilk.  They are:

  Component                 Accessor     Setter
  ========================= ============ ============
  seconds                   tm:sec       set-tm:sec
  minutes                   tm:min       set-tm:min
  hours                     tm:hour      set-tm:hour
  day of the month          tm:mday      set-tm:mday
  month                     tm:mon       set-tm:mon
  year                      tm:year      set-tm:year
  day of the week           tm:wday      set-tm:wday
  day in the year           tm:yday      set-tm:yday
  daylight saving time      tm:isdst     set-tm:isdst
  GMT offset, seconds       tm:gmtoff    set-tm:gmtoff
  name of time zone         tm:zone      set-tm:zone

*** There are new accessors for the vectors returned by `uname',
describing the host system:

  Component                                      Accessor
  ============================================== ================
  name of the operating system implementation    utsname:sysname
  network name of this machine                   utsname:nodename
  release level of the operating system          utsname:release
  version level of the operating system          utsname:version
  machine hardware platform                      utsname:machine

*** There are new accessors for the vectors returned by `getpw',
`getpwnam', `getpwuid', and `getpwent', describing entries from the
system's user database:

  Component              Accessor
  ====================== =================
  user name              passwd:name
  user password		 passwd:passwd
  user id		 passwd:uid
  group id		 passwd:gid
  real name		 passwd:gecos
  home directory	 passwd:dir
  shell program		 passwd:shell

*** There are new accessors for the vectors returned by `getgr',
`getgrnam', `getgrgid', and `getgrent', describing entries from the
system's group database:

  Component               Accessor
  ======================= ============
  group name              group:name
  group password 	  group:passwd
  group id       	  group:gid
  group members  	  group:mem

*** There are new accessors for the vectors returned by `gethost',
`gethostbyaddr', `gethostbyname', and `gethostent', describing
internet hosts:

  Component                 Accessor
  ========================= ===============
  official name of host     hostent:name
  alias list		    hostent:aliases
  host address type	    hostent:addrtype
  length of address	    hostent:length
  list of addresses	    hostent:addr-list

*** There are new accessors for the vectors returned by `getnet',
`getnetbyaddr', `getnetbyname', and `getnetent', describing internet
networks:

  Component                 Accessor
  ========================= ===============
  official name of net      netent:name
  alias list		    netent:aliases
  net number type	    netent:addrtype
  net number		    netent:net

*** There are new accessors for the vectors returned by `getproto',
`getprotobyname', `getprotobynumber', and `getprotoent', describing
internet protocols:

  Component                 Accessor
  ========================= ===============
  official protocol name    protoent:name
  alias list		    protoent:aliases
  protocol number	    protoent:proto

*** There are new accessors for the vectors returned by `getserv',
`getservbyname', `getservbyport', and `getservent', describing
internet protocols:

  Component                 Accessor
  ========================= ===============
  official service name     servent:name   
  alias list		    servent:aliases
  port number		    servent:port   
  protocol to use	    servent:proto  

*** There are new accessors for the sockaddr structures returned by
`accept', `getsockname', `getpeername', `recvfrom!':

  Component                                Accessor
  ======================================== ===============
  address format (`family')                sockaddr:fam 
  path, for file domain addresses	   sockaddr:path
  address, for internet domain addresses   sockaddr:addr
  TCP or UDP port, for internet		   sockaddr:port

*** The `getpwent', `getgrent', `gethostent', `getnetent',
`getprotoent', and `getservent' functions now return #f at the end of
the user database.  (They used to throw an exception.)

Note that calling MUMBLEent function is equivalent to calling the
corresponding MUMBLE function with no arguments.

*** The `setpwent', `setgrent', `sethostent', `setnetent',
`setprotoent', and `setservent' routines now take no arguments.

*** The `gethost', `getproto', `getnet', and `getserv' functions now
provide more useful information when they throw an exception.

*** The `lnaof' function has been renamed to `inet-lnaof'.

*** Guile now claims to have the `current-time' feature.

*** The `mktime' function now takes an optional second argument ZONE,
giving the time zone to use for the conversion.  ZONE should be a
string, in the same format as expected for the "TZ" environment variable.

*** The `strptime' function now returns a pair (TIME . COUNT), where
TIME is the parsed time as a vector, and COUNT is the number of
characters from the string left unparsed.  This function used to
return the remaining characters as a string.

*** The `gettimeofday' function has replaced the old `time+ticks' function.
The return value is now (SECONDS . MICROSECONDS); the fractional
component is no longer expressed in "ticks".

*** The `ticks/sec' constant has been removed, in light of the above change.

* Changes to the gh_ interface

** gh_eval_str() now returns an SCM object which is the result of the
evaluation

** gh_scm2str() now copies the Scheme data to a caller-provided C
array

** gh_scm2newstr() now makes a C array, copies the Scheme data to it,
and returns the array

** gh_scm2str0() is gone: there is no need to distinguish
null-terminated from non-null-terminated, since gh_scm2newstr() allows
the user to interpret the data both ways.

* Changes to the scm_ interface

** The new function scm_symbol_value0 provides an easy way to get a
symbol's value from C code:

SCM scm_symbol_value0 (char *NAME)
  Return the value of the symbol named by the null-terminated string
  NAME in the current module.  If the symbol named NAME is unbound in
  the current module, return SCM_UNDEFINED.

** The new function scm_sysintern0 creates new top-level variables,
without assigning them a value.

SCM scm_sysintern0 (char *NAME)
  Create a new Scheme top-level variable named NAME.  NAME is a
  null-terminated string.  Return the variable's value cell.

** The function scm_internal_catch is the guts of catch.  It handles
all the mechanics of setting up a catch target, invoking the catch
body, and perhaps invoking the handler if the body does a throw.

The function is designed to be usable from C code, but is general
enough to implement all the semantics Guile Scheme expects from throw.

TAG is the catch tag.  Typically, this is a symbol, but this function
doesn't actually care about that.

BODY is a pointer to a C function which runs the body of the catch;
this is the code you can throw from.  We call it like this:
   BODY (BODY_DATA, JMPBUF)
where:
   BODY_DATA is just the BODY_DATA argument we received; we pass it
      through to BODY as its first argument.  The caller can make
      BODY_DATA point to anything useful that BODY might need.
   JMPBUF is the Scheme jmpbuf object corresponding to this catch,
      which we have just created and initialized.

HANDLER is a pointer to a C function to deal with a throw to TAG,
should one occur.  We call it like this:
   HANDLER (HANDLER_DATA, THROWN_TAG, THROW_ARGS)
where
   HANDLER_DATA is the HANDLER_DATA argument we recevied; it's the
      same idea as BODY_DATA above.
   THROWN_TAG is the tag that the user threw to; usually this is
      TAG, but it could be something else if TAG was #t (i.e., a
      catch-all), or the user threw to a jmpbuf.
   THROW_ARGS is the list of arguments the user passed to the THROW
      function.

BODY_DATA is just a pointer we pass through to BODY.  HANDLER_DATA
is just a pointer we pass through to HANDLER.  We don't actually
use either of those pointers otherwise ourselves.  The idea is
that, if our caller wants to communicate something to BODY or
HANDLER, it can pass a pointer to it as MUMBLE_DATA, which BODY and
HANDLER can then use.  Think of it as a way to make BODY and
HANDLER closures, not just functions; MUMBLE_DATA points to the
enclosed variables.

Of course, it's up to the caller to make sure that any data a
MUMBLE_DATA needs is protected from GC.  A common way to do this is
to make MUMBLE_DATA a pointer to data stored in an automatic
structure variable; since the collector must scan the stack for
references anyway, this assures that any references in MUMBLE_DATA
will be found.

** The new function scm_internal_lazy_catch is exactly like
scm_internal_catch, except:

- It does not unwind the stack (this is the major difference).
- If handler returns, its value is returned from the throw.
- BODY always receives #f as its JMPBUF argument (since there's no
  jmpbuf associated with a lazy catch, because we don't unwind the
  stack.)

** scm_body_thunk is a new body function you can pass to
scm_internal_catch if you want the body to be like Scheme's `catch'
--- a thunk, or a function of one argument if the tag is #f.

BODY_DATA is a pointer to a scm_body_thunk_data structure, which
contains the Scheme procedure to invoke as the body, and the tag
we're catching.  If the tag is #f, then we pass JMPBUF (created by
scm_internal_catch) to the body procedure; otherwise, the body gets
no arguments.

** scm_handle_by_proc is a new handler function you can pass to
scm_internal_catch if you want the handler to act like Scheme's catch
--- call a procedure with the tag and the throw arguments.

If the user does a throw to this catch, this function runs a handler
procedure written in Scheme.  HANDLER_DATA is a pointer to an SCM
variable holding the Scheme procedure object to invoke.  It ought to
be a pointer to an automatic variable (i.e., one living on the stack),
or the procedure object should be otherwise protected from GC.

** scm_handle_by_message is a new handler function to use with
`scm_internal_catch' if you want Guile to print a message and die.
It's useful for dealing with throws to uncaught keys at the top level.

HANDLER_DATA, if non-zero, is assumed to be a char * pointing to a
message header to print; if zero, we use "guile" instead.  That
text is followed by a colon, then the message described by ARGS.

** The return type of scm_boot_guile is now void; the function does
not return a value, and indeed, never returns at all.

** The new function scm_shell makes it easy for user applications to
process command-line arguments in a way that is compatible with the
stand-alone guile interpreter (which is in turn compatible with SCSH,
the Scheme shell).

To use the scm_shell function, first initialize any guile modules
linked into your application, and then call scm_shell with the values
of ARGC and ARGV your `main' function received.  scm_shell will add
any SCSH-style meta-arguments from the top of the script file to the
argument vector, and then process the command-line arguments.  This
generally means loading a script file or starting up an interactive
command interpreter.  For details, see "Changes to the stand-alone
interpreter" above.

** The new functions scm_get_meta_args and scm_count_argv help you
implement the SCSH-style meta-argument, `\'.  

char **scm_get_meta_args (int ARGC, char **ARGV)
  If the second element of ARGV is a string consisting of a single
  backslash character (i.e. "\\" in Scheme notation), open the file
  named by the following argument, parse arguments from it, and return
  the spliced command line.  The returned array is terminated by a
  null pointer.
  
  For details of argument parsing, see above, under "guile now accepts
  command-line arguments compatible with SCSH..."

int scm_count_argv (char **ARGV)
  Count the arguments in ARGV, assuming it is terminated by a null
  pointer.

For an example of how these functions might be used, see the source
code for the function scm_shell in libguile/script.c.

You will usually want to use scm_shell instead of calling this
function yourself.

** The new function scm_compile_shell_switches turns an array of
command-line arguments into Scheme code to carry out the actions they
describe.  Given ARGC and ARGV, it returns a Scheme expression to
evaluate, and calls scm_set_program_arguments to make any remaining
command-line arguments available to the Scheme code.  For example,
given the following arguments:

	-e main -s ekko a speckled gecko

scm_set_program_arguments will return the following expression:

	(begin (load "ekko") (main (command-line)) (quit))

You will usually want to use scm_shell instead of calling this
function yourself.

** The function scm_shell_usage prints a usage message appropriate for
an interpreter that uses scm_compile_shell_switches to handle its
command-line arguments.

void scm_shell_usage (int FATAL, char *MESSAGE)
  Print a usage message to the standard error output.  If MESSAGE is
  non-zero, write it before the usage message, followed by a newline.
  If FATAL is non-zero, exit the process, using FATAL as the
  termination status.  (If you want to be compatible with Guile,
  always use 1 as the exit status when terminating due to command-line
  usage problems.)

You will usually want to use scm_shell instead of calling this
function yourself.

** scm_eval_0str now returns SCM_UNSPECIFIED if the string contains no
expressions.  It used to return SCM_EOL.  Earth-shattering.

** The macros for declaring scheme objects in C code have been
rearranged slightly.  They are now:

SCM_SYMBOL (C_NAME, SCHEME_NAME)
  Declare a static SCM variable named C_NAME, and initialize it to
  point to the Scheme symbol whose name is SCHEME_NAME.  C_NAME should
  be a C identifier, and SCHEME_NAME should be a C string.

SCM_GLOBAL_SYMBOL (C_NAME, SCHEME_NAME)
  Just like SCM_SYMBOL, but make C_NAME globally visible.

SCM_VCELL (C_NAME, SCHEME_NAME)
  Create a global variable at the Scheme level named SCHEME_NAME.
  Declare a static SCM variable named C_NAME, and initialize it to
  point to the Scheme variable's value cell.

SCM_GLOBAL_VCELL (C_NAME, SCHEME_NAME)
  Just like SCM_VCELL, but make C_NAME globally visible.

The `guile-snarf' script writes initialization code for these macros
to its standard output, given C source code as input.

The SCM_GLOBAL macro is gone.

** The scm_read_line and scm_read_line_x functions have been replaced
by Scheme code based on the %read-delimited! procedure (known to C
code as scm_read_delimited_x).  See its description above for more
information.

** The function scm_sys_open has been renamed to scm_open.  It now
returns a port instead of an FD object.

* The dynamic linking support has changed.  For more information, see
libguile/DYNAMIC-LINKING.


Guile 1.0b3

User-visible changes from Thursday, September 5, 1996 until Guile 1.0
(Sun 5 Jan 1997):

* Changes to the 'guile' program:

** Guile now loads some new files when it starts up.  Guile first
searches the load path for init.scm, and loads it if found.  Then, if
Guile is not being used to execute a script, and the user's home
directory contains a file named `.guile', Guile loads that.

** You can now use Guile as a shell script interpreter.

To paraphrase the SCSH manual:

    When Unix tries to execute an executable file whose first two
    characters are the `#!', it treats the file not as machine code to
    be directly executed by the native processor, but as source code
    to be executed by some interpreter.  The interpreter to use is
    specified immediately after the #! sequence on the first line of
    the source file.  The kernel reads in the name of the interpreter,
    and executes that instead.  It passes the interpreter the source
    filename as its first argument, with the original arguments
    following.  Consult the Unix man page for the `exec' system call
    for more information.

Now you can use Guile as an interpreter, using a mechanism which is a
compatible subset of that provided by SCSH.

Guile now recognizes a '-s' command line switch, whose argument is the
name of a file of Scheme code to load.  It also treats the two
characters `#!' as the start of a comment, terminated by `!#'.  Thus,
to make a file of Scheme code directly executable by Unix, insert the
following two lines at the top of the file:

#!/usr/local/bin/guile -s
!#

Guile treats the argument of the `-s' command-line switch as the name
of a file of Scheme code to load, and treats the sequence `#!' as the
start of a block comment, terminated by `!#'.

For example, here's a version of 'echo' written in Scheme:

#!/usr/local/bin/guile -s
!#
(let loop ((args (cdr (program-arguments))))
  (if (pair? args)
      (begin
	(display (car args))
	(if (pair? (cdr args))
	    (display " "))
	(loop (cdr args)))))
(newline)

Why does `#!' start a block comment terminated by `!#', instead of the
end of the line?  That is the notation SCSH uses, and although we
don't yet support the other SCSH features that motivate that choice,
we would like to be backward-compatible with any existing Guile
scripts once we do.  Furthermore, if the path to Guile on your system
is too long for your kernel, you can start the script with this
horrible hack:

#!/bin/sh
exec /really/long/path/to/guile -s "$0" ${1+"$@"}
!#

Note that some very old Unix systems don't support the `#!' syntax.


** You can now run Guile without installing it.

Previous versions of the interactive Guile interpreter (`guile')
couldn't start up unless Guile's Scheme library had been installed;
they used the value of the environment variable `SCHEME_LOAD_PATH'
later on in the startup process, but not to find the startup code
itself.  Now Guile uses `SCHEME_LOAD_PATH' in all searches for Scheme
code.

To run Guile without installing it, build it in the normal way, and
then set the environment variable `SCHEME_LOAD_PATH' to a
colon-separated list of directories, including the top-level directory
of the Guile sources.  For example, if you unpacked Guile so that the
full filename of this NEWS file is /home/jimb/guile-1.0b3/NEWS, then
you might say

	export SCHEME_LOAD_PATH=/home/jimb/my-scheme:/home/jimb/guile-1.0b3


** Guile's read-eval-print loop no longer prints #<unspecified>
results.  If the user wants to see this, she can evaluate the
expression (assert-repl-print-unspecified #t), perhaps in her startup
file.

** Guile no longer shows backtraces by default when an error occurs;
however, it does display a message saying how to get one, and how to
request that they be displayed by default.  After an error, evaluate
   (backtrace)
to see a backtrace, and
   (debug-enable 'backtrace)
to see them by default.



* Changes to Guile Scheme:

** Guile now distinguishes between #f and the empty list.

This is for compatibility with the IEEE standard, the (possibly)
upcoming Revised^5 Report on Scheme, and many extant Scheme
implementations.

Guile used to have #f and '() denote the same object, to make Scheme's
type system more compatible with Emacs Lisp's.  However, the change
caused too much trouble for Scheme programmers, and we found another
way to reconcile Emacs Lisp with Scheme that didn't require this.


** Guile's delq, delv, delete functions, and their destructive
counterparts, delq!, delv!, and delete!, now remove all matching
elements from the list, not just the first.  This matches the behavior
of the corresponding Emacs Lisp functions, and (I believe) the Maclisp
functions which inspired them.

I recognize that this change may break code in subtle ways, but it
seems best to make the change before the FSF's first Guile release,
rather than after.


** The compiled-library-path function has been deleted from libguile.

** The facilities for loading Scheme source files have changed.

*** The variable %load-path now tells Guile which directories to search
for Scheme code.  Its value is a list of strings, each of which names
a directory.

*** The variable %load-extensions now tells Guile which extensions to
try appending to a filename when searching the load path.  Its value
is a list of strings.  Its default value is ("" ".scm").

*** (%search-load-path FILENAME) searches the directories listed in the
value of the %load-path variable for a Scheme file named FILENAME,
with all the extensions listed in %load-extensions.  If it finds a
match, then it returns its full filename.  If FILENAME is absolute, it
returns it unchanged.  Otherwise, it returns #f.

%search-load-path will not return matches that refer to directories.

*** (primitive-load FILENAME :optional CASE-INSENSITIVE-P SHARP)
uses %seach-load-path to find a file named FILENAME, and loads it if
it finds it.  If it can't read FILENAME for any reason, it throws an
error.

The arguments CASE-INSENSITIVE-P and SHARP are interpreted as by the
`read' function.

*** load uses the same searching semantics as primitive-load.

*** The functions %try-load, try-load-with-path, %load, load-with-path,
basic-try-load-with-path, basic-load-with-path, try-load-module-with-
path, and load-module-with-path have been deleted.  The functions
above should serve their purposes.

*** If the value of the variable %load-hook is a procedure,
`primitive-load' applies its value to the name of the file being
loaded (without the load path directory name prepended).  If its value
is #f, it is ignored.  Otherwise, an error occurs.

This is mostly useful for printing load notification messages.


** The function `eval!' is no longer accessible from the scheme level.
We can't allow operations which introduce glocs into the scheme level,
because Guile's type system can't handle these as data.  Use `eval' or
`read-and-eval!' (see below) as replacement.

** The new function read-and-eval! reads an expression from PORT,
evaluates it, and returns the result.  This is more efficient than
simply calling `read' and `eval', since it is not necessary to make a
copy of the expression for the evaluator to munge.

Its optional arguments CASE_INSENSITIVE_P and SHARP are interpreted as
for the `read' function.


** The function `int?' has been removed; its definition was identical
to that of `integer?'.

** The functions `<?', `<?', `<=?', `=?', `>?', and `>=?'.  Code should
use the R4RS names for these functions.

** The function object-properties no longer returns the hash handle;
it simply returns the object's property list.

** Many functions have been changed to throw errors, instead of
returning #f on failure.  The point of providing exception handling in
the language is to simplify the logic of user code, but this is less
useful if Guile's primitives don't throw exceptions.

** The function `fileno' has been renamed from `%fileno'.

** The function primitive-mode->fdes returns #t or #f now, not 1 or 0.


* Changes to Guile's C interface:

** The library's initialization procedure has been simplified.
scm_boot_guile now has the prototype:

void scm_boot_guile (int ARGC,
                     char **ARGV,
	             void (*main_func) (),
	             void *closure);

scm_boot_guile calls MAIN_FUNC, passing it CLOSURE, ARGC, and ARGV.
MAIN_FUNC should do all the work of the program (initializing other
packages, reading user input, etc.) before returning.  When MAIN_FUNC
returns, call exit (0); this function never returns.  If you want some
other exit value, MAIN_FUNC may call exit itself.

scm_boot_guile arranges for program-arguments to return the strings
given by ARGC and ARGV.  If MAIN_FUNC modifies ARGC/ARGV, should call
scm_set_program_arguments with the final list, so Scheme code will
know which arguments have been processed.

scm_boot_guile establishes a catch-all catch handler which prints an
error message and exits the process.  This means that Guile exits in a
coherent way when system errors occur and the user isn't prepared to
handle it.  If the user doesn't like this behavior, they can establish
their own universal catcher in MAIN_FUNC to shadow this one.

Why must the caller do all the real work from MAIN_FUNC?  The garbage
collector assumes that all local variables of type SCM will be above
scm_boot_guile's stack frame on the stack.  If you try to manipulate
SCM values after this function returns, it's the luck of the draw
whether the GC will be able to find the objects you allocate.  So,
scm_boot_guile function exits, rather than returning, to discourage
people from making that mistake.

The IN, OUT, and ERR arguments were removed; there are other
convenient ways to override these when desired.

The RESULT argument was deleted; this function should never return.

The BOOT_CMD argument was deleted; the MAIN_FUNC argument is more
general.


** Guile's header files should no longer conflict with your system's
header files.

In order to compile code which #included <libguile.h>, previous
versions of Guile required you to add a directory containing all the
Guile header files to your #include path.  This was a problem, since
Guile's header files have names which conflict with many systems'
header files.

Now only <libguile.h> need appear in your #include path; you must
refer to all Guile's other header files as <libguile/mumble.h>.
Guile's installation procedure puts libguile.h in $(includedir), and
the rest in $(includedir)/libguile.


** Two new C functions, scm_protect_object and scm_unprotect_object,
have been added to the Guile library.

scm_protect_object (OBJ) protects OBJ from the garbage collector.
OBJ will not be freed, even if all other references are dropped,
until someone does scm_unprotect_object (OBJ).  Both functions
return OBJ.

Note that calls to scm_protect_object do not nest.  You can call
scm_protect_object any number of times on a given object, and the
next call to scm_unprotect_object will unprotect it completely.

Basically, scm_protect_object and scm_unprotect_object just
maintain a list of references to things.  Since the GC knows about
this list, all objects it mentions stay alive.  scm_protect_object
adds its argument to the list; scm_unprotect_object remove its
argument from the list.


** scm_eval_0str now returns the value of the last expression
evaluated.

** The new function scm_read_0str reads an s-expression from a
null-terminated string, and returns it.

** The new function `scm_stdio_to_port' converts a STDIO file pointer
to a Scheme port object.

** The new function `scm_set_program_arguments' allows C code to set
the value returned by the Scheme `program-arguments' function.


Older changes:

* Guile no longer includes sophisticated Tcl/Tk support.

The old Tcl/Tk support was unsatisfying to us, because it required the
user to link against the Tcl library, as well as Tk and Guile.  The
interface was also un-lispy, in that it preserved Tcl/Tk's practice of
referring to widgets by names, rather than exporting widgets to Scheme
code as a special datatype.

In the Usenix Tk Developer's Workshop held in July 1996, the Tcl/Tk
maintainers described some very interesting changes in progress to the
Tcl/Tk internals, which would facilitate clean interfaces between lone
Tk and other interpreters --- even for garbage-collected languages
like Scheme.  They expected the new Tk to be publicly available in the
fall of 1996.

Since it seems that Guile might soon have a new, cleaner interface to
lone Tk, and that the old Guile/Tk glue code would probably need to be
completely rewritten, we (Jim Blandy and Richard Stallman) have
decided not to support the old code.  We'll spend the time instead on
a good interface to the newer Tk, as soon as it is available.

Until then, gtcltk-lib provides trivial, low-maintenance functionality.


Copyright information:

Copyright (C) 1996,1997 Free Software Foundation, Inc.

   Permission is granted to anyone to make or distribute verbatim copies
   of this document as received, in any medium, provided that the
   copyright notice and this permission notice are preserved,
   thus giving the recipient permission to redistribute in turn.

   Permission is granted to distribute modified versions
   of this document, or of portions of it,
   under the above conditions, provided also that they
   carry prominent notices stating who last changed them.


Local variables:
mode: outline
paragraph-separate: "[ 	]*$"
end: