summaryrefslogtreecommitdiff
path: root/doc/ref/api-data.texi
blob: 0fd4ee1cf381298a95059a86a5fbc37c5ca41299 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
@c -*-texinfo-*-
@c This is part of the GNU Guile Reference Manual.
@c Copyright (C)  1996, 1997, 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2009
@c   Free Software Foundation, Inc.
@c See the file guile.texi for copying conditions.

@page
@node Simple Data Types
@section Simple Generic Data Types

This chapter describes those of Guile's simple data types which are
primarily used for their role as items of generic data.  By
@dfn{simple} we mean data types that are not primarily used as
containers to hold other data --- i.e.@: pairs, lists, vectors and so on.
For the documentation of such @dfn{compound} data types, see
@ref{Compound Data Types}.

@c One of the great strengths of Scheme is that there is no straightforward
@c distinction between ``data'' and ``functionality''.  For example,
@c Guile's support for dynamic linking could be described:

@c @itemize @bullet
@c @item
@c either in a ``data-centric'' way, as the behaviour and properties of the
@c ``dynamically linked object'' data type, and the operations that may be
@c applied to instances of this type

@c @item
@c or in a ``functionality-centric'' way, as the set of procedures that
@c constitute Guile's support for dynamic linking, in the context of the
@c module system.
@c @end itemize

@c The contents of this chapter are, therefore, a matter of judgment.  By
@c @dfn{generic}, we mean to select those data types whose typical use as
@c @emph{data} in a wide variety of programming contexts is more important
@c than their use in the implementation of a particular piece of
@c @emph{functionality}.  The last section of this chapter provides
@c references for all the data types that are documented not here but in a
@c ``functionality-centric'' way elsewhere in the manual.

@menu
* Booleans::                    True/false values.
* Numbers::                     Numerical data types.
* Characters::                  Single characters.
* Character Sets::              Sets of characters.
* Strings::                     Sequences of characters.
* Bytevectors::                 Sequences of bytes.
* Regular Expressions::         Pattern matching and substitution.
* Symbols::                     Symbols.
* Keywords::                    Self-quoting, customizable display keywords.
* Other Types::                 "Functionality-centric" data types.
@end menu


@node Booleans
@subsection Booleans
@tpindex Booleans

The two boolean values are @code{#t} for true and @code{#f} for false.

Boolean values are returned by predicate procedures, such as the general
equality predicates @code{eq?}, @code{eqv?} and @code{equal?}
(@pxref{Equality}) and numerical and string comparison operators like
@code{string=?} (@pxref{String Comparison}) and @code{<=}
(@pxref{Comparison}).

@lisp
(<= 3 8)
@result{} #t

(<= 3 -3)
@result{} #f

(equal? "house" "houses")
@result{} #f

(eq? #f #f)
@result{}
#t
@end lisp

In test condition contexts like @code{if} and @code{cond} (@pxref{if
cond case}), where a group of subexpressions will be evaluated only if a
@var{condition} expression evaluates to ``true'', ``true'' means any
value at all except @code{#f}.

@lisp
(if #t "yes" "no")
@result{} "yes"

(if 0 "yes" "no")
@result{} "yes"

(if #f "yes" "no")
@result{} "no"
@end lisp

A result of this asymmetry is that typical Scheme source code more often
uses @code{#f} explicitly than @code{#t}: @code{#f} is necessary to
represent an @code{if} or @code{cond} false value, whereas @code{#t} is
not necessary to represent an @code{if} or @code{cond} true value.

It is important to note that @code{#f} is @strong{not} equivalent to any
other Scheme value.  In particular, @code{#f} is not the same as the
number 0 (like in C and C++), and not the same as the ``empty list''
(like in some Lisp dialects).

In C, the two Scheme boolean values are available as the two constants
@code{SCM_BOOL_T} for @code{#t} and @code{SCM_BOOL_F} for @code{#f}.
Care must be taken with the false value @code{SCM_BOOL_F}: it is not
false when used in C conditionals.  In order to test for it, use
@code{scm_is_false} or @code{scm_is_true}.

@rnindex not
@deffn {Scheme Procedure} not x
@deffnx {C Function} scm_not (x)
Return @code{#t} if @var{x} is @code{#f}, else return @code{#f}.
@end deffn

@rnindex boolean?
@deffn {Scheme Procedure} boolean? obj
@deffnx {C Function} scm_boolean_p (obj)
Return @code{#t} if @var{obj} is either @code{#t} or @code{#f}, else
return @code{#f}.
@end deffn

@deftypevr {C Macro} SCM SCM_BOOL_T
The @code{SCM} representation of the Scheme object @code{#t}.
@end deftypevr

@deftypevr {C Macro} SCM SCM_BOOL_F
The @code{SCM} representation of the Scheme object @code{#f}.
@end deftypevr

@deftypefn {C Function} int scm_is_true (SCM obj)
Return @code{0} if @var{obj} is @code{#f}, else return @code{1}.
@end deftypefn

@deftypefn {C Function} int scm_is_false (SCM obj)
Return @code{1} if @var{obj} is @code{#f}, else return @code{0}.
@end deftypefn

@deftypefn {C Function} int scm_is_bool (SCM obj)
Return @code{1} if @var{obj} is either @code{#t} or @code{#f}, else
return @code{0}.
@end deftypefn

@deftypefn {C Function} SCM scm_from_bool (int val)
Return @code{#f} if @var{val} is @code{0}, else return @code{#t}.
@end deftypefn

@deftypefn {C Function} int scm_to_bool (SCM val)
Return @code{1} if @var{val} is @code{SCM_BOOL_T}, return @code{0}
when @var{val} is @code{SCM_BOOL_F}, else signal a `wrong type' error.

You should probably use @code{scm_is_true} instead of this function
when you just want to test a @code{SCM} value for trueness.
@end deftypefn

@node Numbers
@subsection Numerical data types
@tpindex Numbers

Guile supports a rich ``tower'' of numerical types --- integer,
rational, real and complex --- and provides an extensive set of
mathematical and scientific functions for operating on numerical
data.  This section of the manual documents those types and functions.

You may also find it illuminating to read R5RS's presentation of numbers
in Scheme, which is particularly clear and accessible: see
@ref{Numbers,,,r5rs,R5RS}.

@menu
* Numerical Tower::             Scheme's numerical "tower".
* Integers::                    Whole numbers.
* Reals and Rationals::         Real and rational numbers.
* Complex Numbers::             Complex numbers.
* Exactness::                   Exactness and inexactness.
* Number Syntax::               Read syntax for numerical data.
* Integer Operations::          Operations on integer values.
* Comparison::                  Comparison predicates.
* Conversion::                  Converting numbers to and from strings.
* Complex::                     Complex number operations.
* Arithmetic::                  Arithmetic functions.
* Scientific::                  Scientific functions.
* Primitive Numerics::          Primitive numeric functions.
* Bitwise Operations::          Logical AND, OR, NOT, and so on.
* Random::                      Random number generation.
@end menu


@node Numerical Tower
@subsubsection Scheme's Numerical ``Tower''
@rnindex number?

Scheme's numerical ``tower'' consists of the following categories of
numbers:

@table @dfn
@item integers
Whole numbers, positive or negative; e.g.@: --5, 0, 18.

@item rationals
The set of numbers that can be expressed as @math{@var{p}/@var{q}}
where @var{p} and @var{q} are integers; e.g.@: @math{9/16} works, but
pi (an irrational number) doesn't. These include integers
(@math{@var{n}/1}).

@item real numbers
The set of numbers that describes all possible positions along a
one-dimensional line. This includes rationals as well as irrational
numbers.

@item complex numbers
The set of numbers that describes all possible positions in a two
dimensional space. This includes real as well as imaginary numbers
(@math{@var{a}+@var{b}i}, where @var{a} is the @dfn{real part},
@var{b} is the @dfn{imaginary part}, and @math{i} is the square root of
@minus{}1.)
@end table

It is called a tower because each category ``sits on'' the one that
follows it, in the sense that every integer is also a rational, every
rational is also real, and every real number is also a complex number
(but with zero imaginary part).

In addition to the classification into integers, rationals, reals and
complex numbers, Scheme also distinguishes between whether a number is
represented exactly or not.  For example, the result of
@m{2\sin(\pi/4),2*sin(pi/4)} is exactly @m{\sqrt{2},2^(1/2)}, but Guile
can represent neither @m{\pi/4,pi/4} nor @m{\sqrt{2},2^(1/2)} exactly.
Instead, it stores an inexact approximation, using the C type
@code{double}.

Guile can represent exact rationals of any magnitude, inexact
rationals that fit into a C @code{double}, and inexact complex numbers
with @code{double} real and imaginary parts.

The @code{number?} predicate may be applied to any Scheme value to
discover whether the value is any of the supported numerical types.

@deffn {Scheme Procedure} number? obj
@deffnx {C Function} scm_number_p (obj)
Return @code{#t} if @var{obj} is any kind of number, else @code{#f}.
@end deffn

For example:

@lisp
(number? 3)
@result{} #t

(number? "hello there!")
@result{} #f

(define pi 3.141592654)
(number? pi)
@result{} #t
@end lisp

@deftypefn {C Function} int scm_is_number (SCM obj)
This is equivalent to @code{scm_is_true (scm_number_p (obj))}.
@end deftypefn

The next few subsections document each of Guile's numerical data types
in detail.

@node Integers
@subsubsection Integers

@tpindex Integer numbers

@rnindex integer?

Integers are whole numbers, that is numbers with no fractional part,
such as 2, 83, and @minus{}3789.

Integers in Guile can be arbitrarily big, as shown by the following
example.

@lisp
(define (factorial n)
  (let loop ((n n) (product 1))
    (if (= n 0)
        product
        (loop (- n 1) (* product n)))))

(factorial 3)
@result{} 6

(factorial 20)
@result{} 2432902008176640000

(- (factorial 45))
@result{} -119622220865480194561963161495657715064383733760000000000
@end lisp

Readers whose background is in programming languages where integers are
limited by the need to fit into just 4 or 8 bytes of memory may find
this surprising, or suspect that Guile's representation of integers is
inefficient.  In fact, Guile achieves a near optimal balance of
convenience and efficiency by using the host computer's native
representation of integers where possible, and a more general
representation where the required number does not fit in the native
form.  Conversion between these two representations is automatic and
completely invisible to the Scheme level programmer.

The infinities @samp{+inf.0} and @samp{-inf.0} are considered to be
inexact integers.  They are explained in detail in the next section,
together with reals and rationals.

C has a host of different integer types, and Guile offers a host of
functions to convert between them and the @code{SCM} representation.
For example, a C @code{int} can be handled with @code{scm_to_int} and
@code{scm_from_int}.  Guile also defines a few C integer types of its
own, to help with differences between systems.

C integer types that are not covered can be handled with the generic
@code{scm_to_signed_integer} and @code{scm_from_signed_integer} for
signed types, or with @code{scm_to_unsigned_integer} and
@code{scm_from_unsigned_integer} for unsigned types.

Scheme integers can be exact and inexact.  For example, a number
written as @code{3.0} with an explicit decimal-point is inexact, but
it is also an integer.  The functions @code{integer?} and
@code{scm_is_integer} report true for such a number, but the functions
@code{scm_is_signed_integer} and @code{scm_is_unsigned_integer} only
allow exact integers and thus report false.  Likewise, the conversion
functions like @code{scm_to_signed_integer} only accept exact
integers.

The motivation for this behavior is that the inexactness of a number
should not be lost silently.  If you want to allow inexact integers,
you can explicitly insert a call to @code{inexact->exact} or to its C
equivalent @code{scm_inexact_to_exact}.  (Only inexact integers will
be converted by this call into exact integers; inexact non-integers
will become exact fractions.)

@deffn {Scheme Procedure} integer? x
@deffnx {C Function} scm_integer_p (x)
Return @code{#t} if @var{x} is an exact or inexact integer number, else
@code{#f}.

@lisp
(integer? 487)
@result{} #t

(integer? 3.0)
@result{} #t

(integer? -3.4)
@result{} #f

(integer? +inf.0)
@result{} #t
@end lisp
@end deffn

@deftypefn {C Function} int scm_is_integer (SCM x)
This is equivalent to @code{scm_is_true (scm_integer_p (x))}.
@end deftypefn

@defvr  {C Type} scm_t_int8
@defvrx {C Type} scm_t_uint8
@defvrx {C Type} scm_t_int16
@defvrx {C Type} scm_t_uint16
@defvrx {C Type} scm_t_int32
@defvrx {C Type} scm_t_uint32
@defvrx {C Type} scm_t_int64
@defvrx {C Type} scm_t_uint64
@defvrx {C Type} scm_t_intmax
@defvrx {C Type} scm_t_uintmax
The C types are equivalent to the corresponding ISO C types but are
defined on all platforms, with the exception of @code{scm_t_int64} and
@code{scm_t_uint64}, which are only defined when a 64-bit type is
available.  For example, @code{scm_t_int8} is equivalent to
@code{int8_t}.

You can regard these definitions as a stop-gap measure until all
platforms provide these types.  If you know that all the platforms
that you are interested in already provide these types, it is better
to use them directly instead of the types provided by Guile.
@end defvr

@deftypefn  {C Function} int scm_is_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
@deftypefnx {C Function} int scm_is_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
Return @code{1} when @var{x} represents an exact integer that is
between @var{min} and @var{max}, inclusive.

These functions can be used to check whether a @code{SCM} value will
fit into a given range, such as the range of a given C integer type.
If you just want to convert a @code{SCM} value to a given C integer
type, use one of the conversion functions directly.
@end deftypefn

@deftypefn  {C Function} scm_t_intmax scm_to_signed_integer (SCM x, scm_t_intmax min, scm_t_intmax max)
@deftypefnx {C Function} scm_t_uintmax scm_to_unsigned_integer (SCM x, scm_t_uintmax min, scm_t_uintmax max)
When @var{x} represents an exact integer that is between @var{min} and
@var{max} inclusive, return that integer.  Else signal an error,
either a `wrong-type' error when @var{x} is not an exact integer, or
an `out-of-range' error when it doesn't fit the given range.
@end deftypefn

@deftypefn  {C Function} SCM scm_from_signed_integer (scm_t_intmax x)
@deftypefnx {C Function} SCM scm_from_unsigned_integer (scm_t_uintmax x)
Return the @code{SCM} value that represents the integer @var{x}.  This
function will always succeed and will always return an exact number.
@end deftypefn

@deftypefn  {C Function} char scm_to_char (SCM x)
@deftypefnx {C Function} {signed char} scm_to_schar (SCM x)
@deftypefnx {C Function} {unsigned char} scm_to_uchar (SCM x)
@deftypefnx {C Function} short scm_to_short (SCM x)
@deftypefnx {C Function} {unsigned short} scm_to_ushort (SCM x)
@deftypefnx {C Function} int scm_to_int (SCM x)
@deftypefnx {C Function} {unsigned int} scm_to_uint (SCM x)
@deftypefnx {C Function} long scm_to_long (SCM x)
@deftypefnx {C Function} {unsigned long} scm_to_ulong (SCM x)
@deftypefnx {C Function} {long long} scm_to_long_long (SCM x)
@deftypefnx {C Function} {unsigned long long} scm_to_ulong_long (SCM x)
@deftypefnx {C Function} size_t scm_to_size_t (SCM x)
@deftypefnx {C Function} ssize_t scm_to_ssize_t (SCM x)
@deftypefnx {C Function} scm_t_int8 scm_to_int8 (SCM x)
@deftypefnx {C Function} scm_t_uint8 scm_to_uint8 (SCM x)
@deftypefnx {C Function} scm_t_int16 scm_to_int16 (SCM x)
@deftypefnx {C Function} scm_t_uint16 scm_to_uint16 (SCM x)
@deftypefnx {C Function} scm_t_int32 scm_to_int32 (SCM x)
@deftypefnx {C Function} scm_t_uint32 scm_to_uint32 (SCM x)
@deftypefnx {C Function} scm_t_int64 scm_to_int64 (SCM x)
@deftypefnx {C Function} scm_t_uint64 scm_to_uint64 (SCM x)
@deftypefnx {C Function} scm_t_intmax scm_to_intmax (SCM x)
@deftypefnx {C Function} scm_t_uintmax scm_to_uintmax (SCM x)
When @var{x} represents an exact integer that fits into the indicated
C type, return that integer.  Else signal an error, either a
`wrong-type' error when @var{x} is not an exact integer, or an
`out-of-range' error when it doesn't fit the given range.

The functions @code{scm_to_long_long}, @code{scm_to_ulong_long},
@code{scm_to_int64}, and @code{scm_to_uint64} are only available when
the corresponding types are.
@end deftypefn

@deftypefn  {C Function} SCM scm_from_char (char x)
@deftypefnx {C Function} SCM scm_from_schar (signed char x)
@deftypefnx {C Function} SCM scm_from_uchar (unsigned char x)
@deftypefnx {C Function} SCM scm_from_short (short x)
@deftypefnx {C Function} SCM scm_from_ushort (unsigned short x)
@deftypefnx {C Function} SCM scm_from_int (int  x)
@deftypefnx {C Function} SCM scm_from_uint (unsigned int x)
@deftypefnx {C Function} SCM scm_from_long (long x)
@deftypefnx {C Function} SCM scm_from_ulong (unsigned long x)
@deftypefnx {C Function} SCM scm_from_long_long (long long x)
@deftypefnx {C Function} SCM scm_from_ulong_long (unsigned long long x)
@deftypefnx {C Function} SCM scm_from_size_t (size_t x)
@deftypefnx {C Function} SCM scm_from_ssize_t (ssize_t x)
@deftypefnx {C Function} SCM scm_from_int8 (scm_t_int8 x)
@deftypefnx {C Function} SCM scm_from_uint8 (scm_t_uint8 x)
@deftypefnx {C Function} SCM scm_from_int16 (scm_t_int16 x)
@deftypefnx {C Function} SCM scm_from_uint16 (scm_t_uint16 x)
@deftypefnx {C Function} SCM scm_from_int32 (scm_t_int32 x)
@deftypefnx {C Function} SCM scm_from_uint32 (scm_t_uint32 x)
@deftypefnx {C Function} SCM scm_from_int64 (scm_t_int64 x)
@deftypefnx {C Function} SCM scm_from_uint64 (scm_t_uint64 x)
@deftypefnx {C Function} SCM scm_from_intmax (scm_t_intmax x)
@deftypefnx {C Function} SCM scm_from_uintmax (scm_t_uintmax x)
Return the @code{SCM} value that represents the integer @var{x}.
These functions will always succeed and will always return an exact
number.
@end deftypefn

@deftypefn {C Function} void scm_to_mpz (SCM val, mpz_t rop)
Assign @var{val} to the multiple precision integer @var{rop}.
@var{val} must be an exact integer, otherwise an error will be
signalled.  @var{rop} must have been initialized with @code{mpz_init}
before this function is called.  When @var{rop} is no longer needed
the occupied space must be freed with @code{mpz_clear}.
@xref{Initializing Integers,,, gmp, GNU MP Manual}, for details.
@end deftypefn

@deftypefn {C Function} SCM scm_from_mpz (mpz_t val)
Return the @code{SCM} value that represents @var{val}.
@end deftypefn

@node Reals and Rationals
@subsubsection Real and Rational Numbers
@tpindex Real numbers
@tpindex Rational numbers

@rnindex real?
@rnindex rational?

Mathematically, the real numbers are the set of numbers that describe
all possible points along a continuous, infinite, one-dimensional line.
The rational numbers are the set of all numbers that can be written as
fractions @var{p}/@var{q}, where @var{p} and @var{q} are integers.
All rational numbers are also real, but there are real numbers that
are not rational, for example @m{\sqrt2, the square root of 2}, and
@m{\pi,pi}.

Guile can represent both exact and inexact rational numbers, but it
can not represent irrational numbers.  Exact rationals are represented
by storing the numerator and denominator as two exact integers.
Inexact rationals are stored as floating point numbers using the C
type @code{double}.

Exact rationals are written as a fraction of integers.  There must be
no whitespace around the slash:

@lisp
1/2
-22/7
@end lisp

Even though the actual encoding of inexact rationals is in binary, it
may be helpful to think of it as a decimal number with a limited
number of significant figures and a decimal point somewhere, since
this corresponds to the standard notation for non-whole numbers.  For
example:

@lisp
0.34
-0.00000142857931198
-5648394822220000000000.0
4.0
@end lisp

The limited precision of Guile's encoding means that any ``real'' number
in Guile can be written in a rational form, by multiplying and then dividing
by sufficient powers of 10 (or in fact, 2).  For example,
@samp{-0.00000142857931198} is the same as @minus{}142857931198 divided by
100000000000000000.  In Guile's current incarnation, therefore, the
@code{rational?} and @code{real?} predicates are equivalent.


Dividing by an exact zero leads to a error message, as one might
expect.  However, dividing by an inexact zero does not produce an
error.  Instead, the result of the division is either plus or minus
infinity, depending on the sign of the divided number.

The infinities are written @samp{+inf.0} and @samp{-inf.0},
respectivly.  This syntax is also recognized by @code{read} as an
extension to the usual Scheme syntax.

Dividing zero by zero yields something that is not a number at all:
@samp{+nan.0}.  This is the special `not a number' value.

On platforms that follow @acronym{IEEE} 754 for their floating point
arithmetic, the @samp{+inf.0}, @samp{-inf.0}, and @samp{+nan.0} values
are implemented using the corresponding @acronym{IEEE} 754 values.
They behave in arithmetic operations like @acronym{IEEE} 754 describes
it, i.e., @code{(= +nan.0 +nan.0)} @result{} @code{#f}.

The infinities are inexact integers and are considered to be both even
and odd.  While @samp{+nan.0} is not @code{=} to itself, it is
@code{eqv?} to itself.

To test for the special values, use the functions @code{inf?} and
@code{nan?}.

@deffn {Scheme Procedure} real? obj
@deffnx {C Function} scm_real_p (obj)
Return @code{#t} if @var{obj} is a real number, else @code{#f}.  Note
that the sets of integer and rational values form subsets of the set
of real numbers, so the predicate will also be fulfilled if @var{obj}
is an integer number or a rational number.
@end deffn

@deffn {Scheme Procedure} rational? x
@deffnx {C Function} scm_rational_p (x)
Return @code{#t} if @var{x} is a rational number, @code{#f} otherwise.
Note that the set of integer values forms a subset of the set of
rational numbers, i. e. the predicate will also be fulfilled if
@var{x} is an integer number.

Since Guile can not represent irrational numbers, every number
satisfying @code{real?} also satisfies @code{rational?} in Guile.
@end deffn

@deffn {Scheme Procedure} rationalize x eps
@deffnx {C Function} scm_rationalize (x, eps)
Returns the @emph{simplest} rational number differing
from @var{x} by no more than @var{eps}.  

As required by @acronym{R5RS}, @code{rationalize} only returns an
exact result when both its arguments are exact.  Thus, you might need
to use @code{inexact->exact} on the arguments.

@lisp
(rationalize (inexact->exact 1.2) 1/100)
@result{} 6/5
@end lisp

@end deffn

@deffn  {Scheme Procedure} inf? x
@deffnx {C Function} scm_inf_p (x)
Return @code{#t} if @var{x} is either @samp{+inf.0} or @samp{-inf.0},
@code{#f} otherwise.
@end deffn

@deffn {Scheme Procedure} nan? x
@deffnx {C Function} scm_nan_p (x)
Return @code{#t} if @var{x} is @samp{+nan.0}, @code{#f} otherwise.
@end deffn

@deffn {Scheme Procedure} nan
@deffnx {C Function} scm_nan ()
Return NaN.
@end deffn

@deffn {Scheme Procedure} inf
@deffnx {C Function} scm_inf ()
Return Inf.
@end deffn

@deffn {Scheme Procedure} numerator x
@deffnx {C Function} scm_numerator (x)
Return the numerator of the rational number @var{x}.
@end deffn

@deffn {Scheme Procedure} denominator x
@deffnx {C Function} scm_denominator (x)
Return the denominator of the rational number @var{x}.
@end deffn

@deftypefn  {C Function} int scm_is_real (SCM val)
@deftypefnx {C Function} int scm_is_rational (SCM val)
Equivalent to @code{scm_is_true (scm_real_p (val))} and
@code{scm_is_true (scm_rational_p (val))}, respectively.
@end deftypefn

@deftypefn {C Function} double scm_to_double (SCM val)
Returns the number closest to @var{val} that is representable as a
@code{double}.  Returns infinity for a @var{val} that is too large in
magnitude.  The argument @var{val} must be a real number.
@end deftypefn

@deftypefn {C Function} SCM scm_from_double (double val)
Return the @code{SCM} value that representats @var{val}.  The returned
value is inexact according to the predicate @code{inexact?}, but it
will be exactly equal to @var{val}.
@end deftypefn

@node Complex Numbers
@subsubsection Complex Numbers
@tpindex Complex numbers

@rnindex complex?

Complex numbers are the set of numbers that describe all possible points
in a two-dimensional space.  The two coordinates of a particular point
in this space are known as the @dfn{real} and @dfn{imaginary} parts of
the complex number that describes that point.

In Guile, complex numbers are written in rectangular form as the sum of
their real and imaginary parts, using the symbol @code{i} to indicate
the imaginary part.

@lisp
3+4i
@result{}
3.0+4.0i

(* 3-8i 2.3+0.3i)
@result{}
9.3-17.5i
@end lisp

@cindex polar form
@noindent
Polar form can also be used, with an @samp{@@} between magnitude and
angle,

@lisp
1@@3.141592 @result{} -1.0      (approx)
-1@@1.57079 @result{} 0.0-1.0i  (approx)
@end lisp

Guile represents a complex number with a non-zero imaginary part as a
pair of inexact rationals, so the real and imaginary parts of a
complex number have the same properties of inexactness and limited
precision as single inexact rational numbers.  Guile can not represent
exact complex numbers with non-zero imaginary parts.

@deffn {Scheme Procedure} complex? z
@deffnx {C Function} scm_complex_p (z)
Return @code{#t} if @var{x} is a complex number, @code{#f}
otherwise.  Note that the sets of real, rational and integer
values form subsets of the set of complex numbers, i. e. the
predicate will also be fulfilled if @var{x} is a real,
rational or integer number.
@end deffn

@deftypefn {C Function} int scm_is_complex (SCM val)
Equivalent to @code{scm_is_true (scm_complex_p (val))}.
@end deftypefn

@node Exactness
@subsubsection Exact and Inexact Numbers
@tpindex Exact numbers
@tpindex Inexact numbers

@rnindex exact?
@rnindex inexact?
@rnindex exact->inexact
@rnindex inexact->exact

R5RS requires that a calculation involving inexact numbers always
produces an inexact result.  To meet this requirement, Guile
distinguishes between an exact integer value such as @samp{5} and the
corresponding inexact real value which, to the limited precision
available, has no fractional part, and is printed as @samp{5.0}.  Guile
will only convert the latter value to the former when forced to do so by
an invocation of the @code{inexact->exact} procedure.

@deffn {Scheme Procedure} exact? z
@deffnx {C Function} scm_exact_p (z)
Return @code{#t} if the number @var{z} is exact, @code{#f}
otherwise.

@lisp
(exact? 2)
@result{} #t

(exact? 0.5)
@result{} #f

(exact? (/ 2))
@result{} #t
@end lisp

@end deffn

@deffn {Scheme Procedure} inexact? z
@deffnx {C Function} scm_inexact_p (z)
Return @code{#t} if the number @var{z} is inexact, @code{#f}
else.
@end deffn

@deffn {Scheme Procedure} inexact->exact z
@deffnx {C Function} scm_inexact_to_exact (z)
Return an exact number that is numerically closest to @var{z}, when
there is one.  For inexact rationals, Guile returns the exact rational
that is numerically equal to the inexact rational.  Inexact complex
numbers with a non-zero imaginary part can not be made exact.

@lisp
(inexact->exact 0.5)
@result{} 1/2
@end lisp

The following happens because 12/10 is not exactly representable as a
@code{double} (on most platforms).  However, when reading a decimal
number that has been marked exact with the ``#e'' prefix, Guile is
able to represent it correctly.

@lisp
(inexact->exact 1.2)  
@result{} 5404319552844595/4503599627370496

#e1.2
@result{} 6/5
@end lisp

@end deffn

@c begin (texi-doc-string "guile" "exact->inexact")
@deffn {Scheme Procedure} exact->inexact z
@deffnx {C Function} scm_exact_to_inexact (z)
Convert the number @var{z} to its inexact representation.
@end deffn


@node Number Syntax
@subsubsection Read Syntax for Numerical Data

The read syntax for integers is a string of digits, optionally
preceded by a minus or plus character, a code indicating the
base in which the integer is encoded, and a code indicating whether
the number is exact or inexact.  The supported base codes are:

@table @code
@item #b
@itemx #B
the integer is written in binary (base 2)

@item #o
@itemx #O
the integer is written in octal (base 8)

@item #d
@itemx #D
the integer is written in decimal (base 10)

@item #x
@itemx #X
the integer is written in hexadecimal (base 16)
@end table

If the base code is omitted, the integer is assumed to be decimal.  The
following examples show how these base codes are used.

@lisp
-13
@result{} -13

#d-13
@result{} -13

#x-13
@result{} -19

#b+1101
@result{} 13

#o377
@result{} 255
@end lisp

The codes for indicating exactness (which can, incidentally, be applied
to all numerical values) are:

@table @code
@item #e
@itemx #E
the number is exact

@item #i
@itemx #I
the number is inexact.
@end table

If the exactness indicator is omitted, the number is exact unless it
contains a radix point.  Since Guile can not represent exact complex
numbers, an error is signalled when asking for them.

@lisp
(exact? 1.2)
@result{} #f

(exact? #e1.2)
@result{} #t

(exact? #e+1i)
ERROR: Wrong type argument
@end lisp

Guile also understands the syntax @samp{+inf.0} and @samp{-inf.0} for
plus and minus infinity, respectively.  The value must be written
exactly as shown, that is, they always must have a sign and exactly
one zero digit after the decimal point.  It also understands
@samp{+nan.0} and @samp{-nan.0} for the special `not-a-number' value.
The sign is ignored for `not-a-number' and the value is always printed
as @samp{+nan.0}.

@node Integer Operations
@subsubsection Operations on Integer Values
@rnindex odd?
@rnindex even?
@rnindex quotient
@rnindex remainder
@rnindex modulo
@rnindex gcd
@rnindex lcm

@deffn {Scheme Procedure} odd? n
@deffnx {C Function} scm_odd_p (n)
Return @code{#t} if @var{n} is an odd number, @code{#f}
otherwise.
@end deffn

@deffn {Scheme Procedure} even? n
@deffnx {C Function} scm_even_p (n)
Return @code{#t} if @var{n} is an even number, @code{#f}
otherwise.
@end deffn

@c begin (texi-doc-string "guile" "quotient")
@c begin (texi-doc-string "guile" "remainder")
@deffn {Scheme Procedure} quotient n d
@deffnx {Scheme Procedure} remainder n d
@deffnx {C Function} scm_quotient (n, d)
@deffnx {C Function} scm_remainder (n, d)
Return the quotient or remainder from @var{n} divided by @var{d}.  The
quotient is rounded towards zero, and the remainder will have the same
sign as @var{n}.  In all cases quotient and remainder satisfy
@math{@var{n} = @var{q}*@var{d} + @var{r}}.

@lisp
(remainder 13 4) @result{} 1
(remainder -13 4) @result{} -1
@end lisp
@end deffn

@c begin (texi-doc-string "guile" "modulo")
@deffn {Scheme Procedure} modulo n d
@deffnx {C Function} scm_modulo (n, d)
Return the remainder from @var{n} divided by @var{d}, with the same
sign as @var{d}.

@lisp
(modulo 13 4) @result{} 1
(modulo -13 4) @result{} 3
(modulo 13 -4) @result{} -3
(modulo -13 -4) @result{} -1
@end lisp
@end deffn

@c begin (texi-doc-string "guile" "gcd")
@deffn {Scheme Procedure} gcd x@dots{}
@deffnx {C Function} scm_gcd (x, y)
Return the greatest common divisor of all arguments.
If called without arguments, 0 is returned.

The C function @code{scm_gcd} always takes two arguments, while the
Scheme function can take an arbitrary number.
@end deffn

@c begin (texi-doc-string "guile" "lcm")
@deffn {Scheme Procedure} lcm x@dots{}
@deffnx {C Function} scm_lcm (x, y)
Return the least common multiple of the arguments.
If called without arguments, 1 is returned.

The C function @code{scm_lcm} always takes two arguments, while the
Scheme function can take an arbitrary number.
@end deffn

@deffn {Scheme Procedure} modulo-expt n k m
@deffnx {C Function} scm_modulo_expt (n, k, m)
Return @var{n} raised to the integer exponent
@var{k}, modulo @var{m}.

@lisp
(modulo-expt 2 3 5)
   @result{} 3
@end lisp
@end deffn

@node Comparison
@subsubsection Comparison Predicates
@rnindex zero?
@rnindex positive?
@rnindex negative?

The C comparison functions below always takes two arguments, while the
Scheme functions can take an arbitrary number.  Also keep in mind that
the C functions return one of the Scheme boolean values
@code{SCM_BOOL_T} or @code{SCM_BOOL_F} which are both true as far as C
is concerned.  Thus, always write @code{scm_is_true (scm_num_eq_p (x,
y))} when testing the two Scheme numbers @code{x} and @code{y} for
equality, for example.

@c begin (texi-doc-string "guile" "=")
@deffn {Scheme Procedure} =
@deffnx {C Function} scm_num_eq_p (x, y)
Return @code{#t} if all parameters are numerically equal.
@end deffn

@c begin (texi-doc-string "guile" "<")
@deffn {Scheme Procedure} <
@deffnx {C Function} scm_less_p (x, y)
Return @code{#t} if the list of parameters is monotonically
increasing.
@end deffn

@c begin (texi-doc-string "guile" ">")
@deffn {Scheme Procedure} >
@deffnx {C Function} scm_gr_p (x, y)
Return @code{#t} if the list of parameters is monotonically
decreasing.
@end deffn

@c begin (texi-doc-string "guile" "<=")
@deffn {Scheme Procedure} <=
@deffnx {C Function} scm_leq_p (x, y)
Return @code{#t} if the list of parameters is monotonically
non-decreasing.
@end deffn

@c begin (texi-doc-string "guile" ">=")
@deffn {Scheme Procedure} >=
@deffnx {C Function} scm_geq_p (x, y)
Return @code{#t} if the list of parameters is monotonically
non-increasing.
@end deffn

@c begin (texi-doc-string "guile" "zero?")
@deffn {Scheme Procedure} zero? z
@deffnx {C Function} scm_zero_p (z)
Return @code{#t} if @var{z} is an exact or inexact number equal to
zero.
@end deffn

@c begin (texi-doc-string "guile" "positive?")
@deffn {Scheme Procedure} positive? x
@deffnx {C Function} scm_positive_p (x)
Return @code{#t} if @var{x} is an exact or inexact number greater than
zero.
@end deffn

@c begin (texi-doc-string "guile" "negative?")
@deffn {Scheme Procedure} negative? x
@deffnx {C Function} scm_negative_p (x)
Return @code{#t} if @var{x} is an exact or inexact number less than
zero.
@end deffn


@node Conversion
@subsubsection Converting Numbers To and From Strings
@rnindex number->string
@rnindex string->number

The following procedures read and write numbers according to their
external representation as defined by R5RS (@pxref{Lexical structure,
R5RS Lexical Structure,, r5rs, The Revised^5 Report on the Algorithmic
Language Scheme}).  @xref{Number Input and Output, the @code{(ice-9
i18n)} module}, for locale-dependent number parsing.

@deffn {Scheme Procedure} number->string n [radix]
@deffnx {C Function} scm_number_to_string (n, radix)
Return a string holding the external representation of the
number @var{n} in the given @var{radix}.  If @var{n} is
inexact, a radix of 10 will be used.
@end deffn

@deffn {Scheme Procedure} string->number string [radix]
@deffnx {C Function} scm_string_to_number (string, radix)
Return a number of the maximally precise representation
expressed by the given @var{string}. @var{radix} must be an
exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}
is a default radix that may be overridden by an explicit radix
prefix in @var{string} (e.g. "#o177"). If @var{radix} is not
supplied, then the default radix is 10. If string is not a
syntactically valid notation for a number, then
@code{string->number} returns @code{#f}.
@end deffn

@deftypefn {C Function} SCM scm_c_locale_stringn_to_number (const char *string, size_t len, unsigned radix)
As per @code{string->number} above, but taking a C string, as pointer
and length.  The string characters should be in the current locale
encoding (@code{locale} in the name refers only to that, there's no
locale-dependent parsing).
@end deftypefn


@node Complex
@subsubsection Complex Number Operations
@rnindex make-rectangular
@rnindex make-polar
@rnindex real-part
@rnindex imag-part
@rnindex magnitude
@rnindex angle

@deffn {Scheme Procedure} make-rectangular real imaginary
@deffnx {C Function} scm_make_rectangular (real, imaginary)
Return a complex number constructed of the given @var{real} and
@var{imaginary} parts.
@end deffn

@deffn {Scheme Procedure} make-polar x y
@deffnx {C Function} scm_make_polar (x, y)
@cindex polar form
Return the complex number @var{x} * e^(i * @var{y}).
@end deffn

@c begin (texi-doc-string "guile" "real-part")
@deffn {Scheme Procedure} real-part z
@deffnx {C Function} scm_real_part (z)
Return the real part of the number @var{z}.
@end deffn

@c begin (texi-doc-string "guile" "imag-part")
@deffn {Scheme Procedure} imag-part z
@deffnx {C Function} scm_imag_part (z)
Return the imaginary part of the number @var{z}.
@end deffn

@c begin (texi-doc-string "guile" "magnitude")
@deffn {Scheme Procedure} magnitude z
@deffnx {C Function} scm_magnitude (z)
Return the magnitude of the number @var{z}. This is the same as
@code{abs} for real arguments, but also allows complex numbers.
@end deffn

@c begin (texi-doc-string "guile" "angle")
@deffn {Scheme Procedure} angle z
@deffnx {C Function} scm_angle (z)
Return the angle of the complex number @var{z}.
@end deffn

@deftypefn  {C Function} SCM scm_c_make_rectangular (double re, double im)
@deftypefnx {C Function} SCM scm_c_make_polar (double x, double y)
Like @code{scm_make_rectangular} or @code{scm_make_polar},
respectively, but these functions take @code{double}s as their
arguments.
@end deftypefn

@deftypefn  {C Function} double scm_c_real_part (z)
@deftypefnx {C Function} double scm_c_imag_part (z)
Returns the real or imaginary part of @var{z} as a @code{double}.
@end deftypefn

@deftypefn  {C Function} double scm_c_magnitude (z)
@deftypefnx {C Function} double scm_c_angle (z)
Returns the magnitude or angle of @var{z} as a @code{double}.
@end deftypefn


@node Arithmetic
@subsubsection Arithmetic Functions
@rnindex max
@rnindex min
@rnindex +
@rnindex *
@rnindex -
@rnindex /
@findex 1+
@findex 1-
@rnindex abs
@rnindex floor
@rnindex ceiling
@rnindex truncate
@rnindex round

The C arithmetic functions below always takes two arguments, while the
Scheme functions can take an arbitrary number.  When you need to
invoke them with just one argument, for example to compute the
equivalent od @code{(- x)}, pass @code{SCM_UNDEFINED} as the second
one: @code{scm_difference (x, SCM_UNDEFINED)}.

@c begin (texi-doc-string "guile" "+")
@deffn {Scheme Procedure} + z1 @dots{}
@deffnx {C Function} scm_sum (z1, z2)
Return the sum of all parameter values.  Return 0 if called without any
parameters.
@end deffn

@c begin (texi-doc-string "guile" "-")
@deffn {Scheme Procedure} - z1 z2 @dots{}
@deffnx {C Function} scm_difference (z1, z2)
If called with one argument @var{z1}, -@var{z1} is returned. Otherwise
the sum of all but the first argument are subtracted from the first
argument.
@end deffn

@c begin (texi-doc-string "guile" "*")
@deffn {Scheme Procedure} * z1 @dots{}
@deffnx {C Function} scm_product (z1, z2)
Return the product of all arguments.  If called without arguments, 1 is
returned.
@end deffn

@c begin (texi-doc-string "guile" "/")
@deffn {Scheme Procedure} / z1 z2 @dots{}
@deffnx {C Function} scm_divide (z1, z2)
Divide the first argument by the product of the remaining arguments.  If
called with one argument @var{z1}, 1/@var{z1} is returned.
@end deffn

@deffn {Scheme Procedure} 1+ z
@deffnx {C Function} scm_oneplus (z)
Return @math{@var{z} + 1}.
@end deffn

@deffn {Scheme Procedure} 1- z
@deffnx {C function} scm_oneminus (z)
Return @math{@var{z} - 1}.
@end deffn

@c begin (texi-doc-string "guile" "abs")
@deffn {Scheme Procedure} abs x
@deffnx {C Function} scm_abs (x)
Return the absolute value of @var{x}.

@var{x} must be a number with zero imaginary part.  To calculate the
magnitude of a complex number, use @code{magnitude} instead.
@end deffn

@c begin (texi-doc-string "guile" "max")
@deffn {Scheme Procedure} max x1 x2 @dots{}
@deffnx {C Function} scm_max (x1, x2)
Return the maximum of all parameter values.
@end deffn

@c begin (texi-doc-string "guile" "min")
@deffn {Scheme Procedure} min x1 x2 @dots{}
@deffnx {C Function} scm_min (x1, x2)
Return the minimum of all parameter values.
@end deffn

@c begin (texi-doc-string "guile" "truncate")
@deffn {Scheme Procedure} truncate x
@deffnx {C Function} scm_truncate_number (x)
Round the inexact number @var{x} towards zero.
@end deffn

@c begin (texi-doc-string "guile" "round")
@deffn {Scheme Procedure} round x
@deffnx {C Function} scm_round_number (x)
Round the inexact number @var{x} to the nearest integer.  When exactly
halfway between two integers, round to the even one.
@end deffn

@c begin (texi-doc-string "guile" "floor")
@deffn {Scheme Procedure} floor x
@deffnx {C Function} scm_floor (x)
Round the number @var{x} towards minus infinity.
@end deffn

@c begin (texi-doc-string "guile" "ceiling")
@deffn {Scheme Procedure} ceiling x
@deffnx {C Function} scm_ceiling (x)
Round the number @var{x} towards infinity.
@end deffn

@deftypefn  {C Function} double scm_c_truncate (double x)
@deftypefnx {C Function} double scm_c_round (double x)
Like @code{scm_truncate_number} or @code{scm_round_number},
respectively, but these functions take and return @code{double}
values.
@end deftypefn

@node Scientific
@subsubsection Scientific Functions

The following procedures accept any kind of number as arguments,
including complex numbers.

@rnindex sqrt
@c begin (texi-doc-string "guile" "sqrt")
@deffn {Scheme Procedure} sqrt z
Return the square root of @var{z}.  Of the two possible roots
(positive and negative), the one with the a positive real part is
returned, or if that's zero then a positive imaginary part.  Thus,

@example
(sqrt 9.0)       @result{} 3.0
(sqrt -9.0)      @result{} 0.0+3.0i
(sqrt 1.0+1.0i)  @result{} 1.09868411346781+0.455089860562227i
(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i
@end example
@end deffn

@rnindex expt
@c begin (texi-doc-string "guile" "expt")
@deffn {Scheme Procedure} expt z1 z2
Return @var{z1} raised to the power of @var{z2}.
@end deffn

@rnindex sin
@c begin (texi-doc-string "guile" "sin")
@deffn {Scheme Procedure} sin z
Return the sine of @var{z}.
@end deffn

@rnindex cos
@c begin (texi-doc-string "guile" "cos")
@deffn {Scheme Procedure} cos z
Return the cosine of @var{z}.
@end deffn

@rnindex tan
@c begin (texi-doc-string "guile" "tan")
@deffn {Scheme Procedure} tan z
Return the tangent of @var{z}.
@end deffn

@rnindex asin
@c begin (texi-doc-string "guile" "asin")
@deffn {Scheme Procedure} asin z
Return the arcsine of @var{z}.
@end deffn

@rnindex acos
@c begin (texi-doc-string "guile" "acos")
@deffn {Scheme Procedure} acos z
Return the arccosine of @var{z}.
@end deffn

@rnindex atan
@c begin (texi-doc-string "guile" "atan")
@deffn {Scheme Procedure} atan z
@deffnx {Scheme Procedure} atan y x
Return the arctangent of @var{z}, or of @math{@var{y}/@var{x}}.
@end deffn

@rnindex exp
@c begin (texi-doc-string "guile" "exp")
@deffn {Scheme Procedure} exp z
Return e to the power of @var{z}, where e is the base of natural
logarithms (2.71828@dots{}).
@end deffn

@rnindex log
@c begin (texi-doc-string "guile" "log")
@deffn {Scheme Procedure} log z
Return the natural logarithm of @var{z}.
@end deffn

@c begin (texi-doc-string "guile" "log10")
@deffn {Scheme Procedure} log10 z
Return the base 10 logarithm of @var{z}.
@end deffn

@c begin (texi-doc-string "guile" "sinh")
@deffn {Scheme Procedure} sinh z
Return the hyperbolic sine of @var{z}.
@end deffn

@c begin (texi-doc-string "guile" "cosh")
@deffn {Scheme Procedure} cosh z
Return the hyperbolic cosine of @var{z}.
@end deffn

@c begin (texi-doc-string "guile" "tanh")
@deffn {Scheme Procedure} tanh z
Return the hyperbolic tangent of @var{z}.
@end deffn

@c begin (texi-doc-string "guile" "asinh")
@deffn {Scheme Procedure} asinh z
Return the hyperbolic arcsine of @var{z}.
@end deffn

@c begin (texi-doc-string "guile" "acosh")
@deffn {Scheme Procedure} acosh z
Return the hyperbolic arccosine of @var{z}.
@end deffn

@c begin (texi-doc-string "guile" "atanh")
@deffn {Scheme Procedure} atanh z
Return the hyperbolic arctangent of @var{z}.
@end deffn


@node Primitive Numerics
@subsubsection Primitive Numeric Functions

Many of Guile's numeric procedures which accept any kind of numbers as
arguments, including complex numbers, are implemented as Scheme
procedures that use the following real number-based primitives.  These
primitives signal an error if they are called with complex arguments.

@c begin (texi-doc-string "guile" "$abs")
@deffn {Scheme Procedure} $abs x
Return the absolute value of @var{x}.
@end deffn

@c begin (texi-doc-string "guile" "$sqrt")
@deffn {Scheme Procedure} $sqrt x
Return the square root of @var{x}.
@end deffn

@deffn {Scheme Procedure} $expt x y
@deffnx {C Function} scm_sys_expt (x, y)
Return @var{x} raised to the power of @var{y}. This
procedure does not accept complex arguments.
@end deffn

@c begin (texi-doc-string "guile" "$sin")
@deffn {Scheme Procedure} $sin x
Return the sine of @var{x}.
@end deffn

@c begin (texi-doc-string "guile" "$cos")
@deffn {Scheme Procedure} $cos x
Return the cosine of @var{x}.
@end deffn

@c begin (texi-doc-string "guile" "$tan")
@deffn {Scheme Procedure} $tan x
Return the tangent of @var{x}.
@end deffn

@c begin (texi-doc-string "guile" "$asin")
@deffn {Scheme Procedure} $asin x
Return the arcsine of @var{x}.
@end deffn

@c begin (texi-doc-string "guile" "$acos")
@deffn {Scheme Procedure} $acos x
Return the arccosine of @var{x}.
@end deffn

@c begin (texi-doc-string "guile" "$atan")
@deffn {Scheme Procedure} $atan x
Return the arctangent of @var{x} in the range @minus{}@math{PI/2} to
@math{PI/2}.
@end deffn

@deffn {Scheme Procedure} $atan2 x y
@deffnx {C Function} scm_sys_atan2 (x, y)
Return the arc tangent of the two arguments @var{x} and
@var{y}. This is similar to calculating the arc tangent of
@var{x} / @var{y}, except that the signs of both arguments
are used to determine the quadrant of the result. This
procedure does not accept complex arguments.
@end deffn

@c begin (texi-doc-string "guile" "$exp")
@deffn {Scheme Procedure} $exp x
Return e to the power of @var{x}, where e is the base of natural
logarithms (2.71828@dots{}).
@end deffn

@c begin (texi-doc-string "guile" "$log")
@deffn {Scheme Procedure} $log x
Return the natural logarithm of @var{x}.
@end deffn

@c begin (texi-doc-string "guile" "$sinh")
@deffn {Scheme Procedure} $sinh x
Return the hyperbolic sine of @var{x}.
@end deffn

@c begin (texi-doc-string "guile" "$cosh")
@deffn {Scheme Procedure} $cosh x
Return the hyperbolic cosine of @var{x}.
@end deffn

@c begin (texi-doc-string "guile" "$tanh")
@deffn {Scheme Procedure} $tanh x
Return the hyperbolic tangent of @var{x}.
@end deffn

@c begin (texi-doc-string "guile" "$asinh")
@deffn {Scheme Procedure} $asinh x
Return the hyperbolic arcsine of @var{x}.
@end deffn

@c begin (texi-doc-string "guile" "$acosh")
@deffn {Scheme Procedure} $acosh x
Return the hyperbolic arccosine of @var{x}.
@end deffn

@c begin (texi-doc-string "guile" "$atanh")
@deffn {Scheme Procedure} $atanh x
Return the hyperbolic arctangent of @var{x}.
@end deffn

C functions for the above are provided by the standard mathematics
library.  Naturally these expect and return @code{double} arguments
(@pxref{Mathematics,,, libc, GNU C Library Reference Manual}).

@multitable {xx} {Scheme Procedure} {C Function}
@item @tab Scheme Procedure @tab C Function

@item @tab @code{$abs}      @tab @code{fabs}
@item @tab @code{$sqrt}     @tab @code{sqrt}
@item @tab @code{$sin}      @tab @code{sin}
@item @tab @code{$cos}      @tab @code{cos}
@item @tab @code{$tan}      @tab @code{tan}
@item @tab @code{$asin}     @tab @code{asin}
@item @tab @code{$acos}     @tab @code{acos}
@item @tab @code{$atan}     @tab @code{atan}
@item @tab @code{$atan2}    @tab @code{atan2}
@item @tab @code{$exp}      @tab @code{exp}
@item @tab @code{$expt}     @tab @code{pow}
@item @tab @code{$log}      @tab @code{log}
@item @tab @code{$sinh}     @tab @code{sinh}
@item @tab @code{$cosh}     @tab @code{cosh}
@item @tab @code{$tanh}     @tab @code{tanh}
@item @tab @code{$asinh}    @tab @code{asinh}
@item @tab @code{$acosh}    @tab @code{acosh}
@item @tab @code{$atanh}    @tab @code{atanh}
@end multitable

@code{asinh}, @code{acosh} and @code{atanh} are C99 standard but might
not be available on older systems.  Guile provides the following
equivalents (on all systems).

@deftypefn {C Function} double scm_asinh (double x)
@deftypefnx {C Function} double scm_acosh (double x)
@deftypefnx {C Function} double scm_atanh (double x)
Return the hyperbolic arcsine, arccosine or arctangent of @var{x}
respectively.
@end deftypefn


@node Bitwise Operations
@subsubsection Bitwise Operations

For the following bitwise functions, negative numbers are treated as
infinite precision twos-complements.  For instance @math{-6} is bits
@math{@dots{}111010}, with infinitely many ones on the left.  It can
be seen that adding 6 (binary 110) to such a bit pattern gives all
zeros.

@deffn {Scheme Procedure} logand n1 n2 @dots{}
@deffnx {C Function} scm_logand (n1, n2)
Return the bitwise @sc{and} of the integer arguments.

@lisp
(logand) @result{} -1
(logand 7) @result{} 7
(logand #b111 #b011 #b001) @result{} 1
@end lisp
@end deffn

@deffn {Scheme Procedure} logior n1 n2 @dots{}
@deffnx {C Function} scm_logior (n1, n2)
Return the bitwise @sc{or} of the integer arguments.

@lisp
(logior) @result{} 0
(logior 7) @result{} 7
(logior #b000 #b001 #b011) @result{} 3
@end lisp
@end deffn

@deffn {Scheme Procedure} logxor n1 n2 @dots{}
@deffnx {C Function} scm_loxor (n1, n2)
Return the bitwise @sc{xor} of the integer arguments.  A bit is
set in the result if it is set in an odd number of arguments.

@lisp
(logxor) @result{} 0
(logxor 7) @result{} 7
(logxor #b000 #b001 #b011) @result{} 2
(logxor #b000 #b001 #b011 #b011) @result{} 1
@end lisp
@end deffn

@deffn {Scheme Procedure} lognot n
@deffnx {C Function} scm_lognot (n)
Return the integer which is the ones-complement of the integer
argument, ie.@: each 0 bit is changed to 1 and each 1 bit to 0.

@lisp
(number->string (lognot #b10000000) 2)
   @result{} "-10000001"
(number->string (lognot #b0) 2)
   @result{} "-1"
@end lisp
@end deffn

@deffn {Scheme Procedure} logtest j k
@deffnx {C Function} scm_logtest (j, k)
Test whether @var{j} and @var{k} have any 1 bits in common.  This is
equivalent to @code{(not (zero? (logand j k)))}, but without actually
calculating the @code{logand}, just testing for non-zero.

@lisp
(logtest #b0100 #b1011) @result{} #f
(logtest #b0100 #b0111) @result{} #t
@end lisp
@end deffn

@deffn {Scheme Procedure} logbit? index j
@deffnx {C Function} scm_logbit_p (index, j)
Test whether bit number @var{index} in @var{j} is set.  @var{index}
starts from 0 for the least significant bit.

@lisp
(logbit? 0 #b1101) @result{} #t
(logbit? 1 #b1101) @result{} #f
(logbit? 2 #b1101) @result{} #t
(logbit? 3 #b1101) @result{} #t
(logbit? 4 #b1101) @result{} #f
@end lisp
@end deffn

@deffn {Scheme Procedure} ash n cnt
@deffnx {C Function} scm_ash (n, cnt)
Return @var{n} shifted left by @var{cnt} bits, or shifted right if
@var{cnt} is negative.  This is an ``arithmetic'' shift.

This is effectively a multiplication by @m{2^{cnt}, 2^@var{cnt}}, and
when @var{cnt} is negative it's a division, rounded towards negative
infinity.  (Note that this is not the same rounding as @code{quotient}
does.)

With @var{n} viewed as an infinite precision twos complement,
@code{ash} means a left shift introducing zero bits, or a right shift
dropping bits.

@lisp
(number->string (ash #b1 3) 2)     @result{} "1000"
(number->string (ash #b1010 -1) 2) @result{} "101"

;; -23 is bits ...11101001, -6 is bits ...111010
(ash -23 -2) @result{} -6
@end lisp
@end deffn

@deffn {Scheme Procedure} logcount n
@deffnx {C Function} scm_logcount (n)
Return the number of bits in integer @var{n}.  If @var{n} is
positive, the 1-bits in its binary representation are counted.
If negative, the 0-bits in its two's-complement binary
representation are counted.  If zero, 0 is returned.

@lisp
(logcount #b10101010)
   @result{} 4
(logcount 0)
   @result{} 0
(logcount -2)
   @result{} 1
@end lisp
@end deffn

@deffn {Scheme Procedure} integer-length n
@deffnx {C Function} scm_integer_length (n)
Return the number of bits necessary to represent @var{n}.

For positive @var{n} this is how many bits to the most significant one
bit.  For negative @var{n} it's how many bits to the most significant
zero bit in twos complement form.

@lisp
(integer-length #b10101010) @result{} 8
(integer-length #b1111)     @result{} 4
(integer-length 0)          @result{} 0
(integer-length -1)         @result{} 0
(integer-length -256)       @result{} 8
(integer-length -257)       @result{} 9
@end lisp
@end deffn

@deffn {Scheme Procedure} integer-expt n k
@deffnx {C Function} scm_integer_expt (n, k)
Return @var{n} raised to the power @var{k}.  @var{k} must be an exact
integer, @var{n} can be any number.

Negative @var{k} is supported, and results in @m{1/n^|k|, 1/n^abs(k)}
in the usual way.  @math{@var{n}^0} is 1, as usual, and that includes
@math{0^0} is 1.

@lisp
(integer-expt 2 5)   @result{} 32
(integer-expt -3 3)  @result{} -27
(integer-expt 5 -3)  @result{} 1/125
(integer-expt 0 0)   @result{} 1
@end lisp
@end deffn

@deffn {Scheme Procedure} bit-extract n start end
@deffnx {C Function} scm_bit_extract (n, start, end)
Return the integer composed of the @var{start} (inclusive)
through @var{end} (exclusive) bits of @var{n}.  The
@var{start}th bit becomes the 0-th bit in the result.

@lisp
(number->string (bit-extract #b1101101010 0 4) 2)
   @result{} "1010"
(number->string (bit-extract #b1101101010 4 9) 2)
   @result{} "10110"
@end lisp
@end deffn


@node Random
@subsubsection Random Number Generation

Pseudo-random numbers are generated from a random state object, which
can be created with @code{seed->random-state}.  The @var{state}
parameter to the various functions below is optional, it defaults to
the state object in the @code{*random-state*} variable.

@deffn {Scheme Procedure} copy-random-state [state]
@deffnx {C Function} scm_copy_random_state (state)
Return a copy of the random state @var{state}.
@end deffn

@deffn {Scheme Procedure} random n [state]
@deffnx {C Function} scm_random (n, state)
Return a number in [0, @var{n}).

Accepts a positive integer or real n and returns a
number of the same type between zero (inclusive) and
@var{n} (exclusive). The values returned have a uniform
distribution.
@end deffn

@deffn {Scheme Procedure} random:exp [state]
@deffnx {C Function} scm_random_exp (state)
Return an inexact real in an exponential distribution with mean
1.  For an exponential distribution with mean @var{u} use @code{(*
@var{u} (random:exp))}.
@end deffn

@deffn {Scheme Procedure} random:hollow-sphere! vect [state]
@deffnx {C Function} scm_random_hollow_sphere_x (vect, state)
Fills @var{vect} with inexact real random numbers the sum of whose
squares is equal to 1.0.  Thinking of @var{vect} as coordinates in
space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
the coordinates are uniformly distributed over the surface of the unit
n-sphere.
@end deffn

@deffn {Scheme Procedure} random:normal [state]
@deffnx {C Function} scm_random_normal (state)
Return an inexact real in a normal distribution.  The distribution
used has mean 0 and standard deviation 1.  For a normal distribution
with mean @var{m} and standard deviation @var{d} use @code{(+ @var{m}
(* @var{d} (random:normal)))}.
@end deffn

@deffn {Scheme Procedure} random:normal-vector! vect [state]
@deffnx {C Function} scm_random_normal_vector_x (vect, state)
Fills @var{vect} with inexact real random numbers that are
independent and standard normally distributed
(i.e., with mean 0 and variance 1).
@end deffn

@deffn {Scheme Procedure} random:solid-sphere! vect [state]
@deffnx {C Function} scm_random_solid_sphere_x (vect, state)
Fills @var{vect} with inexact real random numbers the sum of whose
squares is less than 1.0.  Thinking of @var{vect} as coordinates in
space of dimension @var{n} @math{=} @code{(vector-length @var{vect})},
the coordinates are uniformly distributed within the unit
@var{n}-sphere.
@c FIXME: What does this mean, particularly the n-sphere part?
@end deffn

@deffn {Scheme Procedure} random:uniform [state]
@deffnx {C Function} scm_random_uniform (state)
Return a uniformly distributed inexact real random number in
[0,1).
@end deffn

@deffn {Scheme Procedure} seed->random-state seed
@deffnx {C Function} scm_seed_to_random_state (seed)
Return a new random state using @var{seed}.
@end deffn

@defvar *random-state*
The global random state used by the above functions when the
@var{state} parameter is not given.
@end defvar

Note that the initial value of @code{*random-state*} is the same every
time Guile starts up.  Therefore, if you don't pass a @var{state}
parameter to the above procedures, and you don't set
@code{*random-state*} to @code{(seed->random-state your-seed)}, where
@code{your-seed} is something that @emph{isn't} the same every time,
you'll get the same sequence of ``random'' numbers on every run.

For example, unless the relevant source code has changed, @code{(map
random (cdr (iota 30)))}, if the first use of random numbers since
Guile started up, will always give:

@lisp
(map random (cdr (iota 19)))
@result{}
(0 1 1 2 2 2 1 2 6 7 10 0 5 3 12 5 5 12)
@end lisp

To use the time of day as the random seed, you can use code like this:

@lisp
(let ((time (gettimeofday)))
  (set! *random-state*
        (seed->random-state (+ (car time)
                               (cdr time)))))
@end lisp

@noindent
And then (depending on the time of day, of course):

@lisp
(map random (cdr (iota 19)))
@result{}
(0 0 1 0 2 4 5 4 5 5 9 3 10 1 8 3 14 17)
@end lisp

For security applications, such as password generation, you should use
more bits of seed.  Otherwise an open source password generator could
be attacked by guessing the seed@dots{} but that's a subject for
another manual.


@node Characters
@subsection Characters
@tpindex Characters

In Scheme, a character literal is written as @code{#\@var{name}} where
@var{name} is the name of the character that you want.  Printable
characters have their usual single character name; for example,
@code{#\a} is a lower case @code{a}.

Most of the ``control characters'' (those below codepoint 32) in the
@acronym{ASCII} character set, as well as the space, may be referred
to by longer names: for example, @code{#\tab}, @code{#\esc},
@code{#\stx}, and so on.  The following table describes the
@acronym{ASCII} names for each character.

@multitable @columnfractions .25 .25 .25 .25
@item 0 = @code{#\nul}
 @tab 1 = @code{#\soh}
 @tab 2 = @code{#\stx}
 @tab 3 = @code{#\etx}
@item 4 = @code{#\eot}
 @tab 5 = @code{#\enq}
 @tab 6 = @code{#\ack}
 @tab 7 = @code{#\bel}
@item 8 = @code{#\bs}
 @tab 9 = @code{#\ht}
 @tab 10 = @code{#\nl}
 @tab 11 = @code{#\vt}
@item 12 = @code{#\np}
 @tab 13 = @code{#\cr}
 @tab 14 = @code{#\so}
 @tab 15 = @code{#\si}
@item 16 = @code{#\dle}
 @tab 17 = @code{#\dc1}
 @tab 18 = @code{#\dc2}
 @tab 19 = @code{#\dc3}
@item 20 = @code{#\dc4}
 @tab 21 = @code{#\nak}
 @tab 22 = @code{#\syn}
 @tab 23 = @code{#\etb}
@item 24 = @code{#\can}
 @tab 25 = @code{#\em}
 @tab 26 = @code{#\sub}
 @tab 27 = @code{#\esc}
@item 28 = @code{#\fs}
 @tab 29 = @code{#\gs}
 @tab 30 = @code{#\rs}
 @tab 31 = @code{#\us}
@item 32 = @code{#\sp}
@end multitable

The ``delete'' character (octal 177) may be referred to with the name
@code{#\del}.

Several characters have more than one name:

@multitable {@code{#\backspace}} {Original}
@item Alias @tab Original
@item @code{#\space} @tab @code{#\sp}
@item @code{#\newline} @tab @code{#\nl}
@item @code{#\tab} @tab @code{#\ht}
@item @code{#\backspace} @tab @code{#\bs}
@item @code{#\return} @tab @code{#\cr}
@item @code{#\page} @tab @code{#\np}
@item @code{#\null} @tab @code{#\nul}
@end multitable

@rnindex char?
@deffn {Scheme Procedure} char? x
@deffnx {C Function} scm_char_p (x)
Return @code{#t} iff @var{x} is a character, else @code{#f}.
@end deffn

@rnindex char=?
@deffn {Scheme Procedure} char=? x y
Return @code{#t} iff @var{x} is the same character as @var{y}, else @code{#f}.
@end deffn

@rnindex char<?
@deffn {Scheme Procedure} char<? x y
Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence,
else @code{#f}.
@end deffn

@rnindex char<=?
@deffn {Scheme Procedure} char<=? x y
Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
@acronym{ASCII} sequence, else @code{#f}.
@end deffn

@rnindex char>?
@deffn {Scheme Procedure} char>? x y
Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
sequence, else @code{#f}.
@end deffn

@rnindex char>=?
@deffn {Scheme Procedure} char>=? x y
Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
@acronym{ASCII} sequence, else @code{#f}.
@end deffn

@rnindex char-ci=?
@deffn {Scheme Procedure} char-ci=? x y
Return @code{#t} iff @var{x} is the same character as @var{y} ignoring
case, else @code{#f}.
@end deffn

@rnindex char-ci<?
@deffn {Scheme Procedure} char-ci<? x y
Return @code{#t} iff @var{x} is less than @var{y} in the @acronym{ASCII} sequence
ignoring case, else @code{#f}.
@end deffn

@rnindex char-ci<=?
@deffn {Scheme Procedure} char-ci<=? x y
Return @code{#t} iff @var{x} is less than or equal to @var{y} in the
@acronym{ASCII} sequence ignoring case, else @code{#f}.
@end deffn

@rnindex char-ci>?
@deffn {Scheme Procedure} char-ci>? x y
Return @code{#t} iff @var{x} is greater than @var{y} in the @acronym{ASCII}
sequence ignoring case, else @code{#f}.
@end deffn

@rnindex char-ci>=?
@deffn {Scheme Procedure} char-ci>=? x y
Return @code{#t} iff @var{x} is greater than or equal to @var{y} in the
@acronym{ASCII} sequence ignoring case, else @code{#f}.
@end deffn

@rnindex char-alphabetic?
@deffn {Scheme Procedure} char-alphabetic? chr
@deffnx {C Function} scm_char_alphabetic_p (chr)
Return @code{#t} iff @var{chr} is alphabetic, else @code{#f}.
@end deffn

@rnindex char-numeric?
@deffn {Scheme Procedure} char-numeric? chr
@deffnx {C Function} scm_char_numeric_p (chr)
Return @code{#t} iff @var{chr} is numeric, else @code{#f}.
@end deffn

@rnindex char-whitespace?
@deffn {Scheme Procedure} char-whitespace? chr
@deffnx {C Function} scm_char_whitespace_p (chr)
Return @code{#t} iff @var{chr} is whitespace, else @code{#f}.
@end deffn

@rnindex char-upper-case?
@deffn {Scheme Procedure} char-upper-case? chr
@deffnx {C Function} scm_char_upper_case_p (chr)
Return @code{#t} iff @var{chr} is uppercase, else @code{#f}.
@end deffn

@rnindex char-lower-case?
@deffn {Scheme Procedure} char-lower-case? chr
@deffnx {C Function} scm_char_lower_case_p (chr)
Return @code{#t} iff @var{chr} is lowercase, else @code{#f}.
@end deffn

@deffn {Scheme Procedure} char-is-both? chr
@deffnx {C Function} scm_char_is_both_p (chr)
Return @code{#t} iff @var{chr} is either uppercase or lowercase, else
@code{#f}.
@end deffn

@rnindex char->integer
@deffn {Scheme Procedure} char->integer chr
@deffnx {C Function} scm_char_to_integer (chr)
Return the number corresponding to ordinal position of @var{chr} in the
@acronym{ASCII} sequence.
@end deffn

@rnindex integer->char
@deffn {Scheme Procedure} integer->char n
@deffnx {C Function} scm_integer_to_char (n)
Return the character at position @var{n} in the @acronym{ASCII} sequence.
@end deffn

@rnindex char-upcase
@deffn {Scheme Procedure} char-upcase chr
@deffnx {C Function} scm_char_upcase (chr)
Return the uppercase character version of @var{chr}.
@end deffn

@rnindex char-downcase
@deffn {Scheme Procedure} char-downcase chr
@deffnx {C Function} scm_char_downcase (chr)
Return the lowercase character version of @var{chr}.
@end deffn

@node Character Sets
@subsection Character Sets

The features described in this section correspond directly to SRFI-14.

The data type @dfn{charset} implements sets of characters
(@pxref{Characters}).  Because the internal representation of
character sets is not visible to the user, a lot of procedures for
handling them are provided.

Character sets can be created, extended, tested for the membership of a
characters and be compared to other character sets.

The Guile implementation of character sets currently deals only with
8-bit characters.  In the future, when Guile gets support for
international character sets, this will change, but the functions
provided here will always then be able to efficiently cope with very
large character sets.

@menu
* Character Set Predicates/Comparison::
* Iterating Over Character Sets::  Enumerate charset elements.
* Creating Character Sets::        Making new charsets.
* Querying Character Sets::        Test charsets for membership etc.
* Character-Set Algebra::          Calculating new charsets.
* Standard Character Sets::        Variables containing predefined charsets.
@end menu

@node Character Set Predicates/Comparison
@subsubsection Character Set Predicates/Comparison

Use these procedures for testing whether an object is a character set,
or whether several character sets are equal or subsets of each other.
@code{char-set-hash} can be used for calculating a hash value, maybe for
usage in fast lookup procedures.

@deffn {Scheme Procedure} char-set? obj
@deffnx {C Function} scm_char_set_p (obj)
Return @code{#t} if @var{obj} is a character set, @code{#f}
otherwise.
@end deffn

@deffn {Scheme Procedure} char-set= . char_sets
@deffnx {C Function} scm_char_set_eq (char_sets)
Return @code{#t} if all given character sets are equal.
@end deffn

@deffn {Scheme Procedure} char-set<= . char_sets
@deffnx {C Function} scm_char_set_leq (char_sets)
Return @code{#t} if every character set @var{cs}i is a subset
of character set @var{cs}i+1.
@end deffn

@deffn {Scheme Procedure} char-set-hash cs [bound]
@deffnx {C Function} scm_char_set_hash (cs, bound)
Compute a hash value for the character set @var{cs}.  If
@var{bound} is given and non-zero, it restricts the
returned value to the range 0 @dots{} @var{bound - 1}.
@end deffn

@c ===================================================================

@node Iterating Over Character Sets
@subsubsection Iterating Over Character Sets

Character set cursors are a means for iterating over the members of a
character sets.  After creating a character set cursor with
@code{char-set-cursor}, a cursor can be dereferenced with
@code{char-set-ref}, advanced to the next member with
@code{char-set-cursor-next}.  Whether a cursor has passed past the last
element of the set can be checked with @code{end-of-char-set?}.

Additionally, mapping and (un-)folding procedures for character sets are
provided.

@deffn {Scheme Procedure} char-set-cursor cs
@deffnx {C Function} scm_char_set_cursor (cs)
Return a cursor into the character set @var{cs}.
@end deffn

@deffn {Scheme Procedure} char-set-ref cs cursor
@deffnx {C Function} scm_char_set_ref (cs, cursor)
Return the character at the current cursor position
@var{cursor} in the character set @var{cs}.  It is an error to
pass a cursor for which @code{end-of-char-set?} returns true.
@end deffn

@deffn {Scheme Procedure} char-set-cursor-next cs cursor
@deffnx {C Function} scm_char_set_cursor_next (cs, cursor)
Advance the character set cursor @var{cursor} to the next
character in the character set @var{cs}.  It is an error if the
cursor given satisfies @code{end-of-char-set?}.
@end deffn

@deffn {Scheme Procedure} end-of-char-set? cursor
@deffnx {C Function} scm_end_of_char_set_p (cursor)
Return @code{#t} if @var{cursor} has reached the end of a
character set, @code{#f} otherwise.
@end deffn

@deffn {Scheme Procedure} char-set-fold kons knil cs
@deffnx {C Function} scm_char_set_fold (kons, knil, cs)
Fold the procedure @var{kons} over the character set @var{cs},
initializing it with @var{knil}.
@end deffn

@deffn {Scheme Procedure} char-set-unfold p f g seed [base_cs]
@deffnx {C Function} scm_char_set_unfold (p, f, g, seed, base_cs)
This is a fundamental constructor for character sets.
@itemize @bullet
@item @var{g} is used to generate a series of ``seed'' values
from the initial seed: @var{seed}, (@var{g} @var{seed}),
(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
@item @var{p} tells us when to stop -- when it returns true
when applied to one of the seed values.
@item @var{f} maps each seed value to a character. These
characters are added to the base character set @var{base_cs} to
form the result; @var{base_cs} defaults to the empty set.
@end itemize
@end deffn

@deffn {Scheme Procedure} char-set-unfold! p f g seed base_cs
@deffnx {C Function} scm_char_set_unfold_x (p, f, g, seed, base_cs)
This is a fundamental constructor for character sets.
@itemize @bullet
@item @var{g} is used to generate a series of ``seed'' values
from the initial seed: @var{seed}, (@var{g} @var{seed}),
(@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}), @dots{}
@item @var{p} tells us when to stop -- when it returns true
when applied to one of the seed values.
@item @var{f} maps each seed value to a character. These
characters are added to the base character set @var{base_cs} to
form the result; @var{base_cs} defaults to the empty set.
@end itemize
@end deffn

@deffn {Scheme Procedure} char-set-for-each proc cs
@deffnx {C Function} scm_char_set_for_each (proc, cs)
Apply @var{proc} to every character in the character set
@var{cs}.  The return value is not specified.
@end deffn

@deffn {Scheme Procedure} char-set-map proc cs
@deffnx {C Function} scm_char_set_map (proc, cs)
Map the procedure @var{proc} over every character in @var{cs}.
@var{proc} must be a character -> character procedure.
@end deffn

@c ===================================================================

@node Creating Character Sets
@subsubsection Creating Character Sets

New character sets are produced with these procedures.

@deffn {Scheme Procedure} char-set-copy cs
@deffnx {C Function} scm_char_set_copy (cs)
Return a newly allocated character set containing all
characters in @var{cs}.
@end deffn

@deffn {Scheme Procedure} char-set . rest
@deffnx {C Function} scm_char_set (rest)
Return a character set containing all given characters.
@end deffn

@deffn {Scheme Procedure} list->char-set list [base_cs]
@deffnx {C Function} scm_list_to_char_set (list, base_cs)
Convert the character list @var{list} to a character set.  If
the character set @var{base_cs} is given, the character in this
set are also included in the result.
@end deffn

@deffn {Scheme Procedure} list->char-set! list base_cs
@deffnx {C Function} scm_list_to_char_set_x (list, base_cs)
Convert the character list @var{list} to a character set.  The
characters are added to @var{base_cs} and @var{base_cs} is
returned.
@end deffn

@deffn {Scheme Procedure} string->char-set str [base_cs]
@deffnx {C Function} scm_string_to_char_set (str, base_cs)
Convert the string @var{str} to a character set.  If the
character set @var{base_cs} is given, the characters in this
set are also included in the result.
@end deffn

@deffn {Scheme Procedure} string->char-set! str base_cs
@deffnx {C Function} scm_string_to_char_set_x (str, base_cs)
Convert the string @var{str} to a character set.  The
characters from the string are added to @var{base_cs}, and
@var{base_cs} is returned.
@end deffn

@deffn {Scheme Procedure} char-set-filter pred cs [base_cs]
@deffnx {C Function} scm_char_set_filter (pred, cs, base_cs)
Return a character set containing every character from @var{cs}
so that it satisfies @var{pred}.  If provided, the characters
from @var{base_cs} are added to the result.
@end deffn

@deffn {Scheme Procedure} char-set-filter! pred cs base_cs
@deffnx {C Function} scm_char_set_filter_x (pred, cs, base_cs)
Return a character set containing every character from @var{cs}
so that it satisfies @var{pred}.  The characters are added to
@var{base_cs} and @var{base_cs} is returned.
@end deffn

@deffn {Scheme Procedure} ucs-range->char-set lower upper [error [base_cs]]
@deffnx {C Function} scm_ucs_range_to_char_set (lower, upper, error, base_cs)
Return a character set containing all characters whose
character codes lie in the half-open range
[@var{lower},@var{upper}).

If @var{error} is a true value, an error is signalled if the
specified range contains characters which are not contained in
the implemented character range.  If @var{error} is @code{#f},
these characters are silently left out of the resultung
character set.

The characters in @var{base_cs} are added to the result, if
given.
@end deffn

@deffn {Scheme Procedure} ucs-range->char-set! lower upper error base_cs
@deffnx {C Function} scm_ucs_range_to_char_set_x (lower, upper, error, base_cs)
Return a character set containing all characters whose
character codes lie in the half-open range
[@var{lower},@var{upper}).

If @var{error} is a true value, an error is signalled if the
specified range contains characters which are not contained in
the implemented character range.  If @var{error} is @code{#f},
these characters are silently left out of the resultung
character set.

The characters are added to @var{base_cs} and @var{base_cs} is
returned.
@end deffn

@deffn {Scheme Procedure} ->char-set x
@deffnx {C Function} scm_to_char_set (x)
Coerces x into a char-set. @var{x} may be a string, character or char-set. A string is converted to the set of its constituent characters; a character is converted to a singleton set; a char-set is returned as-is.
@end deffn

@c ===================================================================

@node Querying Character Sets
@subsubsection Querying Character Sets

Access the elements and other information of a character set with these
procedures.

@deffn {Scheme Procedure} char-set-size cs
@deffnx {C Function} scm_char_set_size (cs)
Return the number of elements in character set @var{cs}.
@end deffn

@deffn {Scheme Procedure} char-set-count pred cs
@deffnx {C Function} scm_char_set_count (pred, cs)
Return the number of the elements int the character set
@var{cs} which satisfy the predicate @var{pred}.
@end deffn

@deffn {Scheme Procedure} char-set->list cs
@deffnx {C Function} scm_char_set_to_list (cs)
Return a list containing the elements of the character set
@var{cs}.
@end deffn

@deffn {Scheme Procedure} char-set->string cs
@deffnx {C Function} scm_char_set_to_string (cs)
Return a string containing the elements of the character set
@var{cs}.  The order in which the characters are placed in the
string is not defined.
@end deffn

@deffn {Scheme Procedure} char-set-contains? cs ch
@deffnx {C Function} scm_char_set_contains_p (cs, ch)
Return @code{#t} iff the character @var{ch} is contained in the
character set @var{cs}.
@end deffn

@deffn {Scheme Procedure} char-set-every pred cs
@deffnx {C Function} scm_char_set_every (pred, cs)
Return a true value if every character in the character set
@var{cs} satisfies the predicate @var{pred}.
@end deffn

@deffn {Scheme Procedure} char-set-any pred cs
@deffnx {C Function} scm_char_set_any (pred, cs)
Return a true value if any character in the character set
@var{cs} satisfies the predicate @var{pred}.
@end deffn

@c ===================================================================

@node Character-Set Algebra
@subsubsection Character-Set Algebra

Character sets can be manipulated with the common set algebra operation,
such as union, complement, intersection etc.  All of these procedures
provide side-effecting variants, which modify their character set
argument(s).

@deffn {Scheme Procedure} char-set-adjoin cs . rest
@deffnx {C Function} scm_char_set_adjoin (cs, rest)
Add all character arguments to the first argument, which must
be a character set.
@end deffn

@deffn {Scheme Procedure} char-set-delete cs . rest
@deffnx {C Function} scm_char_set_delete (cs, rest)
Delete all character arguments from the first argument, which
must be a character set.
@end deffn

@deffn {Scheme Procedure} char-set-adjoin! cs . rest
@deffnx {C Function} scm_char_set_adjoin_x (cs, rest)
Add all character arguments to the first argument, which must
be a character set.
@end deffn

@deffn {Scheme Procedure} char-set-delete! cs . rest
@deffnx {C Function} scm_char_set_delete_x (cs, rest)
Delete all character arguments from the first argument, which
must be a character set.
@end deffn

@deffn {Scheme Procedure} char-set-complement cs
@deffnx {C Function} scm_char_set_complement (cs)
Return the complement of the character set @var{cs}.
@end deffn

@deffn {Scheme Procedure} char-set-union . rest
@deffnx {C Function} scm_char_set_union (rest)
Return the union of all argument character sets.
@end deffn

@deffn {Scheme Procedure} char-set-intersection . rest
@deffnx {C Function} scm_char_set_intersection (rest)
Return the intersection of all argument character sets.
@end deffn

@deffn {Scheme Procedure} char-set-difference cs1 . rest
@deffnx {C Function} scm_char_set_difference (cs1, rest)
Return the difference of all argument character sets.
@end deffn

@deffn {Scheme Procedure} char-set-xor . rest
@deffnx {C Function} scm_char_set_xor (rest)
Return the exclusive-or of all argument character sets.
@end deffn

@deffn {Scheme Procedure} char-set-diff+intersection cs1 . rest
@deffnx {C Function} scm_char_set_diff_plus_intersection (cs1, rest)
Return the difference and the intersection of all argument
character sets.
@end deffn

@deffn {Scheme Procedure} char-set-complement! cs
@deffnx {C Function} scm_char_set_complement_x (cs)
Return the complement of the character set @var{cs}.
@end deffn

@deffn {Scheme Procedure} char-set-union! cs1 . rest
@deffnx {C Function} scm_char_set_union_x (cs1, rest)
Return the union of all argument character sets.
@end deffn

@deffn {Scheme Procedure} char-set-intersection! cs1 . rest
@deffnx {C Function} scm_char_set_intersection_x (cs1, rest)
Return the intersection of all argument character sets.
@end deffn

@deffn {Scheme Procedure} char-set-difference! cs1 . rest
@deffnx {C Function} scm_char_set_difference_x (cs1, rest)
Return the difference of all argument character sets.
@end deffn

@deffn {Scheme Procedure} char-set-xor! cs1 . rest
@deffnx {C Function} scm_char_set_xor_x (cs1, rest)
Return the exclusive-or of all argument character sets.
@end deffn

@deffn {Scheme Procedure} char-set-diff+intersection! cs1 cs2 . rest
@deffnx {C Function} scm_char_set_diff_plus_intersection_x (cs1, cs2, rest)
Return the difference and the intersection of all argument
character sets.
@end deffn

@c ===================================================================

@node Standard Character Sets
@subsubsection Standard Character Sets

In order to make the use of the character set data type and procedures
useful, several predefined character set variables exist.

@cindex codeset
@cindex charset
@cindex locale

Currently, the contents of these character sets are recomputed upon a
successful @code{setlocale} call (@pxref{Locales}) in order to reflect
the characters available in the current locale's codeset.  For
instance, @code{char-set:letter} contains 52 characters under an ASCII
locale (e.g., the default @code{C} locale) and 117 characters under an
ISO-8859-1 (``Latin-1'') locale.

@defvr {Scheme Variable} char-set:lower-case
@defvrx {C Variable} scm_char_set_lower_case
All lower-case characters.
@end defvr

@defvr {Scheme Variable} char-set:upper-case
@defvrx {C Variable} scm_char_set_upper_case
All upper-case characters.
@end defvr

@defvr {Scheme Variable} char-set:title-case
@defvrx {C Variable} scm_char_set_title_case
This is empty, because ASCII has no titlecase characters.
@end defvr

@defvr {Scheme Variable} char-set:letter
@defvrx {C Variable} scm_char_set_letter
All letters, e.g. the union of @code{char-set:lower-case} and
@code{char-set:upper-case}.
@end defvr

@defvr {Scheme Variable} char-set:digit
@defvrx {C Variable} scm_char_set_digit
All digits.
@end defvr

@defvr {Scheme Variable} char-set:letter+digit
@defvrx {C Variable} scm_char_set_letter_and_digit
The union of @code{char-set:letter} and @code{char-set:digit}.
@end defvr

@defvr {Scheme Variable} char-set:graphic
@defvrx {C Variable} scm_char_set_graphic
All characters which would put ink on the paper.
@end defvr

@defvr {Scheme Variable} char-set:printing
@defvrx {C Variable} scm_char_set_printing
The union of @code{char-set:graphic} and @code{char-set:whitespace}.
@end defvr

@defvr {Scheme Variable} char-set:whitespace
@defvrx {C Variable} scm_char_set_whitespace
All whitespace characters.
@end defvr

@defvr {Scheme Variable} char-set:blank
@defvrx {C Variable} scm_char_set_blank
All horizontal whitespace characters, that is @code{#\space} and
@code{#\tab}.
@end defvr

@defvr {Scheme Variable} char-set:iso-control
@defvrx {C Variable} scm_char_set_iso_control
The ISO control characters with the codes 0--31 and 127.
@end defvr

@defvr {Scheme Variable} char-set:punctuation
@defvrx {C Variable} scm_char_set_punctuation
The characters @code{!"#%&'()*,-./:;?@@[\\]_@{@}}
@end defvr

@defvr {Scheme Variable} char-set:symbol
@defvrx {C Variable} scm_char_set_symbol
The characters @code{$+<=>^`|~}.
@end defvr

@defvr {Scheme Variable} char-set:hex-digit
@defvrx {C Variable} scm_char_set_hex_digit
The hexadecimal digits @code{0123456789abcdefABCDEF}.
@end defvr

@defvr {Scheme Variable} char-set:ascii
@defvrx {C Variable} scm_char_set_ascii
All ASCII characters.
@end defvr

@defvr {Scheme Variable} char-set:empty
@defvrx {C Variable} scm_char_set_empty
The empty character set.
@end defvr

@defvr {Scheme Variable} char-set:full
@defvrx {C Variable} scm_char_set_full
This character set contains all possible characters.
@end defvr

@node Strings
@subsection Strings
@tpindex Strings

Strings are fixed-length sequences of characters.  They can be created
by calling constructor procedures, but they can also literally get
entered at the @acronym{REPL} or in Scheme source files.

@c Guile provides a rich set of string processing procedures, because text
@c handling is very important when Guile is used as a scripting language.

Strings always carry the information about how many characters they are
composed of with them, so there is no special end-of-string character,
like in C.  That means that Scheme strings can contain any character,
even the @samp{#\nul} character @samp{\0}.

To use strings efficiently, you need to know a bit about how Guile
implements them.  In Guile, a string consists of two parts, a head and
the actual memory where the characters are stored.  When a string (or
a substring of it) is copied, only a new head gets created, the memory
is usually not copied.  The two heads start out pointing to the same
memory.

When one of these two strings is modified, as with @code{string-set!},
their common memory does get copied so that each string has its own
memory and modifying one does not accidently modify the other as well.
Thus, Guile's strings are `copy on write'; the actual copying of their
memory is delayed until one string is written to.

This implementation makes functions like @code{substring} very
efficient in the common case that no modifications are done to the
involved strings.

If you do know that your strings are getting modified right away, you
can use @code{substring/copy} instead of @code{substring}.  This
function performs the copy immediately at the time of creation.  This
is more efficient, especially in a multi-threaded program.  Also,
@code{substring/copy} can avoid the problem that a short substring
holds on to the memory of a very large original string that could
otherwise be recycled.

If you want to avoid the copy altogether, so that modifications of one
string show up in the other, you can use @code{substring/shared}.  The
strings created by this procedure are called @dfn{mutation sharing
substrings} since the substring and the original string share
modifications to each other.

If you want to prevent modifications, use @code{substring/read-only}.

Guile provides all procedures of SRFI-13 and a few more.

@menu
* String Syntax::                   Read syntax for strings.
* String Predicates::               Testing strings for certain properties.
* String Constructors::             Creating new string objects.
* List/String Conversion::          Converting from/to lists of characters.
* String Selection::                Select portions from strings.
* String Modification::             Modify parts or whole strings.
* String Comparison::               Lexicographic ordering predicates.
* String Searching::                Searching in strings.
* Alphabetic Case Mapping::         Convert the alphabetic case of strings.
* Reversing and Appending Strings:: Appending strings to form a new string.
* Mapping Folding and Unfolding::   Iterating over strings.
* Miscellaneous String Operations:: Replicating, insertion, parsing, ...
* Conversion to/from C::       
@end menu

@node String Syntax
@subsubsection String Read Syntax

@c  In the following @code is used to get a good font in TeX etc, but
@c  is omitted for Info format, so as not to risk any confusion over
@c  whether surrounding ` ' quotes are part of the escape or are
@c  special in a string (they're not).

The read syntax for strings is an arbitrarily long sequence of
characters enclosed in double quotes (@nicode{"}).

Backslash is an escape character and can be used to insert the
following special characters.  @nicode{\"} and @nicode{\\} are R5RS
standard, the rest are Guile extensions, notice they follow C string
syntax.

@table @asis
@item @nicode{\\}
Backslash character.

@item @nicode{\"}
Double quote character (an unescaped @nicode{"} is otherwise the end
of the string).

@item @nicode{\0}
NUL character (ASCII 0).

@item @nicode{\a}
Bell character (ASCII 7).

@item @nicode{\f}
Formfeed character (ASCII 12).

@item @nicode{\n}
Newline character (ASCII 10).

@item @nicode{\r}
Carriage return character (ASCII 13).

@item @nicode{\t}
Tab character (ASCII 9).

@item @nicode{\v}
Vertical tab character (ASCII 11).

@item @nicode{\xHH}
Character code given by two hexadecimal digits.  For example
@nicode{\x7f} for an ASCII DEL (127).
@end table

@noindent
The following are examples of string literals:

@lisp
"foo"
"bar plonk"
"Hello World"
"\"Hi\", he said."
@end lisp


@node String Predicates
@subsubsection String Predicates

The following procedures can be used to check whether a given string
fulfills some specified property.

@rnindex string?
@deffn {Scheme Procedure} string? obj
@deffnx {C Function} scm_string_p (obj)
Return @code{#t} if @var{obj} is a string, else @code{#f}.
@end deffn

@deftypefn {C Function} int scm_is_string (SCM obj)
Returns @code{1} if @var{obj} is a string, @code{0} otherwise.
@end deftypefn

@deffn {Scheme Procedure} string-null? str
@deffnx {C Function} scm_string_null_p (str)
Return @code{#t} if @var{str}'s length is zero, and
@code{#f} otherwise.
@lisp
(string-null? "")  @result{} #t
y                    @result{} "foo"
(string-null? y)     @result{} #f
@end lisp
@end deffn

@deffn {Scheme Procedure} string-any char_pred s [start [end]]
@deffnx {C Function} scm_string_any (char_pred, s, start, end)
Check if @var{char_pred} is true for any character in string @var{s}.

@var{char_pred} can be a character to check for any equal to that, or
a character set (@pxref{Character Sets}) to check for any in that set,
or a predicate procedure to call.

For a procedure, calls @code{(@var{char_pred} c)} are made
successively on the characters from @var{start} to @var{end}.  If
@var{char_pred} returns true (ie.@: non-@code{#f}), @code{string-any}
stops and that return value is the return from @code{string-any}.  The
call on the last character (ie.@: at @math{@var{end}-1}), if that
point is reached, is a tail call.

If there are no characters in @var{s} (ie.@: @var{start} equals
@var{end}) then the return is @code{#f}.
@end deffn

@deffn {Scheme Procedure} string-every char_pred s [start [end]]
@deffnx {C Function} scm_string_every (char_pred, s, start, end)
Check if @var{char_pred} is true for every character in string
@var{s}.

@var{char_pred} can be a character to check for every character equal
to that, or a character set (@pxref{Character Sets}) to check for
every character being in that set, or a predicate procedure to call.

For a procedure, calls @code{(@var{char_pred} c)} are made
successively on the characters from @var{start} to @var{end}.  If
@var{char_pred} returns @code{#f}, @code{string-every} stops and
returns @code{#f}.  The call on the last character (ie.@: at
@math{@var{end}-1}), if that point is reached, is a tail call and the
return from that call is the return from @code{string-every}.

If there are no characters in @var{s} (ie.@: @var{start} equals
@var{end}) then the return is @code{#t}.
@end deffn

@node String Constructors
@subsubsection String Constructors

The string constructor procedures create new string objects, possibly
initializing them with some specified character data.  See also
@xref{String Selection}, for ways to create strings from existing
strings.

@c FIXME::martin: list->string belongs into `List/String Conversion'

@deffn {Scheme Procedure} string char@dots{}
@rnindex string
Return a newly allocated string made from the given character
arguments.

@example
(string #\x #\y #\z) @result{} "xyz"
(string)             @result{} ""
@end example
@end deffn

@deffn {Scheme Procedure} list->string lst
@deffnx {C Function} scm_string (lst)
@rnindex list->string
Return a newly allocated string made from a list of characters.

@example
(list->string '(#\a #\b #\c)) @result{} "abc"
@end example
@end deffn

@deffn {Scheme Procedure} reverse-list->string lst
@deffnx {C Function} scm_reverse_list_to_string (lst)
Return a newly allocated string made from a list of characters, in
reverse order.

@example
(reverse-list->string '(#\a #\B #\c)) @result{} "cBa"
@end example
@end deffn

@rnindex make-string
@deffn {Scheme Procedure} make-string k [chr]
@deffnx {C Function} scm_make_string (k, chr)
Return a newly allocated string of
length @var{k}.  If @var{chr} is given, then all elements of
the string are initialized to @var{chr}, otherwise the contents
of the @var{string} are unspecified.
@end deffn

@deftypefn {C Function} SCM scm_c_make_string (size_t len, SCM chr)
Like @code{scm_make_string}, but expects the length as a
@code{size_t}.
@end deftypefn

@deffn {Scheme Procedure} string-tabulate proc len
@deffnx {C Function} scm_string_tabulate (proc, len)
@var{proc} is an integer->char procedure.  Construct a string
of size @var{len} by applying @var{proc} to each index to
produce the corresponding string element.  The order in which
@var{proc} is applied to the indices is not specified.
@end deffn

@deffn {Scheme Procedure} string-join ls [delimiter [grammar]]
@deffnx {C Function} scm_string_join (ls, delimiter, grammar)
Append the string in the string list @var{ls}, using the string
@var{delim} as a delimiter between the elements of @var{ls}.
@var{grammar} is a symbol which specifies how the delimiter is
placed between the strings, and defaults to the symbol
@code{infix}.

@table @code
@item infix
Insert the separator between list elements.  An empty string
will produce an empty list.
@item string-infix
Like @code{infix}, but will raise an error if given the empty
list.
@item suffix
Insert the separator after every list element.
@item prefix
Insert the separator before each list element.
@end table
@end deffn

@node List/String Conversion
@subsubsection List/String conversion

When processing strings, it is often convenient to first convert them
into a list representation by using the procedure @code{string->list},
work with the resulting list, and then convert it back into a string.
These procedures are useful for similar tasks.

@rnindex string->list
@deffn {Scheme Procedure} string->list str [start [end]]
@deffnx {C Function} scm_substring_to_list (str, start, end)
@deffnx {C Function} scm_string_to_list (str)
Convert the string @var{str} into a list of characters.
@end deffn

@deffn {Scheme Procedure} string-split str chr
@deffnx {C Function} scm_string_split (str, chr)
Split the string @var{str} into the a list of the substrings delimited
by appearances of the character @var{chr}.  Note that an empty substring
between separator characters will result in an empty string in the
result list.

@lisp
(string-split "root:x:0:0:root:/root:/bin/bash" #\:)
@result{}
("root" "x" "0" "0" "root" "/root" "/bin/bash")

(string-split "::" #\:)
@result{}
("" "" "")

(string-split "" #\:)
@result{}
("")
@end lisp
@end deffn


@node String Selection
@subsubsection String Selection

Portions of strings can be extracted by these procedures.
@code{string-ref} delivers individual characters whereas
@code{substring} can be used to extract substrings from longer strings.

@rnindex string-length
@deffn {Scheme Procedure} string-length string
@deffnx {C Function} scm_string_length (string)
Return the number of characters in @var{string}.
@end deffn

@deftypefn {C Function} size_t scm_c_string_length (SCM str)
Return the number of characters in @var{str} as a @code{size_t}.
@end deftypefn

@rnindex string-ref
@deffn {Scheme Procedure} string-ref str k
@deffnx {C Function} scm_string_ref (str, k)
Return character @var{k} of @var{str} using zero-origin
indexing. @var{k} must be a valid index of @var{str}.
@end deffn

@deftypefn {C Function} SCM scm_c_string_ref (SCM str, size_t k)
Return character @var{k} of @var{str} using zero-origin
indexing. @var{k} must be a valid index of @var{str}.
@end deftypefn

@rnindex string-copy
@deffn {Scheme Procedure} string-copy str [start [end]]
@deffnx {C Function} scm_substring_copy (str, start, end)
@deffnx {C Function} scm_string_copy (str)
Return a copy of the given string @var{str}.

The returned string shares storage with @var{str} initially, but it is
copied as soon as one of the two strings is modified.
@end deffn

@rnindex substring
@deffn {Scheme Procedure} substring str start [end]
@deffnx {C Function} scm_substring (str, start, end)
Return a new string formed from the characters
of @var{str} beginning with index @var{start} (inclusive) and
ending with index @var{end} (exclusive).
@var{str} must be a string, @var{start} and @var{end} must be
exact integers satisfying:

0 <= @var{start} <= @var{end} <= @code{(string-length @var{str})}.

The returned string shares storage with @var{str} initially, but it is
copied as soon as one of the two strings is modified.
@end deffn

@deffn {Scheme Procedure} substring/shared str start [end]
@deffnx {C Function} scm_substring_shared (str, start, end)
Like @code{substring}, but the strings continue to share their storage
even if they are modified.  Thus, modifications to @var{str} show up
in the new string, and vice versa.
@end deffn

@deffn {Scheme Procedure} substring/copy str start [end]
@deffnx {C Function} scm_substring_copy (str, start, end)
Like @code{substring}, but the storage for the new string is copied
immediately.
@end deffn

@deffn {Scheme Procedure} substring/read-only str start [end]
@deffnx {C Function} scm_substring_read_only (str, start, end)
Like @code{substring}, but the resulting string can not be modified.
@end deffn

@deftypefn  {C Function} SCM scm_c_substring (SCM str, size_t start, size_t end)
@deftypefnx {C Function} SCM scm_c_substring_shared (SCM str, size_t start, size_t end)
@deftypefnx {C Function} SCM scm_c_substring_copy (SCM str, size_t start, size_t end)
@deftypefnx {C Function} SCM scm_c_substring_read_only (SCM str, size_t start, size_t end)
Like @code{scm_substring}, etc. but the bounds are given as a @code{size_t}.
@end deftypefn

@deffn {Scheme Procedure} string-take s n
@deffnx {C Function} scm_string_take (s, n)
Return the @var{n} first characters of @var{s}.
@end deffn

@deffn {Scheme Procedure} string-drop s n
@deffnx {C Function} scm_string_drop (s, n)
Return all but the first @var{n} characters of @var{s}.
@end deffn

@deffn {Scheme Procedure} string-take-right s n
@deffnx {C Function} scm_string_take_right (s, n)
Return the @var{n} last characters of @var{s}.
@end deffn

@deffn {Scheme Procedure} string-drop-right s n
@deffnx {C Function} scm_string_drop_right (s, n)
Return all but the last @var{n} characters of @var{s}.
@end deffn

@deffn {Scheme Procedure} string-pad s len [chr [start [end]]]
@deffnx {Scheme Procedure} string-pad-right s len [chr [start [end]]]
@deffnx {C Function} scm_string_pad (s, len, chr, start, end)
@deffnx {C Function} scm_string_pad_right (s, len, chr, start, end)
Take characters @var{start} to @var{end} from the string @var{s} and
either pad with @var{char} or truncate them to give @var{len}
characters.

@code{string-pad} pads or truncates on the left, so for example

@example
(string-pad "x" 3)     @result{} "  x"
(string-pad "abcde" 3) @result{} "cde"
@end example

@code{string-pad-right} pads or truncates on the right, so for example

@example
(string-pad-right "x" 3)     @result{} "x  "
(string-pad-right "abcde" 3) @result{} "abc"
@end example
@end deffn

@deffn {Scheme Procedure} string-trim s [char_pred [start [end]]]
@deffnx {Scheme Procedure} string-trim-right s [char_pred [start [end]]]
@deffnx {Scheme Procedure} string-trim-both s [char_pred [start [end]]]
@deffnx {C Function} scm_string_trim (s, char_pred, start, end)
@deffnx {C Function} scm_string_trim_right (s, char_pred, start, end)
@deffnx {C Function} scm_string_trim_both (s, char_pred, start, end)
Trim occurrances of @var{char_pred} from the ends of @var{s}.

@code{string-trim} trims @var{char_pred} characters from the left
(start) of the string, @code{string-trim-right} trims them from the
right (end) of the string, @code{string-trim-both} trims from both
ends.

@var{char_pred} can be a character, a character set, or a predicate
procedure to call on each character.  If @var{char_pred} is not given
the default is whitespace as per @code{char-set:whitespace}
(@pxref{Standard Character Sets}).

@example
(string-trim " x ")              @result{} "x "
(string-trim-right "banana" #\a) @result{} "banan"
(string-trim-both ".,xy:;" char-set:punctuation)
                  @result{} "xy"
(string-trim-both "xyzzy" (lambda (c)
                             (or (eqv? c #\x)
                                 (eqv? c #\y))))
                  @result{} "zz"
@end example
@end deffn

@node String Modification
@subsubsection String Modification

These procedures are for modifying strings in-place.  This means that the
result of the operation is not a new string; instead, the original string's
memory representation is modified.

@rnindex string-set!
@deffn {Scheme Procedure} string-set! str k chr
@deffnx {C Function} scm_string_set_x (str, k, chr)
Store @var{chr} in element @var{k} of @var{str} and return
an unspecified value. @var{k} must be a valid index of
@var{str}.
@end deffn

@deftypefn {C Function} void scm_c_string_set_x (SCM str, size_t k, SCM chr)
Like @code{scm_string_set_x}, but the index is given as a @code{size_t}.
@end deftypefn

@rnindex string-fill!
@deffn {Scheme Procedure} string-fill! str chr [start [end]]
@deffnx {C Function} scm_substring_fill_x (str, chr, start, end)
@deffnx {C Function} scm_string_fill_x (str, chr)
Stores @var{chr} in every element of the given @var{str} and
returns an unspecified value.
@end deffn

@deffn {Scheme Procedure} substring-fill! str start end fill
@deffnx {C Function} scm_substring_fill_x (str, start, end, fill)
Change every character in @var{str} between @var{start} and
@var{end} to @var{fill}.

@lisp
(define y "abcdefg")
(substring-fill! y 1 3 #\r)
y
@result{} "arrdefg"
@end lisp
@end deffn

@deffn {Scheme Procedure} substring-move! str1 start1 end1 str2 start2
@deffnx {C Function} scm_substring_move_x (str1, start1, end1, str2, start2)
Copy the substring of @var{str1} bounded by @var{start1} and @var{end1}
into @var{str2} beginning at position @var{start2}.
@var{str1} and @var{str2} can be the same string.
@end deffn

@deffn {Scheme Procedure} string-copy! target tstart s [start [end]]
@deffnx {C Function} scm_string_copy_x (target, tstart, s, start, end)
Copy the sequence of characters from index range [@var{start},
@var{end}) in string @var{s} to string @var{target}, beginning
at index @var{tstart}.  The characters are copied left-to-right
or right-to-left as needed -- the copy is guaranteed to work,
even if @var{target} and @var{s} are the same string.  It is an
error if the copy operation runs off the end of the target
string.
@end deffn


@node String Comparison
@subsubsection String Comparison

The procedures in this section are similar to the character ordering
predicates (@pxref{Characters}), but are defined on character sequences.

The first set is specified in R5RS and has names that end in @code{?}.
The second set is specified in SRFI-13 and the names have no ending
@code{?}.  The predicates ending in @code{-ci} ignore the character case
when comparing strings.  @xref{Text Collation, the @code{(ice-9
i18n)} module}, for locale-dependent string comparison.

@rnindex string=?
@deffn {Scheme Procedure} string=? s1 s2
Lexicographic equality predicate; return @code{#t} if the two
strings are the same length and contain the same characters in
the same positions, otherwise return @code{#f}.

The procedure @code{string-ci=?} treats upper and lower case
letters as though they were the same character, but
@code{string=?} treats upper and lower case as distinct
characters.
@end deffn

@rnindex string<?
@deffn {Scheme Procedure} string<? s1 s2
Lexicographic ordering predicate; return @code{#t} if @var{s1}
is lexicographically less than @var{s2}.
@end deffn

@rnindex string<=?
@deffn {Scheme Procedure} string<=? s1 s2
Lexicographic ordering predicate; return @code{#t} if @var{s1}
is lexicographically less than or equal to @var{s2}.
@end deffn

@rnindex string>?
@deffn {Scheme Procedure} string>? s1 s2
Lexicographic ordering predicate; return @code{#t} if @var{s1}
is lexicographically greater than @var{s2}.
@end deffn

@rnindex string>=?
@deffn {Scheme Procedure} string>=? s1 s2
Lexicographic ordering predicate; return @code{#t} if @var{s1}
is lexicographically greater than or equal to @var{s2}.
@end deffn

@rnindex string-ci=?
@deffn {Scheme Procedure} string-ci=? s1 s2
Case-insensitive string equality predicate; return @code{#t} if
the two strings are the same length and their component
characters match (ignoring case) at each position; otherwise
return @code{#f}.
@end deffn

@rnindex string-ci<?
@deffn {Scheme Procedure} string-ci<? s1 s2
Case insensitive lexicographic ordering predicate; return
@code{#t} if @var{s1} is lexicographically less than @var{s2}
regardless of case.
@end deffn

@rnindex string<=?
@deffn {Scheme Procedure} string-ci<=? s1 s2
Case insensitive lexicographic ordering predicate; return
@code{#t} if @var{s1} is lexicographically less than or equal
to @var{s2} regardless of case.
@end deffn

@rnindex string-ci>?
@deffn {Scheme Procedure} string-ci>? s1 s2
Case insensitive lexicographic ordering predicate; return
@code{#t} if @var{s1} is lexicographically greater than
@var{s2} regardless of case.
@end deffn

@rnindex string-ci>=?
@deffn {Scheme Procedure} string-ci>=? s1 s2
Case insensitive lexicographic ordering predicate; return
@code{#t} if @var{s1} is lexicographically greater than or
equal to @var{s2} regardless of case.
@end deffn

@deffn {Scheme Procedure} string-compare s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_compare (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
mismatch index, depending upon whether @var{s1} is less than,
equal to, or greater than @var{s2}.  The mismatch index is the
largest index @var{i} such that for every 0 <= @var{j} <
@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
@var{i} is the first position that does not match.
@end deffn

@deffn {Scheme Procedure} string-compare-ci s1 s2 proc_lt proc_eq proc_gt [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_compare_ci (s1, s2, proc_lt, proc_eq, proc_gt, start1, end1, start2, end2)
Apply @var{proc_lt}, @var{proc_eq}, @var{proc_gt} to the
mismatch index, depending upon whether @var{s1} is less than,
equal to, or greater than @var{s2}.  The mismatch index is the
largest index @var{i} such that for every 0 <= @var{j} <
@var{i}, @var{s1}[@var{j}] = @var{s2}[@var{j}] -- that is,
@var{i} is the first position that does not match.  The
character comparison is done case-insensitively.
@end deffn

@deffn {Scheme Procedure} string= s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_eq (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
value otherwise.
@end deffn

@deffn {Scheme Procedure} string<> s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_neq (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} and @var{s2} are equal, a true
value otherwise.
@end deffn

@deffn {Scheme Procedure} string< s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_lt (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
true value otherwise.
@end deffn

@deffn {Scheme Procedure} string> s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_gt (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
true value otherwise.
@end deffn

@deffn {Scheme Procedure} string<= s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_le (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} is greater to @var{s2}, a true
value otherwise.
@end deffn

@deffn {Scheme Procedure} string>= s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_ge (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} is less to @var{s2}, a true value
otherwise.
@end deffn

@deffn {Scheme Procedure} string-ci= s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_ci_eq (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} and @var{s2} are not equal, a true
value otherwise.  The character comparison is done
case-insensitively.
@end deffn

@deffn {Scheme Procedure} string-ci<> s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_ci_neq (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} and @var{s2} are equal, a true
value otherwise.  The character comparison is done
case-insensitively.
@end deffn

@deffn {Scheme Procedure} string-ci< s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_ci_lt (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} is greater or equal to @var{s2}, a
true value otherwise.  The character comparison is done
case-insensitively.
@end deffn

@deffn {Scheme Procedure} string-ci> s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_ci_gt (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} is less or equal to @var{s2}, a
true value otherwise.  The character comparison is done
case-insensitively.
@end deffn

@deffn {Scheme Procedure} string-ci<= s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_ci_le (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} is greater to @var{s2}, a true
value otherwise.  The character comparison is done
case-insensitively.
@end deffn

@deffn {Scheme Procedure} string-ci>= s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_ci_ge (s1, s2, start1, end1, start2, end2)
Return @code{#f} if @var{s1} is less to @var{s2}, a true value
otherwise.  The character comparison is done
case-insensitively.
@end deffn

@deffn {Scheme Procedure} string-hash s [bound [start [end]]]
@deffnx {C Function} scm_substring_hash (s, bound, start, end)
Compute a hash value for @var{S}.  the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
@end deffn

@deffn {Scheme Procedure} string-hash-ci s [bound [start [end]]]
@deffnx {C Function} scm_substring_hash_ci (s, bound, start, end)
Compute a hash value for @var{S}.  the optional argument @var{bound} is a non-negative exact integer specifying the range of the hash function. A positive value restricts the return value to the range [0,bound).
@end deffn

@node String Searching
@subsubsection String Searching

@deffn {Scheme Procedure} string-index s char_pred [start [end]]
@deffnx {C Function} scm_string_index (s, char_pred, start, end)
Search through the string @var{s} from left to right, returning
the index of the first occurence of a character which

@itemize @bullet
@item
equals @var{char_pred}, if it is character,

@item
satisifies the predicate @var{char_pred}, if it is a procedure,

@item
is in the set @var{char_pred}, if it is a character set.
@end itemize
@end deffn

@deffn {Scheme Procedure} string-rindex s char_pred [start [end]]
@deffnx {C Function} scm_string_rindex (s, char_pred, start, end)
Search through the string @var{s} from right to left, returning
the index of the last occurence of a character which

@itemize @bullet
@item
equals @var{char_pred}, if it is character,

@item
satisifies the predicate @var{char_pred}, if it is a procedure,

@item
is in the set if @var{char_pred} is a character set.
@end itemize
@end deffn

@deffn {Scheme Procedure} string-prefix-length s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_prefix_length (s1, s2, start1, end1, start2, end2)
Return the length of the longest common prefix of the two
strings.
@end deffn

@deffn {Scheme Procedure} string-prefix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_prefix_length_ci (s1, s2, start1, end1, start2, end2)
Return the length of the longest common prefix of the two
strings, ignoring character case.
@end deffn

@deffn {Scheme Procedure} string-suffix-length s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_suffix_length (s1, s2, start1, end1, start2, end2)
Return the length of the longest common suffix of the two
strings.
@end deffn

@deffn {Scheme Procedure} string-suffix-length-ci s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_suffix_length_ci (s1, s2, start1, end1, start2, end2)
Return the length of the longest common suffix of the two
strings, ignoring character case.
@end deffn

@deffn {Scheme Procedure} string-prefix? s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_prefix_p (s1, s2, start1, end1, start2, end2)
Is @var{s1} a prefix of @var{s2}?
@end deffn

@deffn {Scheme Procedure} string-prefix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_prefix_ci_p (s1, s2, start1, end1, start2, end2)
Is @var{s1} a prefix of @var{s2}, ignoring character case?
@end deffn

@deffn {Scheme Procedure} string-suffix? s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_suffix_p (s1, s2, start1, end1, start2, end2)
Is @var{s1} a suffix of @var{s2}?
@end deffn

@deffn {Scheme Procedure} string-suffix-ci? s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_suffix_ci_p (s1, s2, start1, end1, start2, end2)
Is @var{s1} a suffix of @var{s2}, ignoring character case?
@end deffn

@deffn {Scheme Procedure} string-index-right s char_pred [start [end]]
@deffnx {C Function} scm_string_index_right (s, char_pred, start, end)
Search through the string @var{s} from right to left, returning
the index of the last occurence of a character which

@itemize @bullet
@item
equals @var{char_pred}, if it is character,

@item
satisifies the predicate @var{char_pred}, if it is a procedure,

@item
is in the set if @var{char_pred} is a character set.
@end itemize
@end deffn

@deffn {Scheme Procedure} string-skip s char_pred [start [end]]
@deffnx {C Function} scm_string_skip (s, char_pred, start, end)
Search through the string @var{s} from left to right, returning
the index of the first occurence of a character which

@itemize @bullet
@item
does not equal @var{char_pred}, if it is character,

@item
does not satisify the predicate @var{char_pred}, if it is a
procedure,

@item
is not in the set if @var{char_pred} is a character set.
@end itemize
@end deffn

@deffn {Scheme Procedure} string-skip-right s char_pred [start [end]]
@deffnx {C Function} scm_string_skip_right (s, char_pred, start, end)
Search through the string @var{s} from right to left, returning
the index of the last occurence of a character which

@itemize @bullet
@item
does not equal @var{char_pred}, if it is character,

@item
does not satisfy the predicate @var{char_pred}, if it is a
procedure,

@item
is not in the set if @var{char_pred} is a character set.
@end itemize
@end deffn

@deffn {Scheme Procedure} string-count s char_pred [start [end]]
@deffnx {C Function} scm_string_count (s, char_pred, start, end)
Return the count of the number of characters in the string
@var{s} which

@itemize @bullet
@item
equals @var{char_pred}, if it is character,

@item
satisifies the predicate @var{char_pred}, if it is a procedure.

@item
is in the set @var{char_pred}, if it is a character set.
@end itemize
@end deffn

@deffn {Scheme Procedure} string-contains s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_contains (s1, s2, start1, end1, start2, end2)
Does string @var{s1} contain string @var{s2}?  Return the index
in @var{s1} where @var{s2} occurs as a substring, or false.
The optional start/end indices restrict the operation to the
indicated substrings.
@end deffn

@deffn {Scheme Procedure} string-contains-ci s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_contains_ci (s1, s2, start1, end1, start2, end2)
Does string @var{s1} contain string @var{s2}?  Return the index
in @var{s1} where @var{s2} occurs as a substring, or false.
The optional start/end indices restrict the operation to the
indicated substrings.  Character comparison is done
case-insensitively.
@end deffn

@node Alphabetic Case Mapping
@subsubsection Alphabetic Case Mapping

These are procedures for mapping strings to their upper- or lower-case
equivalents, respectively, or for capitalizing strings.

@deffn {Scheme Procedure} string-upcase str [start [end]]
@deffnx {C Function} scm_substring_upcase (str, start, end)
@deffnx {C Function} scm_string_upcase (str)
Upcase every character in @code{str}.
@end deffn

@deffn {Scheme Procedure} string-upcase! str [start [end]]
@deffnx {C Function} scm_substring_upcase_x (str, start, end)
@deffnx {C Function} scm_string_upcase_x (str)
Destructively upcase every character in @code{str}.

@lisp
(string-upcase! y)
@result{} "ARRDEFG"
y
@result{} "ARRDEFG"
@end lisp
@end deffn

@deffn {Scheme Procedure} string-downcase str [start [end]]
@deffnx {C Function} scm_substring_downcase (str, start, end)
@deffnx {C Function} scm_string_downcase (str)
Downcase every character in @var{str}.
@end deffn

@deffn {Scheme Procedure} string-downcase! str [start [end]]
@deffnx {C Function} scm_substring_downcase_x (str, start, end)
@deffnx {C Function} scm_string_downcase_x (str)
Destructively downcase every character in @var{str}.

@lisp
y
@result{} "ARRDEFG"
(string-downcase! y)
@result{} "arrdefg"
y
@result{} "arrdefg"
@end lisp
@end deffn

@deffn {Scheme Procedure} string-capitalize str
@deffnx {C Function} scm_string_capitalize (str)
Return a freshly allocated string with the characters in
@var{str}, where the first character of every word is
capitalized.
@end deffn

@deffn {Scheme Procedure} string-capitalize! str
@deffnx {C Function} scm_string_capitalize_x (str)
Upcase the first character of every word in @var{str}
destructively and return @var{str}.

@lisp
y                      @result{} "hello world"
(string-capitalize! y) @result{} "Hello World"
y                      @result{} "Hello World"
@end lisp
@end deffn

@deffn {Scheme Procedure} string-titlecase str [start [end]]
@deffnx {C Function} scm_string_titlecase (str, start, end)
Titlecase every first character in a word in @var{str}.
@end deffn

@deffn {Scheme Procedure} string-titlecase! str [start [end]]
@deffnx {C Function} scm_string_titlecase_x (str, start, end)
Destructively titlecase every first character in a word in
@var{str}.
@end deffn

@node Reversing and Appending Strings
@subsubsection Reversing and Appending Strings

@deffn {Scheme Procedure} string-reverse str [start [end]]
@deffnx {C Function} scm_string_reverse (str, start, end)
Reverse the string @var{str}.  The optional arguments
@var{start} and @var{end} delimit the region of @var{str} to
operate on.
@end deffn

@deffn {Scheme Procedure} string-reverse! str [start [end]]
@deffnx {C Function} scm_string_reverse_x (str, start, end)
Reverse the string @var{str} in-place.  The optional arguments
@var{start} and @var{end} delimit the region of @var{str} to
operate on.  The return value is unspecified.
@end deffn

@rnindex string-append
@deffn {Scheme Procedure} string-append . args
@deffnx {C Function} scm_string_append (args)
Return a newly allocated string whose characters form the
concatenation of the given strings, @var{args}.

@example
(let ((h "hello "))
  (string-append h "world"))
@result{} "hello world"
@end example
@end deffn

@deffn {Scheme Procedure} string-append/shared . ls
@deffnx {C Function} scm_string_append_shared (ls)
Like @code{string-append}, but the result may share memory
with the argument strings.
@end deffn

@deffn {Scheme Procedure} string-concatenate ls
@deffnx {C Function} scm_string_concatenate (ls)
Append the elements of @var{ls} (which must be strings)
together into a single string.  Guaranteed to return a freshly
allocated string.
@end deffn

@deffn {Scheme Procedure} string-concatenate-reverse ls [final_string [end]]
@deffnx {C Function} scm_string_concatenate_reverse (ls, final_string, end)
Without optional arguments, this procedure is equivalent to

@lisp
(string-concatenate (reverse ls))
@end lisp

If the optional argument @var{final_string} is specified, it is
consed onto the beginning to @var{ls} before performing the
list-reverse and string-concatenate operations.  If @var{end}
is given, only the characters of @var{final_string} up to index
@var{end} are used.

Guaranteed to return a freshly allocated string.
@end deffn

@deffn {Scheme Procedure} string-concatenate/shared ls
@deffnx {C Function} scm_string_concatenate_shared (ls)
Like @code{string-concatenate}, but the result may share memory
with the strings in the list @var{ls}.
@end deffn

@deffn {Scheme Procedure} string-concatenate-reverse/shared ls [final_string [end]]
@deffnx {C Function} scm_string_concatenate_reverse_shared (ls, final_string, end)
Like @code{string-concatenate-reverse}, but the result may
share memory with the the strings in the @var{ls} arguments.
@end deffn

@node Mapping Folding and Unfolding
@subsubsection Mapping, Folding, and Unfolding

@deffn {Scheme Procedure} string-map proc s [start [end]]
@deffnx {C Function} scm_string_map (proc, s, start, end)
@var{proc} is a char->char procedure, it is mapped over
@var{s}.  The order in which the procedure is applied to the
string elements is not specified.
@end deffn

@deffn {Scheme Procedure} string-map! proc s [start [end]]
@deffnx {C Function} scm_string_map_x (proc, s, start, end)
@var{proc} is a char->char procedure, it is mapped over
@var{s}.  The order in which the procedure is applied to the
string elements is not specified.  The string @var{s} is
modified in-place, the return value is not specified.
@end deffn

@deffn {Scheme Procedure} string-for-each proc s [start [end]]
@deffnx {C Function} scm_string_for_each (proc, s, start, end)
@var{proc} is mapped over @var{s} in left-to-right order.  The
return value is not specified.
@end deffn

@deffn {Scheme Procedure} string-for-each-index proc s [start [end]]
@deffnx {C Function} scm_string_for_each_index (proc, s, start, end)
Call @code{(@var{proc} i)} for each index i in @var{s}, from left to
right.

For example, to change characters to alternately upper and lower case,

@example
(define str (string-copy "studly"))
(string-for-each-index
    (lambda (i)
      (string-set! str i
        ((if (even? i) char-upcase char-downcase)
         (string-ref str i))))
    str)
str @result{} "StUdLy"
@end example
@end deffn

@deffn {Scheme Procedure} string-fold kons knil s [start [end]]
@deffnx {C Function} scm_string_fold (kons, knil, s, start, end)
Fold @var{kons} over the characters of @var{s}, with @var{knil}
as the terminating element, from left to right.  @var{kons}
must expect two arguments: The actual character and the last
result of @var{kons}' application.
@end deffn

@deffn {Scheme Procedure} string-fold-right kons knil s [start [end]]
@deffnx {C Function} scm_string_fold_right (kons, knil, s, start, end)
Fold @var{kons} over the characters of @var{s}, with @var{knil}
as the terminating element, from right to left.  @var{kons}
must expect two arguments: The actual character and the last
result of @var{kons}' application.
@end deffn

@deffn {Scheme Procedure} string-unfold p f g seed [base [make_final]]
@deffnx {C Function} scm_string_unfold (p, f, g, seed, base, make_final)
@itemize @bullet
@item @var{g} is used to generate a series of @emph{seed}
values from the initial @var{seed}: @var{seed}, (@var{g}
@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
@dots{}
@item @var{p} tells us when to stop -- when it returns true
when applied to one of these seed values.
@item @var{f} maps each seed value to the corresponding
character in the result string.  These chars are assembled
into the string in a left-to-right order.
@item @var{base} is the optional initial/leftmost portion
of the constructed string; it default to the empty
string.
@item @var{make_final} is applied to the terminal seed
value (on which @var{p} returns true) to produce
the final/rightmost portion of the constructed string.
The default is nothing extra.
@end itemize
@end deffn

@deffn {Scheme Procedure} string-unfold-right p f g seed [base [make_final]]
@deffnx {C Function} scm_string_unfold_right (p, f, g, seed, base, make_final)
@itemize @bullet
@item @var{g} is used to generate a series of @emph{seed}
values from the initial @var{seed}: @var{seed}, (@var{g}
@var{seed}), (@var{g}^2 @var{seed}), (@var{g}^3 @var{seed}),
@dots{}
@item @var{p} tells us when to stop -- when it returns true
when applied to one of these seed values.
@item @var{f} maps each seed value to the corresponding
character in the result string.  These chars are assembled
into the string in a right-to-left order.
@item @var{base} is the optional initial/rightmost portion
of the constructed string; it default to the empty
string.
@item @var{make_final} is applied to the terminal seed
value (on which @var{p} returns true) to produce
the final/leftmost portion of the constructed string.
It defaults to @code{(lambda (x) )}.
@end itemize
@end deffn

@node Miscellaneous String Operations
@subsubsection Miscellaneous String Operations

@deffn {Scheme Procedure} xsubstring s from [to [start [end]]]
@deffnx {C Function} scm_xsubstring (s, from, to, start, end)
This is the @emph{extended substring} procedure that implements
replicated copying of a substring of some string.

@var{s} is a string, @var{start} and @var{end} are optional
arguments that demarcate a substring of @var{s}, defaulting to
0 and the length of @var{s}.  Replicate this substring up and
down index space, in both the positive and negative directions.
@code{xsubstring} returns the substring of this string
beginning at index @var{from}, and ending at @var{to}, which
defaults to @var{from} + (@var{end} - @var{start}).
@end deffn

@deffn {Scheme Procedure} string-xcopy! target tstart s sfrom [sto [start [end]]]
@deffnx {C Function} scm_string_xcopy_x (target, tstart, s, sfrom, sto, start, end)
Exactly the same as @code{xsubstring}, but the extracted text
is written into the string @var{target} starting at index
@var{tstart}.  The operation is not defined if @code{(eq?
@var{target} @var{s})} or these arguments share storage -- you
cannot copy a string on top of itself.
@end deffn

@deffn {Scheme Procedure} string-replace s1 s2 [start1 [end1 [start2 [end2]]]]
@deffnx {C Function} scm_string_replace (s1, s2, start1, end1, start2, end2)
Return the string @var{s1}, but with the characters
@var{start1} @dots{} @var{end1} replaced by the characters
@var{start2} @dots{} @var{end2} from @var{s2}.
@end deffn

@deffn {Scheme Procedure} string-tokenize s [token_set [start [end]]]
@deffnx {C Function} scm_string_tokenize (s, token_set, start, end)
Split the string @var{s} into a list of substrings, where each
substring is a maximal non-empty contiguous sequence of
characters from the character set @var{token_set}, which
defaults to @code{char-set:graphic}.
If @var{start} or @var{end} indices are provided, they restrict
@code{string-tokenize} to operating on the indicated substring
of @var{s}.
@end deffn

@deffn {Scheme Procedure} string-filter s char_pred [start [end]]
@deffnx {C Function} scm_string_filter (s, char_pred, start, end)
Filter the string @var{s}, retaining only those characters which
satisfy @var{char_pred}.

If @var{char_pred} is a procedure, it is applied to each character as
a predicate, if it is a character, it is tested for equality and if it
is a character set, it is tested for membership.
@end deffn

@deffn {Scheme Procedure} string-delete s char_pred [start [end]]
@deffnx {C Function} scm_string_delete (s, char_pred, start, end)
Delete characters satisfying @var{char_pred} from @var{s}.

If @var{char_pred} is a procedure, it is applied to each character as
a predicate, if it is a character, it is tested for equality and if it
is a character set, it is tested for membership.
@end deffn

@node Conversion to/from C
@subsubsection Conversion to/from C

When creating a Scheme string from a C string or when converting a
Scheme string to a C string, the concept of character encoding becomes
important.

In C, a string is just a sequence of bytes, and the character encoding
describes the relation between these bytes and the actual characters
that make up the string.  For Scheme strings, character encoding is
not an issue (most of the time), since in Scheme you never get to see
the bytes, only the characters.

Well, ideally, anyway.  Right now, Guile simply equates Scheme
characters and bytes, ignoring the possibility of multi-byte encodings
completely.  This will change in the future, where Guile will use
Unicode codepoints as its characters and UTF-8 or some other encoding
as its internal encoding.  When you exclusively use the functions
listed in this section, you are `future-proof'.

Converting a Scheme string to a C string will often allocate fresh
memory to hold the result.  You must take care that this memory is
properly freed eventually.  In many cases, this can be achieved by
using @code{scm_dynwind_free} inside an appropriate dynwind context,
@xref{Dynamic Wind}.

@deftypefn  {C Function} SCM scm_from_locale_string (const char *str)
@deftypefnx {C Function} SCM scm_from_locale_stringn (const char *str, size_t len)
Creates a new Scheme string that has the same contents as @var{str}
when interpreted in the current locale character encoding.

For @code{scm_from_locale_string}, @var{str} must be null-terminated.

For @code{scm_from_locale_stringn}, @var{len} specifies the length of
@var{str} in bytes, and @var{str} does not need to be null-terminated.
If @var{len} is @code{(size_t)-1}, then @var{str} does need to be
null-terminated and the real length will be found with @code{strlen}.
@end deftypefn

@deftypefn  {C Function} SCM scm_take_locale_string (char *str)
@deftypefnx {C Function} SCM scm_take_locale_stringn (char *str, size_t len)
Like @code{scm_from_locale_string} and @code{scm_from_locale_stringn},
respectively, but also frees @var{str} with @code{free} eventually.
Thus, you can use this function when you would free @var{str} anyway
immediately after creating the Scheme string.  In certain cases, Guile
can then use @var{str} directly as its internal representation.
@end deftypefn

@deftypefn  {C Function} {char *} scm_to_locale_string (SCM str)
@deftypefnx {C Function} {char *} scm_to_locale_stringn (SCM str, size_t *lenp)
Returns a C string in the current locale encoding with the same
contents as @var{str}.  The C string must be freed with @code{free}
eventually, maybe by using @code{scm_dynwind_free}, @xref{Dynamic
Wind}.

For @code{scm_to_locale_string}, the returned string is
null-terminated and an error is signalled when @var{str} contains
@code{#\nul} characters.

For @code{scm_to_locale_stringn} and @var{lenp} not @code{NULL},
@var{str} might contain @code{#\nul} characters and the length of the
returned string in bytes is stored in @code{*@var{lenp}}.  The
returned string will not be null-terminated in this case.  If
@var{lenp} is @code{NULL}, @code{scm_to_locale_stringn} behaves like
@code{scm_to_locale_string}.
@end deftypefn

@deftypefn {C Function} size_t scm_to_locale_stringbuf (SCM str, char *buf, size_t max_len)
Puts @var{str} as a C string in the current locale encoding into the
memory pointed to by @var{buf}.  The buffer at @var{buf} has room for
@var{max_len} bytes and @code{scm_to_local_stringbuf} will never store
more than that.  No terminating @code{'\0'} will be stored.

The return value of @code{scm_to_locale_stringbuf} is the number of
bytes that are needed for all of @var{str}, regardless of whether
@var{buf} was large enough to hold them.  Thus, when the return value
is larger than @var{max_len}, only @var{max_len} bytes have been
stored and you probably need to try again with a larger buffer.
@end deftypefn

@node Bytevectors
@subsection Bytevectors

@cindex bytevector
@cindex R6RS

A @dfn{bytevector} is a raw bit string.  The @code{(rnrs bytevector)}
module provides the programming interface specified by the
@uref{http://www.r6rs.org/, Revised^6 Report on the Algorithmic Language
Scheme (R6RS)}.  It contains procedures to manipulate bytevectors and
interpret their contents in a number of ways: bytevector contents can be
accessed as signed or unsigned integer of various sizes and endianness,
as IEEE-754 floating point numbers, or as strings.  It is a useful tool
to encode and decode binary data.

The R6RS (Section 4.3.4) specifies an external representation for
bytevectors, whereby the octets (integers in the range 0--255) contained
in the bytevector are represented as a list prefixed by @code{#vu8}:

@lisp
#vu8(1 53 204)
@end lisp

denotes a 3-byte bytevector containing the octets 1, 53, and 204.  Like
string literals, booleans, etc., bytevectors are ``self-quoting'', i.e.,
they do not need to be quoted:

@lisp
#vu8(1 53 204)
@result{} #vu8(1 53 204)
@end lisp

Bytevectors can be used with the binary input/output primitives of the
R6RS (@pxref{R6RS I/O Ports}).

@menu
* Bytevector Endianness::       Dealing with byte order.
* Bytevector Manipulation::     Creating, copying, manipulating bytevectors.
* Bytevectors as Integers::     Interpreting bytes as integers.
* Bytevectors and Integer Lists::  Converting to/from an integer list.
* Bytevectors as Floats::       Interpreting bytes as real numbers.
* Bytevectors as Strings::      Interpreting bytes as Unicode strings.
* Bytevectors as Generalized Vectors::  Guile extension to the bytevector API.
@end menu

@node Bytevector Endianness
@subsubsection Endianness

@cindex endianness
@cindex byte order
@cindex word order

Some of the following procedures take an @var{endianness} parameter.
The @dfn{endianness} is defined as the order of bytes in multi-byte
numbers: numbers encoded in @dfn{big endian} have their most
significant bytes written first, whereas numbers encoded in
@dfn{little endian} have their least significant bytes
first@footnote{Big-endian and little-endian are the most common
``endiannesses'', but others do exist. For instance, the GNU MP
library allows @dfn{word order} to be specified independently of
@dfn{byte order} (@pxref{Integer Import and Export,,, gmp, The GNU
Multiple Precision Arithmetic Library Manual}).}.

Little-endian is the native endianness of the IA32 architecture and
its derivatives, while big-endian is native to SPARC and PowerPC,
among others. The @code{native-endianness} procedure returns the
native endianness of the machine it runs on.

@deffn {Scheme Procedure} native-endianness
@deffnx {C Function} scm_native_endianness ()
Return a value denoting the native endianness of the host machine.
@end deffn

@deffn {Scheme Macro} endianness symbol
Return an object denoting the endianness specified by @var{symbol}.  If
@var{symbol} is neither @code{big} nor @code{little} then an error is
raised at expand-time.
@end deffn

@defvr {C Variable} scm_endianness_big
@defvrx {C Variable} scm_endianness_little
The objects denoting big- and little-endianness, respectively.
@end defvr


@node Bytevector Manipulation
@subsubsection Manipulating Bytevectors

Bytevectors can be created, copied, and analyzed with the following
procedures and C functions.

@deffn {Scheme Procedure} make-bytevector len [fill]
@deffnx {C Function} scm_make_bytevector (len, fill)
@deffnx {C Function} scm_c_make_bytevector (size_t len)
Return a new bytevector of @var{len} bytes.  Optionally, if @var{fill}
is given, fill it with @var{fill}; @var{fill} must be in the range
[-128,255].
@end deffn

@deffn {Scheme Procedure} bytevector? obj
@deffnx {C Function} scm_bytevector_p (obj)
Return true if @var{obj} is a bytevector.
@end deffn

@deftypefn {C Function} int scm_is_bytevector (SCM obj)
Equivalent to @code{scm_is_true (scm_bytevector_p (obj))}.
@end deftypefn

@deffn {Scheme Procedure} bytevector-length bv
@deffnx {C Function} scm_bytevector_length (bv)
Return the length in bytes of bytevector @var{bv}.
@end deffn

@deftypefn {C Function} size_t scm_c_bytevector_length (SCM bv)
Likewise, return the length in bytes of bytevector @var{bv}.
@end deftypefn

@deffn {Scheme Procedure} bytevector=? bv1 bv2
@deffnx {C Function} scm_bytevector_eq_p (bv1, bv2)
Return is @var{bv1} equals to @var{bv2}---i.e., if they have the same
length and contents.
@end deffn

@deffn {Scheme Procedure} bytevector-fill! bv fill
@deffnx {C Function} scm_bytevector_fill_x (bv, fill)
Fill bytevector @var{bv} with @var{fill}, a byte.
@end deffn

@deffn {Scheme Procedure} bytevector-copy! source source-start target target-start len
@deffnx {C Function} scm_bytevector_copy_x (source, source_start, target, target_start, len)
Copy @var{len} bytes from @var{source} into @var{target}, starting
reading from @var{source-start} (a positive index within @var{source})
and start writing at @var{target-start}.
@end deffn

@deffn {Scheme Procedure} bytevector-copy bv
@deffnx {C Function} scm_bytevector_copy (bv)
Return a newly allocated copy of @var{bv}.
@end deffn

@deftypefn {C Function} scm_t_uint8 scm_c_bytevector_ref (SCM bv, size_t index)
Return the byte at @var{index} in bytevector @var{bv}.
@end deftypefn

@deftypefn {C Function} void scm_c_bytevector_set_x (SCM bv, size_t index, scm_t_uint8 value)
Set the byte at @var{index} in @var{bv} to @var{value}.
@end deftypefn

Low-level C macros are available.  They do not perform any
type-checking; as such they should be used with care.

@deftypefn {C Macro} size_t SCM_BYTEVECTOR_LENGTH (bv)
Return the length in bytes of bytevector @var{bv}.
@end deftypefn

@deftypefn {C Macro} {signed char *} SCM_BYTEVECTOR_CONTENTS (bv)
Return a pointer to the contents of bytevector @var{bv}.
@end deftypefn


@node Bytevectors as Integers
@subsubsection Interpreting Bytevector Contents as Integers

The contents of a bytevector can be interpreted as a sequence of
integers of any given size, sign, and endianness.

@lisp
(let ((bv (make-bytevector 4)))
  (bytevector-u8-set! bv 0 #x12)
  (bytevector-u8-set! bv 1 #x34)
  (bytevector-u8-set! bv 2 #x56)
  (bytevector-u8-set! bv 3 #x78)

  (map (lambda (number)
         (number->string number 16))
       (list (bytevector-u8-ref bv 0)
             (bytevector-u16-ref bv 0 (endianness big))
             (bytevector-u32-ref bv 0 (endianness little)))))

@result{} ("12" "1234" "78563412")
@end lisp

The most generic procedures to interpret bytevector contents as integers
are described below.

@deffn {Scheme Procedure} bytevector-uint-ref bv index endianness size
@deffnx {Scheme Procedure} bytevector-sint-ref bv index endianness size
@deffnx {C Function} scm_bytevector_uint_ref (bv, index, endianness, size)
@deffnx {C Function} scm_bytevector_sint_ref (bv, index, endianness, size)
Return the @var{size}-byte long unsigned (resp. signed) integer at
index @var{index} in @var{bv}, decoded according to @var{endianness}.
@end deffn

@deffn {Scheme Procedure} bytevector-uint-set! bv index value endianness size
@deffnx {Scheme Procedure} bytevector-sint-set! bv index value endianness size
@deffnx {C Function} scm_bytevector_uint_set_x (bv, index, value, endianness, size)
@deffnx {C Function} scm_bytevector_sint_set_x (bv, index, value, endianness, size)
Set the @var{size}-byte long unsigned (resp. signed) integer at
@var{index} to @var{value}, encoded according to @var{endianness}.
@end deffn

The following procedures are similar to the ones above, but specialized
to a given integer size:

@deffn {Scheme Procedure} bytevector-u8-ref bv index
@deffnx {Scheme Procedure} bytevector-s8-ref bv index
@deffnx {Scheme Procedure} bytevector-u16-ref bv index endianness
@deffnx {Scheme Procedure} bytevector-s16-ref bv index endianness
@deffnx {Scheme Procedure} bytevector-u32-ref bv index endianness
@deffnx {Scheme Procedure} bytevector-s32-ref bv index endianness
@deffnx {Scheme Procedure} bytevector-u64-ref bv index endianness
@deffnx {Scheme Procedure} bytevector-s64-ref bv index endianness
@deffnx {C Function} scm_bytevector_u8_ref (bv, index)
@deffnx {C Function} scm_bytevector_s8_ref (bv, index)
@deffnx {C Function} scm_bytevector_u16_ref (bv, index, endianness)
@deffnx {C Function} scm_bytevector_s16_ref (bv, index, endianness)
@deffnx {C Function} scm_bytevector_u32_ref (bv, index, endianness)
@deffnx {C Function} scm_bytevector_s32_ref (bv, index, endianness)
@deffnx {C Function} scm_bytevector_u64_ref (bv, index, endianness)
@deffnx {C Function} scm_bytevector_s64_ref (bv, index, endianness)
Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
16, 32 or 64) from @var{bv} at @var{index}, decoded according to
@var{endianness}.
@end deffn

@deffn {Scheme Procedure} bytevector-u8-set! bv index value
@deffnx {Scheme Procedure} bytevector-s8-set! bv index value
@deffnx {Scheme Procedure} bytevector-u16-set! bv index value endianness
@deffnx {Scheme Procedure} bytevector-s16-set! bv index value endianness
@deffnx {Scheme Procedure} bytevector-u32-set! bv index value endianness
@deffnx {Scheme Procedure} bytevector-s32-set! bv index value endianness
@deffnx {Scheme Procedure} bytevector-u64-set! bv index value endianness
@deffnx {Scheme Procedure} bytevector-s64-set! bv index value endianness
@deffnx {C Function} scm_bytevector_u8_set_x (bv, index, value)
@deffnx {C Function} scm_bytevector_s8_set_x (bv, index, value)
@deffnx {C Function} scm_bytevector_u16_set_x (bv, index, value, endianness)
@deffnx {C Function} scm_bytevector_s16_set_x (bv, index, value, endianness)
@deffnx {C Function} scm_bytevector_u32_set_x (bv, index, value, endianness)
@deffnx {C Function} scm_bytevector_s32_set_x (bv, index, value, endianness)
@deffnx {C Function} scm_bytevector_u64_set_x (bv, index, value, endianness)
@deffnx {C Function} scm_bytevector_s64_set_x (bv, index, value, endianness)
Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to
@var{endianness}.
@end deffn

Finally, a variant specialized for the host's endianness is available
for each of these functions (with the exception of the @code{u8}
accessors, for obvious reasons):

@deffn {Scheme Procedure} bytevector-u16-native-ref bv index
@deffnx {Scheme Procedure} bytevector-s16-native-ref bv index
@deffnx {Scheme Procedure} bytevector-u32-native-ref bv index
@deffnx {Scheme Procedure} bytevector-s32-native-ref bv index
@deffnx {Scheme Procedure} bytevector-u64-native-ref bv index
@deffnx {Scheme Procedure} bytevector-s64-native-ref bv index
@deffnx {C Function} scm_bytevector_u16_native_ref (bv, index)
@deffnx {C Function} scm_bytevector_s16_native_ref (bv, index)
@deffnx {C Function} scm_bytevector_u32_native_ref (bv, index)
@deffnx {C Function} scm_bytevector_s32_native_ref (bv, index)
@deffnx {C Function} scm_bytevector_u64_native_ref (bv, index)
@deffnx {C Function} scm_bytevector_s64_native_ref (bv, index)
Return the unsigned @var{n}-bit (signed) integer (where @var{n} is 8,
16, 32 or 64) from @var{bv} at @var{index}, decoded according to the
host's native endianness.
@end deffn

@deffn {Scheme Procedure} bytevector-u16-native-set! bv index value
@deffnx {Scheme Procedure} bytevector-s16-native-set! bv index value
@deffnx {Scheme Procedure} bytevector-u32-native-set! bv index value
@deffnx {Scheme Procedure} bytevector-s32-native-set! bv index value
@deffnx {Scheme Procedure} bytevector-u64-native-set! bv index value
@deffnx {Scheme Procedure} bytevector-s64-native-set! bv index value
@deffnx {C Function} scm_bytevector_u16_native_set_x (bv, index, value)
@deffnx {C Function} scm_bytevector_s16_native_set_x (bv, index, value)
@deffnx {C Function} scm_bytevector_u32_native_set_x (bv, index, value)
@deffnx {C Function} scm_bytevector_s32_native_set_x (bv, index, value)
@deffnx {C Function} scm_bytevector_u64_native_set_x (bv, index, value)
@deffnx {C Function} scm_bytevector_s64_native_set_x (bv, index, value)
Store @var{value} as an @var{n}-bit (signed) integer (where @var{n} is
8, 16, 32 or 64) in @var{bv} at @var{index}, encoded according to the
host's native endianness.
@end deffn


@node Bytevectors and Integer Lists
@subsubsection Converting Bytevectors to/from Integer Lists

Bytevector contents can readily be converted to/from lists of signed or
unsigned integers:

@lisp
(bytevector->sint-list (u8-list->bytevector (make-list 4 255))
                       (endianness little) 2)
@result{} (-1 -1)
@end lisp

@deffn {Scheme Procedure} bytevector->u8-list bv
@deffnx {C Function} scm_bytevector_to_u8_list (bv)
Return a newly allocated list of unsigned 8-bit integers from the
contents of @var{bv}.
@end deffn

@deffn {Scheme Procedure} u8-list->bytevector lst
@deffnx {C Function} scm_u8_list_to_bytevector (lst)
Return a newly allocated bytevector consisting of the unsigned 8-bit
integers listed in @var{lst}.
@end deffn

@deffn {Scheme Procedure} bytevector->uint-list bv endianness size
@deffnx {Scheme Procedure} bytevector->sint-list bv endianness size
@deffnx {C Function} scm_bytevector_to_uint_list (bv, endianness, size)
@deffnx {C Function} scm_bytevector_to_sint_list (bv, endianness, size)
Return a list of unsigned (resp. signed) integers of @var{size} bytes
representing the contents of @var{bv}, decoded according to
@var{endianness}.
@end deffn

@deffn {Scheme Procedure} uint-list->bytevector lst endianness size
@deffnx {Scheme Procedure} sint-list->bytevector lst endianness size
@deffnx {C Function} scm_uint_list_to_bytevector (lst, endianness, size)
@deffnx {C Function} scm_sint_list_to_bytevector (lst, endianness, size)
Return a new bytevector containing the unsigned (resp. signed) integers
listed in @var{lst} and encoded on @var{size} bytes according to
@var{endianness}.
@end deffn

@node Bytevectors as Floats
@subsubsection Interpreting Bytevector Contents as Floating Point Numbers

@cindex IEEE-754 floating point numbers

Bytevector contents can also be accessed as IEEE-754 single- or
double-precision floating point numbers (respectively 32 and 64-bit
long) using the procedures described here.

@deffn {Scheme Procedure} bytevector-ieee-single-ref bv index endianness
@deffnx {Scheme Procedure} bytevector-ieee-double-ref bv index endianness
@deffnx {C Function} scm_bytevector_ieee_single_ref (bv, index, endianness)
@deffnx {C Function} scm_bytevector_ieee_double_ref (bv, index, endianness)
Return the IEEE-754 single-precision floating point number from @var{bv}
at @var{index} according to @var{endianness}.
@end deffn

@deffn {Scheme Procedure} bytevector-ieee-single-set! bv index value endianness
@deffnx {Scheme Procedure} bytevector-ieee-double-set! bv index value endianness
@deffnx {C Function} scm_bytevector_ieee_single_set_x (bv, index, value, endianness)
@deffnx {C Function} scm_bytevector_ieee_double_set_x (bv, index, value, endianness)
Store real number @var{value} in @var{bv} at @var{index} according to
@var{endianness}.
@end deffn

Specialized procedures are also available:

@deffn {Scheme Procedure} bytevector-ieee-single-native-ref bv index
@deffnx {Scheme Procedure} bytevector-ieee-double-native-ref bv index
@deffnx {C Function} scm_bytevector_ieee_single_native_ref (bv, index)
@deffnx {C Function} scm_bytevector_ieee_double_native_ref (bv, index)
Return the IEEE-754 single-precision floating point number from @var{bv}
at @var{index} according to the host's native endianness.
@end deffn

@deffn {Scheme Procedure} bytevector-ieee-single-native-set! bv index value
@deffnx {Scheme Procedure} bytevector-ieee-double-native-set! bv index value
@deffnx {C Function} scm_bytevector_ieee_single_native_set_x (bv, index, value)
@deffnx {C Function} scm_bytevector_ieee_double_native_set_x (bv, index, value)
Store real number @var{value} in @var{bv} at @var{index} according to
the host's native endianness.
@end deffn


@node Bytevectors as Strings
@subsubsection Interpreting Bytevector Contents as Unicode Strings

@cindex Unicode string encoding

Bytevector contents can also be interpreted as Unicode strings encoded
in one of the most commonly available encoding formats@footnote{Guile
1.8 does @emph{not} support Unicode strings.  Therefore, the procedures
described here assume that Guile strings are internally encoded
according to the current locale.  For instance, if @code{$LC_CTYPE} is
@code{fr_FR.ISO-8859-1}, then @code{string->utf-8} @i{et al.} will
assume that Guile strings are Latin-1-encoded.}.

@lisp
(utf8->string (u8-list->bytevector '(99 97 102 101)))
@result{} "cafe"

(string->utf8 "caf@'e") ;; SMALL LATIN LETTER E WITH ACUTE ACCENT
@result{} #vu8(99 97 102 195 169)
@end lisp

@deffn {Scheme Procedure} string->utf8 str
@deffnx {Scheme Procedure} string->utf16 str
@deffnx {Scheme Procedure} string->utf32 str
@deffnx {C Function} scm_string_to_utf8 (str)
@deffnx {C Function} scm_string_to_utf16 (str)
@deffnx {C Function} scm_string_to_utf32 (str)
Return a newly allocated bytevector that contains the UTF-8, UTF-16, or
UTF-32 (aka. UCS-4) encoding of @var{str}.
@end deffn

@deffn {Scheme Procedure} utf8->string utf
@deffnx {Scheme Procedure} utf16->string utf
@deffnx {Scheme Procedure} utf32->string utf
@deffnx {C Function} scm_utf8_to_string (utf)
@deffnx {C Function} scm_utf16_to_string (utf)
@deffnx {C Function} scm_utf32_to_string (utf)
Return a newly allocated string that contains from the UTF-8-, UTF-16-,
or UTF-32-decoded contents of bytevector @var{utf}.
@end deffn

@node Bytevectors as Generalized Vectors
@subsubsection Accessing Bytevectors with the Generalized Vector API

As an extension to the R6RS, Guile allows bytevectors to be manipulated
with the @dfn{generalized vector} procedures (@pxref{Generalized
Vectors}).  This also allows bytevectors to be accessed using the
generic @dfn{array} procedures (@pxref{Array Procedures}).  When using
these APIs, bytes are accessed one at a time as 8-bit unsigned integers:

@example
(define bv #vu8(0 1 2 3))

(generalized-vector? bv)
@result{} #t

(generalized-vector-ref bv 2)
@result{} 2

(generalized-vector-set! bv 2 77)
(array-ref bv 2)
@result{} 77

(array-type bv)
@result{} vu8
@end example


@node Regular Expressions
@subsection Regular Expressions
@tpindex Regular expressions

@cindex regular expressions
@cindex regex
@cindex emacs regexp

A @dfn{regular expression} (or @dfn{regexp}) is a pattern that
describes a whole class of strings.  A full description of regular
expressions and their syntax is beyond the scope of this manual;
an introduction can be found in the Emacs manual (@pxref{Regexps,
, Syntax of Regular Expressions, emacs, The GNU Emacs Manual}), or
in many general Unix reference books.

If your system does not include a POSIX regular expression library,
and you have not linked Guile with a third-party regexp library such
as Rx, these functions will not be available.  You can tell whether
your Guile installation includes regular expression support by
checking whether @code{(provided? 'regex)} returns true.

The following regexp and string matching features are provided by the
@code{(ice-9 regex)} module.  Before using the described functions,
you should load this module by executing @code{(use-modules (ice-9
regex))}.

@menu
* Regexp Functions::            Functions that create and match regexps.
* Match Structures::            Finding what was matched by a regexp.
* Backslash Escapes::           Removing the special meaning of regexp
                                meta-characters.
@end menu


@node Regexp Functions
@subsubsection Regexp Functions

By default, Guile supports POSIX extended regular expressions.
That means that the characters @samp{(}, @samp{)}, @samp{+} and
@samp{?} are special, and must be escaped if you wish to match the
literal characters.

This regular expression interface was modeled after that
implemented by SCSH, the Scheme Shell.  It is intended to be
upwardly compatible with SCSH regular expressions.

Zero bytes (@code{#\nul}) cannot be used in regex patterns or input
strings, since the underlying C functions treat that as the end of
string.  If there's a zero byte an error is thrown.

Patterns and input strings are treated as being in the locale
character set if @code{setlocale} has been called (@pxref{Locales}),
and in a multibyte locale this includes treating multi-byte sequences
as a single character.  (Guile strings are currently merely bytes,
though this may change in the future, @xref{Conversion to/from C}.)

@deffn {Scheme Procedure} string-match pattern str [start]
Compile the string @var{pattern} into a regular expression and compare
it with @var{str}.  The optional numeric argument @var{start} specifies
the position of @var{str} at which to begin matching.

@code{string-match} returns a @dfn{match structure} which
describes what, if anything, was matched by the regular
expression.  @xref{Match Structures}.  If @var{str} does not match
@var{pattern} at all, @code{string-match} returns @code{#f}.
@end deffn

Two examples of a match follow.  In the first example, the pattern
matches the four digits in the match string.  In the second, the pattern
matches nothing.

@example
(string-match "[0-9][0-9][0-9][0-9]" "blah2002")
@result{} #("blah2002" (4 . 8))

(string-match "[A-Za-z]" "123456")
@result{} #f
@end example

Each time @code{string-match} is called, it must compile its
@var{pattern} argument into a regular expression structure.  This
operation is expensive, which makes @code{string-match} inefficient if
the same regular expression is used several times (for example, in a
loop).  For better performance, you can compile a regular expression in
advance and then match strings against the compiled regexp.

@deffn {Scheme Procedure} make-regexp pat flag@dots{}
@deffnx {C Function} scm_make_regexp (pat, flaglst)
Compile the regular expression described by @var{pat}, and
return the compiled regexp structure.  If @var{pat} does not
describe a legal regular expression, @code{make-regexp} throws
a @code{regular-expression-syntax} error.

The @var{flag} arguments change the behavior of the compiled
regular expression.  The following values may be supplied:

@defvar regexp/icase
Consider uppercase and lowercase letters to be the same when
matching.
@end defvar

@defvar regexp/newline
If a newline appears in the target string, then permit the
@samp{^} and @samp{$} operators to match immediately after or
immediately before the newline, respectively.  Also, the
@samp{.} and @samp{[^...]} operators will never match a newline
character.  The intent of this flag is to treat the target
string as a buffer containing many lines of text, and the
regular expression as a pattern that may match a single one of
those lines.
@end defvar

@defvar regexp/basic
Compile a basic (``obsolete'') regexp instead of the extended
(``modern'') regexps that are the default.  Basic regexps do
not consider @samp{|}, @samp{+} or @samp{?} to be special
characters, and require the @samp{@{...@}} and @samp{(...)}
metacharacters to be backslash-escaped (@pxref{Backslash
Escapes}).  There are several other differences between basic
and extended regular expressions, but these are the most
significant.
@end defvar

@defvar regexp/extended
Compile an extended regular expression rather than a basic
regexp.  This is the default behavior; this flag will not
usually be needed.  If a call to @code{make-regexp} includes
both @code{regexp/basic} and @code{regexp/extended} flags, the
one which comes last will override the earlier one.
@end defvar
@end deffn

@deffn {Scheme Procedure} regexp-exec rx str [start [flags]]
@deffnx {C Function} scm_regexp_exec (rx, str, start, flags)
Match the compiled regular expression @var{rx} against
@code{str}.  If the optional integer @var{start} argument is
provided, begin matching from that position in the string.
Return a match structure describing the results of the match,
or @code{#f} if no match could be found.

The @var{flags} argument changes the matching behavior.  The following
flag values may be supplied, use @code{logior} (@pxref{Bitwise
Operations}) to combine them,

@defvar regexp/notbol
Consider that the @var{start} offset into @var{str} is not the
beginning of a line and should not match operator @samp{^}.

If @var{rx} was created with the @code{regexp/newline} option above,
@samp{^} will still match after a newline in @var{str}.
@end defvar

@defvar regexp/noteol
Consider that the end of @var{str} is not the end of a line and should
not match operator @samp{$}.

If @var{rx} was created with the @code{regexp/newline} option above,
@samp{$} will still match before a newline in @var{str}.
@end defvar
@end deffn

@lisp
;; Regexp to match uppercase letters
(define r (make-regexp "[A-Z]*"))

;; Regexp to match letters, ignoring case
(define ri (make-regexp "[A-Z]*" regexp/icase))

;; Search for bob using regexp r
(match:substring (regexp-exec r "bob"))
@result{} ""                  ; no match

;; Search for bob using regexp ri
(match:substring (regexp-exec ri "Bob"))
@result{} "Bob"               ; matched case insensitive
@end lisp

@deffn {Scheme Procedure} regexp? obj
@deffnx {C Function} scm_regexp_p (obj)
Return @code{#t} if @var{obj} is a compiled regular expression,
or @code{#f} otherwise.
@end deffn

@sp 1
@deffn {Scheme Procedure} list-matches regexp str [flags]
Return a list of match structures which are the non-overlapping
matches of @var{regexp} in @var{str}.  @var{regexp} can be either a
pattern string or a compiled regexp.  The @var{flags} argument is as
per @code{regexp-exec} above.

@example
(map match:substring (list-matches "[a-z]+" "abc 42 def 78"))
@result{} ("abc" "def")
@end  example
@end deffn

@deffn {Scheme Procedure} fold-matches regexp str init proc [flags]
Apply @var{proc} to the non-overlapping matches of @var{regexp} in
@var{str}, to build a result.  @var{regexp} can be either a pattern
string or a compiled regexp.  The @var{flags} argument is as per
@code{regexp-exec} above.

@var{proc} is called as @code{(@var{proc} match prev)} where
@var{match} is a match structure and @var{prev} is the previous return
from @var{proc}.  For the first call @var{prev} is the given
@var{init} parameter.  @code{fold-matches} returns the final value
from @var{proc}.

For example to count matches,

@example
(fold-matches "[a-z][0-9]" "abc x1 def y2" 0
              (lambda (match count)
                (1+ count)))
@result{} 2
@end example
@end deffn

@sp 1
Regular expressions are commonly used to find patterns in one string
and replace them with the contents of another string.  The following
functions are convenient ways to do this.

@c begin (scm-doc-string "regex.scm" "regexp-substitute")
@deffn {Scheme Procedure} regexp-substitute port match [item@dots{}]
Write to @var{port} selected parts of the match structure @var{match}.
Or if @var{port} is @code{#f} then form a string from those parts and
return that.

Each @var{item} specifies a part to be written, and may be one of the
following,

@itemize @bullet
@item
A string.  String arguments are written out verbatim.

@item
An integer.  The submatch with that number is written
(@code{match:substring}).  Zero is the entire match.

@item
The symbol @samp{pre}.  The portion of the matched string preceding
the regexp match is written (@code{match:prefix}).

@item
The symbol @samp{post}.  The portion of the matched string following
the regexp match is written (@code{match:suffix}).
@end itemize

For example, changing a match and retaining the text before and after,

@example
(regexp-substitute #f (string-match "[0-9]+" "number 25 is good")
                   'pre "37" 'post)
@result{} "number 37 is good"
@end example

Or matching a @sc{yyyymmdd} format date such as @samp{20020828} and
re-ordering and hyphenating the fields.

@lisp
(define date-regex
   "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
(define s "Date 20020429 12am.")
(regexp-substitute #f (string-match date-regex s)
                   'pre 2 "-" 3 "-" 1 'post " (" 0 ")")
@result{} "Date 04-29-2002 12am. (20020429)"
@end lisp
@end deffn


@c begin (scm-doc-string "regex.scm" "regexp-substitute")
@deffn {Scheme Procedure} regexp-substitute/global port regexp target [item@dots{}]
@cindex search and replace
Write to @var{port} selected parts of matches of @var{regexp} in
@var{target}.  If @var{port} is @code{#f} then form a string from
those parts and return that.  @var{regexp} can be a string or a
compiled regex.

This is similar to @code{regexp-substitute}, but allows global
substitutions on @var{target}.  Each @var{item} behaves as per
@code{regexp-substitute}, with the following differences,

@itemize @bullet
@item
A function.  Called as @code{(@var{item} match)} with the match
structure for the @var{regexp} match, it should return a string to be
written to @var{port}.

@item
The symbol @samp{post}.  This doesn't output anything, but instead
causes @code{regexp-substitute/global} to recurse on the unmatched
portion of @var{target}.

This @emph{must} be supplied to perform a global search and replace on
@var{target}; without it @code{regexp-substitute/global} returns after
a single match and output.
@end itemize

For example, to collapse runs of tabs and spaces to a single hyphen
each,

@example
(regexp-substitute/global #f "[ \t]+"  "this   is   the text"
                          'pre "-" 'post)
@result{} "this-is-the-text"
@end example

Or using a function to reverse the letters in each word,

@example
(regexp-substitute/global #f "[a-z]+"  "to do and not-do"
  'pre (lambda (m) (string-reverse (match:substring m))) 'post)
@result{} "ot od dna ton-od"
@end example

Without the @code{post} symbol, just one regexp match is made.  For
example the following is the date example from
@code{regexp-substitute} above, without the need for the separate
@code{string-match} call.

@lisp
(define date-regex 
   "([0-9][0-9][0-9][0-9])([0-9][0-9])([0-9][0-9])")
(define s "Date 20020429 12am.")
(regexp-substitute/global #f date-regex s
                          'pre 2 "-" 3 "-" 1 'post " (" 0 ")")

@result{} "Date 04-29-2002 12am. (20020429)"
@end lisp
@end deffn


@node Match Structures
@subsubsection Match Structures

@cindex match structures

A @dfn{match structure} is the object returned by @code{string-match} and
@code{regexp-exec}.  It describes which portion of a string, if any,
matched the given regular expression.  Match structures include: a
reference to the string that was checked for matches; the starting and
ending positions of the regexp match; and, if the regexp included any
parenthesized subexpressions, the starting and ending positions of each
submatch.

In each of the regexp match functions described below, the @code{match}
argument must be a match structure returned by a previous call to
@code{string-match} or @code{regexp-exec}.  Most of these functions
return some information about the original target string that was
matched against a regular expression; we will call that string
@var{target} for easy reference.

@c begin (scm-doc-string "regex.scm" "regexp-match?")
@deffn {Scheme Procedure} regexp-match? obj
Return @code{#t} if @var{obj} is a match structure returned by a
previous call to @code{regexp-exec}, or @code{#f} otherwise.
@end deffn

@c begin (scm-doc-string "regex.scm" "match:substring")
@deffn {Scheme Procedure} match:substring match [n]
Return the portion of @var{target} matched by subexpression number
@var{n}.  Submatch 0 (the default) represents the entire regexp match.
If the regular expression as a whole matched, but the subexpression
number @var{n} did not match, return @code{#f}.
@end deffn

@lisp
(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
(match:substring s)
@result{} "2002"

;; match starting at offset 6 in the string
(match:substring
  (string-match "[0-9][0-9][0-9][0-9]" "blah987654" 6))
@result{} "7654"
@end lisp

@c begin (scm-doc-string "regex.scm" "match:start")
@deffn {Scheme Procedure} match:start match [n]
Return the starting position of submatch number @var{n}.
@end deffn

In the following example, the result is 4, since the match starts at
character index 4:

@lisp
(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
(match:start s)
@result{} 4
@end lisp

@c begin (scm-doc-string "regex.scm" "match:end")
@deffn {Scheme Procedure} match:end match [n]
Return the ending position of submatch number @var{n}.
@end deffn

In the following example, the result is 8, since the match runs between
characters 4 and 8 (i.e. the ``2002'').

@lisp
(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
(match:end s)
@result{} 8
@end lisp

@c begin (scm-doc-string "regex.scm" "match:prefix")
@deffn {Scheme Procedure} match:prefix match
Return the unmatched portion of @var{target} preceding the regexp match.

@lisp
(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
(match:prefix s)
@result{} "blah"
@end lisp
@end deffn

@c begin (scm-doc-string "regex.scm" "match:suffix")
@deffn {Scheme Procedure} match:suffix match
Return the unmatched portion of @var{target} following the regexp match.
@end deffn

@lisp
(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
(match:suffix s)
@result{} "foo"
@end lisp

@c begin (scm-doc-string "regex.scm" "match:count")
@deffn {Scheme Procedure} match:count match
Return the number of parenthesized subexpressions from @var{match}.
Note that the entire regular expression match itself counts as a
subexpression, and failed submatches are included in the count.
@end deffn

@c begin (scm-doc-string "regex.scm" "match:string")
@deffn {Scheme Procedure} match:string match
Return the original @var{target} string.
@end deffn

@lisp
(define s (string-match "[0-9][0-9][0-9][0-9]" "blah2002foo"))
(match:string s)
@result{} "blah2002foo"
@end lisp


@node Backslash Escapes
@subsubsection Backslash Escapes

Sometimes you will want a regexp to match characters like @samp{*} or
@samp{$} exactly.  For example, to check whether a particular string
represents a menu entry from an Info node, it would be useful to match
it against a regexp like @samp{^* [^:]*::}.  However, this won't work;
because the asterisk is a metacharacter, it won't match the @samp{*} at
the beginning of the string.  In this case, we want to make the first
asterisk un-magic.

You can do this by preceding the metacharacter with a backslash
character @samp{\}.  (This is also called @dfn{quoting} the
metacharacter, and is known as a @dfn{backslash escape}.)  When Guile
sees a backslash in a regular expression, it considers the following
glyph to be an ordinary character, no matter what special meaning it
would ordinarily have.  Therefore, we can make the above example work by
changing the regexp to @samp{^\* [^:]*::}.  The @samp{\*} sequence tells
the regular expression engine to match only a single asterisk in the
target string.

Since the backslash is itself a metacharacter, you may force a regexp to
match a backslash in the target string by preceding the backslash with
itself.  For example, to find variable references in a @TeX{} program,
you might want to find occurrences of the string @samp{\let\} followed
by any number of alphabetic characters.  The regular expression
@samp{\\let\\[A-Za-z]*} would do this: the double backslashes in the
regexp each match a single backslash in the target string.

@c begin (scm-doc-string "regex.scm" "regexp-quote")
@deffn {Scheme Procedure} regexp-quote str
Quote each special character found in @var{str} with a backslash, and
return the resulting string.
@end deffn

@strong{Very important:} Using backslash escapes in Guile source code
(as in Emacs Lisp or C) can be tricky, because the backslash character
has special meaning for the Guile reader.  For example, if Guile
encounters the character sequence @samp{\n} in the middle of a string
while processing Scheme code, it replaces those characters with a
newline character.  Similarly, the character sequence @samp{\t} is
replaced by a horizontal tab.  Several of these @dfn{escape sequences}
are processed by the Guile reader before your code is executed.
Unrecognized escape sequences are ignored: if the characters @samp{\*}
appear in a string, they will be translated to the single character
@samp{*}.

This translation is obviously undesirable for regular expressions, since
we want to be able to include backslashes in a string in order to
escape regexp metacharacters.  Therefore, to make sure that a backslash
is preserved in a string in your Guile program, you must use @emph{two}
consecutive backslashes:

@lisp
(define Info-menu-entry-pattern (make-regexp "^\\* [^:]*"))
@end lisp

The string in this example is preprocessed by the Guile reader before
any code is executed.  The resulting argument to @code{make-regexp} is
the string @samp{^\* [^:]*}, which is what we really want.

This also means that in order to write a regular expression that matches
a single backslash character, the regular expression string in the
source code must include @emph{four} backslashes.  Each consecutive pair
of backslashes gets translated by the Guile reader to a single
backslash, and the resulting double-backslash is interpreted by the
regexp engine as matching a single backslash character.  Hence:

@lisp
(define tex-variable-pattern (make-regexp "\\\\let\\\\=[A-Za-z]*"))
@end lisp

The reason for the unwieldiness of this syntax is historical.  Both
regular expression pattern matchers and Unix string processing systems
have traditionally used backslashes with the special meanings
described above.  The POSIX regular expression specification and ANSI C
standard both require these semantics.  Attempting to abandon either
convention would cause other kinds of compatibility problems, possibly
more severe ones.  Therefore, without extending the Scheme reader to
support strings with different quoting conventions (an ungainly and
confusing extension when implemented in other languages), we must adhere
to this cumbersome escape syntax.


@node Symbols
@subsection Symbols
@tpindex Symbols

Symbols in Scheme are widely used in three ways: as items of discrete
data, as lookup keys for alists and hash tables, and to denote variable
references.

A @dfn{symbol} is similar to a string in that it is defined by a
sequence of characters.  The sequence of characters is known as the
symbol's @dfn{name}.  In the usual case --- that is, where the symbol's
name doesn't include any characters that could be confused with other
elements of Scheme syntax --- a symbol is written in a Scheme program by
writing the sequence of characters that make up the name, @emph{without}
any quotation marks or other special syntax.  For example, the symbol
whose name is ``multiply-by-2'' is written, simply:

@lisp
multiply-by-2
@end lisp

Notice how this differs from a @emph{string} with contents
``multiply-by-2'', which is written with double quotation marks, like
this:

@lisp
"multiply-by-2"
@end lisp

Looking beyond how they are written, symbols are different from strings
in two important respects.

The first important difference is uniqueness.  If the same-looking
string is read twice from two different places in a program, the result
is two @emph{different} string objects whose contents just happen to be
the same.  If, on the other hand, the same-looking symbol is read twice
from two different places in a program, the result is the @emph{same}
symbol object both times.

Given two read symbols, you can use @code{eq?} to test whether they are
the same (that is, have the same name).  @code{eq?} is the most
efficient comparison operator in Scheme, and comparing two symbols like
this is as fast as comparing, for example, two numbers.  Given two
strings, on the other hand, you must use @code{equal?} or
@code{string=?}, which are much slower comparison operators, to
determine whether the strings have the same contents.

@lisp
(define sym1 (quote hello))
(define sym2 (quote hello))
(eq? sym1 sym2) @result{} #t

(define str1 "hello")
(define str2 "hello")
(eq? str1 str2) @result{} #f
(equal? str1 str2) @result{} #t
@end lisp

The second important difference is that symbols, unlike strings, are not
self-evaluating.  This is why we need the @code{(quote @dots{})}s in the
example above: @code{(quote hello)} evaluates to the symbol named
"hello" itself, whereas an unquoted @code{hello} is @emph{read} as the
symbol named "hello" and evaluated as a variable reference @dots{} about
which more below (@pxref{Symbol Variables}).

@menu
* Symbol Data::                 Symbols as discrete data.
* Symbol Keys::                 Symbols as lookup keys.
* Symbol Variables::            Symbols as denoting variables.
* Symbol Primitives::           Operations related to symbols.
* Symbol Props::                Function slots and property lists.
* Symbol Read Syntax::          Extended read syntax for symbols.
* Symbol Uninterned::           Uninterned symbols.
@end menu


@node Symbol Data
@subsubsection Symbols as Discrete Data

Numbers and symbols are similar to the extent that they both lend
themselves to @code{eq?} comparison.  But symbols are more descriptive
than numbers, because a symbol's name can be used directly to describe
the concept for which that symbol stands.

For example, imagine that you need to represent some colours in a
computer program.  Using numbers, you would have to choose arbitrarily
some mapping between numbers and colours, and then take care to use that
mapping consistently:

@lisp
;; 1=red, 2=green, 3=purple

(if (eq? (colour-of car) 1)
    ...)
@end lisp

@noindent
You can make the mapping more explicit and the code more readable by
defining constants:

@lisp
(define red 1)
(define green 2)
(define purple 3)

(if (eq? (colour-of car) red)
    ...)
@end lisp

@noindent
But the simplest and clearest approach is not to use numbers at all, but
symbols whose names specify the colours that they refer to:

@lisp
(if (eq? (colour-of car) 'red)
    ...)
@end lisp

The descriptive advantages of symbols over numbers increase as the set
of concepts that you want to describe grows.  Suppose that a car object
can have other properties as well, such as whether it has or uses:

@itemize @bullet
@item
automatic or manual transmission
@item
leaded or unleaded fuel
@item
power steering (or not).
@end itemize

@noindent
Then a car's combined property set could be naturally represented and
manipulated as a list of symbols:

@lisp
(properties-of car1)
@result{}
(red manual unleaded power-steering)

(if (memq 'power-steering (properties-of car1))
    (display "Unfit people can drive this car.\n")
    (display "You'll need strong arms to drive this car!\n"))
@print{}
Unfit people can drive this car.
@end lisp

Remember, the fundamental property of symbols that we are relying on
here is that an occurrence of @code{'red} in one part of a program is an
@emph{indistinguishable} symbol from an occurrence of @code{'red} in
another part of a program; this means that symbols can usefully be
compared using @code{eq?}.  At the same time, symbols have naturally
descriptive names.  This combination of efficiency and descriptive power
makes them ideal for use as discrete data.


@node Symbol Keys
@subsubsection Symbols as Lookup Keys

Given their efficiency and descriptive power, it is natural to use
symbols as the keys in an association list or hash table.

To illustrate this, consider a more structured representation of the car
properties example from the preceding subsection.  Rather than
mixing all the properties up together in a flat list, we could use an
association list like this:

@lisp
(define car1-properties '((colour . red)
                          (transmission . manual)
                          (fuel . unleaded)
                          (steering . power-assisted)))
@end lisp

Notice how this structure is more explicit and extensible than the flat
list.  For example it makes clear that @code{manual} refers to the
transmission rather than, say, the windows or the locking of the car.
It also allows further properties to use the same symbols among their
possible values without becoming ambiguous:

@lisp
(define car1-properties '((colour . red)
                          (transmission . manual)
                          (fuel . unleaded)
                          (steering . power-assisted)
                          (seat-colour . red)
                          (locking . manual)))
@end lisp

With a representation like this, it is easy to use the efficient
@code{assq-XXX} family of procedures (@pxref{Association Lists}) to
extract or change individual pieces of information:

@lisp
(assq-ref car1-properties 'fuel) @result{} unleaded
(assq-ref car1-properties 'transmission) @result{} manual

(assq-set! car1-properties 'seat-colour 'black)
@result{}
((colour . red)
 (transmission . manual)
 (fuel . unleaded)
 (steering . power-assisted)
 (seat-colour . black)
 (locking . manual)))
@end lisp

Hash tables also have keys, and exactly the same arguments apply to the
use of symbols in hash tables as in association lists.  The hash value
that Guile uses to decide where to add a symbol-keyed entry to a hash
table can be obtained by calling the @code{symbol-hash} procedure:

@deffn {Scheme Procedure} symbol-hash symbol
@deffnx {C Function} scm_symbol_hash (symbol)
Return a hash value for @var{symbol}.
@end deffn

See @ref{Hash Tables} for information about hash tables in general, and
for why you might choose to use a hash table rather than an association
list.


@node Symbol Variables
@subsubsection Symbols as Denoting Variables

When an unquoted symbol in a Scheme program is evaluated, it is
interpreted as a variable reference, and the result of the evaluation is
the appropriate variable's value.

For example, when the expression @code{(string-length "abcd")} is read
and evaluated, the sequence of characters @code{string-length} is read
as the symbol whose name is "string-length".  This symbol is associated
with a variable whose value is the procedure that implements string
length calculation.  Therefore evaluation of the @code{string-length}
symbol results in that procedure.

The details of the connection between an unquoted symbol and the
variable to which it refers are explained elsewhere.  See @ref{Binding
Constructs}, for how associations between symbols and variables are
created, and @ref{Modules}, for how those associations are affected by
Guile's module system.


@node Symbol Primitives
@subsubsection Operations Related to Symbols

Given any Scheme value, you can determine whether it is a symbol using
the @code{symbol?} primitive:

@rnindex symbol?
@deffn {Scheme Procedure} symbol? obj
@deffnx {C Function} scm_symbol_p (obj)
Return @code{#t} if @var{obj} is a symbol, otherwise return
@code{#f}.
@end deffn

@deftypefn {C Function} int scm_is_symbol (SCM val)
Equivalent to @code{scm_is_true (scm_symbol_p (val))}.
@end deftypefn

Once you know that you have a symbol, you can obtain its name as a
string by calling @code{symbol->string}.  Note that Guile differs by
default from R5RS on the details of @code{symbol->string} as regards
case-sensitivity:

@rnindex symbol->string
@deffn {Scheme Procedure} symbol->string s
@deffnx {C Function} scm_symbol_to_string (s)
Return the name of symbol @var{s} as a string.  By default, Guile reads
symbols case-sensitively, so the string returned will have the same case
variation as the sequence of characters that caused @var{s} to be
created.

If Guile is set to read symbols case-insensitively (as specified by
R5RS), and @var{s} comes into being as part of a literal expression
(@pxref{Literal expressions,,,r5rs, The Revised^5 Report on Scheme}) or
by a call to the @code{read} or @code{string-ci->symbol} procedures,
Guile converts any alphabetic characters in the symbol's name to
lower case before creating the symbol object, so the string returned
here will be in lower case.

If @var{s} was created by @code{string->symbol}, the case of characters
in the string returned will be the same as that in the string that was
passed to @code{string->symbol}, regardless of Guile's case-sensitivity
setting at the time @var{s} was created.

It is an error to apply mutation procedures like @code{string-set!} to
strings returned by this procedure.
@end deffn

Most symbols are created by writing them literally in code.  However it
is also possible to create symbols programmatically using the following
@code{string->symbol} and @code{string-ci->symbol} procedures:

@rnindex string->symbol
@deffn {Scheme Procedure} string->symbol string
@deffnx {C Function} scm_string_to_symbol (string)
Return the symbol whose name is @var{string}.  This procedure can create
symbols with names containing special characters or letters in the
non-standard case, but it is usually a bad idea to create such symbols
because in some implementations of Scheme they cannot be read as
themselves.
@end deffn

@deffn {Scheme Procedure} string-ci->symbol str
@deffnx {C Function} scm_string_ci_to_symbol (str)
Return the symbol whose name is @var{str}.  If Guile is currently
reading symbols case-insensitively, @var{str} is converted to lowercase
before the returned symbol is looked up or created.
@end deffn

The following examples illustrate Guile's detailed behaviour as regards
the case-sensitivity of symbols:

@lisp
(read-enable 'case-insensitive)   ; R5RS compliant behaviour

(symbol->string 'flying-fish)    @result{} "flying-fish"
(symbol->string 'Martin)         @result{} "martin"
(symbol->string
   (string->symbol "Malvina"))   @result{} "Malvina"

(eq? 'mISSISSIppi 'mississippi)  @result{} #t
(string->symbol "mISSISSIppi")   @result{} mISSISSIppi
(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #f
(eq? 'LolliPop
  (string->symbol (symbol->string 'LolliPop))) @result{} #t
(string=? "K. Harper, M.D."
  (symbol->string
    (string->symbol "K. Harper, M.D."))) @result{} #t

(read-disable 'case-insensitive)   ; Guile default behaviour

(symbol->string 'flying-fish)    @result{} "flying-fish"
(symbol->string 'Martin)         @result{} "Martin"
(symbol->string
   (string->symbol "Malvina"))   @result{} "Malvina"

(eq? 'mISSISSIppi 'mississippi)  @result{} #f
(string->symbol "mISSISSIppi")   @result{} mISSISSIppi
(eq? 'bitBlt (string->symbol "bitBlt")) @result{} #t
(eq? 'LolliPop
  (string->symbol (symbol->string 'LolliPop))) @result{} #t
(string=? "K. Harper, M.D."
  (symbol->string
    (string->symbol "K. Harper, M.D."))) @result{} #t
@end lisp

From C, there are lower level functions that construct a Scheme symbol
from a C string in the current locale encoding.

When you want to do more from C, you should convert between symbols
and strings using @code{scm_symbol_to_string} and
@code{scm_string_to_symbol} and work with the strings.

@deffn {C Function} scm_from_locale_symbol (const char *name)
@deffnx {C Function} scm_from_locale_symboln (const char *name, size_t len)
Construct and return a Scheme symbol whose name is specified by
@var{name}.  For @code{scm_from_locale_symbol}, @var{name} must be null
terminated; for @code{scm_from_locale_symboln} the length of @var{name} is
specified explicitly by @var{len}.
@end deffn

@deftypefn  {C Function} SCM scm_take_locale_symbol (char *str)
@deftypefnx {C Function} SCM scm_take_locale_symboln (char *str, size_t len)
Like @code{scm_from_locale_symbol} and @code{scm_from_locale_symboln},
respectively, but also frees @var{str} with @code{free} eventually.
Thus, you can use this function when you would free @var{str} anyway
immediately after creating the Scheme string.  In certain cases, Guile
can then use @var{str} directly as its internal representation.
@end deftypefn

The size of a symbol can also be obtained from C:

@deftypefn {C Function} size_t scm_c_symbol_length (SCM sym)
Return the number of characters in @var{sym}.
@end deftypefn

Finally, some applications, especially those that generate new Scheme
code dynamically, need to generate symbols for use in the generated
code.  The @code{gensym} primitive meets this need:

@deffn {Scheme Procedure} gensym [prefix]
@deffnx {C Function} scm_gensym (prefix)
Create a new symbol with a name constructed from a prefix and a counter
value.  The string @var{prefix} can be specified as an optional
argument.  Default prefix is @samp{@w{ g}}.  The counter is increased by 1
at each call.  There is no provision for resetting the counter.
@end deffn

The symbols generated by @code{gensym} are @emph{likely} to be unique,
since their names begin with a space and it is only otherwise possible
to generate such symbols if a programmer goes out of their way to do
so.  Uniqueness can be guaranteed by instead using uninterned symbols
(@pxref{Symbol Uninterned}), though they can't be usefully written out
and read back in.


@node Symbol Props
@subsubsection Function Slots and Property Lists

In traditional Lisp dialects, symbols are often understood as having
three kinds of value at once:

@itemize @bullet
@item
a @dfn{variable} value, which is used when the symbol appears in
code in a variable reference context

@item
a @dfn{function} value, which is used when the symbol appears in
code in a function name position (i.e. as the first element in an
unquoted list)

@item
a @dfn{property list} value, which is used when the symbol is given as
the first argument to Lisp's @code{put} or @code{get} functions.
@end itemize

Although Scheme (as one of its simplifications with respect to Lisp)
does away with the distinction between variable and function namespaces,
Guile currently retains some elements of the traditional structure in
case they turn out to be useful when implementing translators for other
languages, in particular Emacs Lisp.

Specifically, Guile symbols have two extra slots. for a symbol's
property list, and for its ``function value.''  The following procedures
are provided to access these slots.

@deffn {Scheme Procedure} symbol-fref symbol
@deffnx {C Function} scm_symbol_fref (symbol)
Return the contents of @var{symbol}'s @dfn{function slot}.
@end deffn

@deffn {Scheme Procedure} symbol-fset! symbol value
@deffnx {C Function} scm_symbol_fset_x (symbol, value)
Set the contents of @var{symbol}'s function slot to @var{value}.
@end deffn

@deffn {Scheme Procedure} symbol-pref symbol
@deffnx {C Function} scm_symbol_pref (symbol)
Return the @dfn{property list} currently associated with @var{symbol}.
@end deffn

@deffn {Scheme Procedure} symbol-pset! symbol value
@deffnx {C Function} scm_symbol_pset_x (symbol, value)
Set @var{symbol}'s property list to @var{value}.
@end deffn

@deffn {Scheme Procedure} symbol-property sym prop
From @var{sym}'s property list, return the value for property
@var{prop}.  The assumption is that @var{sym}'s property list is an
association list whose keys are distinguished from each other using
@code{equal?}; @var{prop} should be one of the keys in that list.  If
the property list has no entry for @var{prop}, @code{symbol-property}
returns @code{#f}.
@end deffn

@deffn {Scheme Procedure} set-symbol-property! sym prop val
In @var{sym}'s property list, set the value for property @var{prop} to
@var{val}, or add a new entry for @var{prop}, with value @var{val}, if
none already exists.  For the structure of the property list, see
@code{symbol-property}.
@end deffn

@deffn {Scheme Procedure} symbol-property-remove! sym prop
From @var{sym}'s property list, remove the entry for property
@var{prop}, if there is one.  For the structure of the property list,
see @code{symbol-property}.
@end deffn

Support for these extra slots may be removed in a future release, and it
is probably better to avoid using them.  For a more modern and Schemely
approach to properties, see @ref{Object Properties}.


@node Symbol Read Syntax
@subsubsection Extended Read Syntax for Symbols

The read syntax for a symbol is a sequence of letters, digits, and
@dfn{extended alphabetic characters}, beginning with a character that
cannot begin a number.  In addition, the special cases of @code{+},
@code{-}, and @code{...} are read as symbols even though numbers can
begin with @code{+}, @code{-} or @code{.}.

Extended alphabetic characters may be used within identifiers as if
they were letters.  The set of extended alphabetic characters is:

@example
! $ % & * + - . / : < = > ? @@ ^ _ ~
@end example

In addition to the standard read syntax defined above (which is taken
from R5RS (@pxref{Formal syntax,,,r5rs,The Revised^5 Report on
Scheme})), Guile provides an extended symbol read syntax that allows the
inclusion of unusual characters such as space characters, newlines and
parentheses.  If (for whatever reason) you need to write a symbol
containing characters not mentioned above, you can do so as follows.

@itemize @bullet
@item
Begin the symbol with the characters @code{#@{},

@item
write the characters of the symbol and

@item
finish the symbol with the characters @code{@}#}.
@end itemize

Here are a few examples of this form of read syntax.  The first symbol
needs to use extended syntax because it contains a space character, the
second because it contains a line break, and the last because it looks
like a number.

@lisp
#@{foo bar@}#

#@{what
ever@}#

#@{4242@}#
@end lisp

Although Guile provides this extended read syntax for symbols,
widespread usage of it is discouraged because it is not portable and not
very readable.


@node Symbol Uninterned
@subsubsection Uninterned Symbols

What makes symbols useful is that they are automatically kept unique.
There are no two symbols that are distinct objects but have the same
name.  But of course, there is no rule without exception.  In addition
to the normal symbols that have been discussed up to now, you can also
create special @dfn{uninterned} symbols that behave slightly
differently.

To understand what is different about them and why they might be useful,
we look at how normal symbols are actually kept unique.

Whenever Guile wants to find the symbol with a specific name, for
example during @code{read} or when executing @code{string->symbol}, it
first looks into a table of all existing symbols to find out whether a
symbol with the given name already exists.  When this is the case, Guile
just returns that symbol.  When not, a new symbol with the name is
created and entered into the table so that it can be found later.

Sometimes you might want to create a symbol that is guaranteed `fresh',
i.e. a symbol that did not exist previously.  You might also want to
somehow guarantee that no one else will ever unintentionally stumble
across your symbol in the future.  These properties of a symbol are
often needed when generating code during macro expansion.  When
introducing new temporary variables, you want to guarantee that they
don't conflict with variables in other people's code.

The simplest way to arrange for this is to create a new symbol but
not enter it into the global table of all symbols.  That way, no one
will ever get access to your symbol by chance.  Symbols that are not in
the table are called @dfn{uninterned}.  Of course, symbols that
@emph{are} in the table are called @dfn{interned}.

You create new uninterned symbols with the function @code{make-symbol}.
You can test whether a symbol is interned or not with
@code{symbol-interned?}.

Uninterned symbols break the rule that the name of a symbol uniquely
identifies the symbol object.  Because of this, they can not be written
out and read back in like interned symbols.  Currently, Guile has no
support for reading uninterned symbols.  Note that the function
@code{gensym} does not return uninterned symbols for this reason.

@deffn {Scheme Procedure} make-symbol name
@deffnx {C Function} scm_make_symbol (name)
Return a new uninterned symbol with the name @var{name}.  The returned
symbol is guaranteed to be unique and future calls to
@code{string->symbol} will not return it.
@end deffn

@deffn {Scheme Procedure} symbol-interned? symbol
@deffnx {C Function} scm_symbol_interned_p (symbol)
Return @code{#t} if @var{symbol} is interned, otherwise return
@code{#f}.
@end deffn

For example:

@lisp
(define foo-1 (string->symbol "foo"))
(define foo-2 (string->symbol "foo"))
(define foo-3 (make-symbol "foo"))
(define foo-4 (make-symbol "foo"))

(eq? foo-1 foo-2)
@result{} #t
; Two interned symbols with the same name are the same object,

(eq? foo-1 foo-3)
@result{} #f
; but a call to make-symbol with the same name returns a
; distinct object.

(eq? foo-3 foo-4)
@result{} #f
; A call to make-symbol always returns a new object, even for
; the same name.

foo-3
@result{} #<uninterned-symbol foo 8085290>
; Uninterned symbols print differently from interned symbols,

(symbol? foo-3)
@result{} #t
; but they are still symbols,

(symbol-interned? foo-3)
@result{} #f
; just not interned.
@end lisp


@node Keywords
@subsection Keywords
@tpindex Keywords

Keywords are self-evaluating objects with a convenient read syntax that
makes them easy to type.

Guile's keyword support conforms to R5RS, and adds a (switchable) read
syntax extension to permit keywords to begin with @code{:} as well as
@code{#:}, or to end with @code{:}.

@menu
* Why Use Keywords?::           Motivation for keyword usage.
* Coding With Keywords::        How to use keywords.
* Keyword Read Syntax::         Read syntax for keywords.
* Keyword Procedures::          Procedures for dealing with keywords.
@end menu

@node Why Use Keywords?
@subsubsection Why Use Keywords?

Keywords are useful in contexts where a program or procedure wants to be
able to accept a large number of optional arguments without making its
interface unmanageable.

To illustrate this, consider a hypothetical @code{make-window}
procedure, which creates a new window on the screen for drawing into
using some graphical toolkit.  There are many parameters that the caller
might like to specify, but which could also be sensibly defaulted, for
example:

@itemize @bullet
@item
color depth -- Default: the color depth for the screen

@item
background color -- Default: white

@item
width -- Default: 600

@item
height -- Default: 400
@end itemize

If @code{make-window} did not use keywords, the caller would have to
pass in a value for each possible argument, remembering the correct
argument order and using a special value to indicate the default value
for that argument:

@lisp
(make-window 'default              ;; Color depth
             'default              ;; Background color
             800                   ;; Width
             100                   ;; Height
             @dots{})                  ;; More make-window arguments
@end lisp

With keywords, on the other hand, defaulted arguments are omitted, and
non-default arguments are clearly tagged by the appropriate keyword.  As
a result, the invocation becomes much clearer:

@lisp
(make-window #:width 800 #:height 100)
@end lisp

On the other hand, for a simpler procedure with few arguments, the use
of keywords would be a hindrance rather than a help.  The primitive
procedure @code{cons}, for example, would not be improved if it had to
be invoked as

@lisp
(cons #:car x #:cdr y)
@end lisp

So the decision whether to use keywords or not is purely pragmatic: use
them if they will clarify the procedure invocation at point of call.

@node Coding With Keywords
@subsubsection Coding With Keywords

If a procedure wants to support keywords, it should take a rest argument
and then use whatever means is convenient to extract keywords and their
corresponding arguments from the contents of that rest argument.

The following example illustrates the principle: the code for
@code{make-window} uses a helper procedure called
@code{get-keyword-value} to extract individual keyword arguments from
the rest argument.

@lisp
(define (get-keyword-value args keyword default)
  (let ((kv (memq keyword args)))
    (if (and kv (>= (length kv) 2))
        (cadr kv)
        default)))

(define (make-window . args)
  (let ((depth  (get-keyword-value args #:depth  screen-depth))
        (bg     (get-keyword-value args #:bg     "white"))
        (width  (get-keyword-value args #:width  800))
        (height (get-keyword-value args #:height 100))
        @dots{})
    @dots{}))
@end lisp

But you don't need to write @code{get-keyword-value}.  The @code{(ice-9
optargs)} module provides a set of powerful macros that you can use to
implement keyword-supporting procedures like this:

@lisp
(use-modules (ice-9 optargs))

(define (make-window . args)
  (let-keywords args #f ((depth  screen-depth)
                         (bg     "white")
                         (width  800)
                         (height 100))
    ...))
@end lisp

@noindent
Or, even more economically, like this:

@lisp
(use-modules (ice-9 optargs))

(define* (make-window #:key (depth  screen-depth)
                            (bg     "white")
                            (width  800)
                            (height 100))
  ...)
@end lisp

For further details on @code{let-keywords}, @code{define*} and other
facilities provided by the @code{(ice-9 optargs)} module, see
@ref{Optional Arguments}.


@node Keyword Read Syntax
@subsubsection Keyword Read Syntax

Guile, by default, only recognizes a keyword syntax that is compatible
with R5RS.  A token of the form @code{#:NAME}, where @code{NAME} has the
same syntax as a Scheme symbol (@pxref{Symbol Read Syntax}), is the
external representation of the keyword named @code{NAME}.  Keyword
objects print using this syntax as well, so values containing keyword
objects can be read back into Guile.  When used in an expression,
keywords are self-quoting objects.

If the @code{keyword} read option is set to @code{'prefix}, Guile also
recognizes the alternative read syntax @code{:NAME}.  Otherwise, tokens
of the form @code{:NAME} are read as symbols, as required by R5RS.

@cindex SRFI-88 keyword syntax

If the @code{keyword} read option is set to @code{'postfix}, Guile
recognizes the SRFI-88 read syntax @code{NAME:} (@pxref{SRFI-88}).
Otherwise, tokens of this form are read as symbols.

To enable and disable the alternative non-R5RS keyword syntax, you use
the @code{read-set!} procedure documented in @ref{User level options
interfaces} and @ref{Reader options}.  Note that the @code{prefix} and
@code{postfix} syntax are mutually exclusive.

@lisp
(read-set! keywords 'prefix)

#:type
@result{}
#:type

:type
@result{}
#:type

(read-set! keywords 'postfix)

type:
@result{}
#:type

:type
@result{}
:type

(read-set! keywords #f)

#:type
@result{}
#:type

:type
@print{}
ERROR: In expression :type:
ERROR: Unbound variable: :type
ABORT: (unbound-variable)
@end lisp

@node Keyword Procedures
@subsubsection Keyword Procedures

@deffn {Scheme Procedure} keyword? obj
@deffnx {C Function} scm_keyword_p (obj)
Return @code{#t} if the argument @var{obj} is a keyword, else
@code{#f}.
@end deffn

@deffn {Scheme Procedure} keyword->symbol keyword
@deffnx {C Function} scm_keyword_to_symbol (keyword)
Return the symbol with the same name as @var{keyword}.
@end deffn

@deffn {Scheme Procedure} symbol->keyword symbol
@deffnx {C Function} scm_symbol_to_keyword (symbol)
Return the keyword with the same name as @var{symbol}.
@end deffn

@deftypefn {C Function} int scm_is_keyword (SCM obj)
Equivalent to @code{scm_is_true (scm_keyword_p (@var{obj}))}.
@end deftypefn

@deftypefn {C Function} SCM scm_from_locale_keyword (const char *str)
@deftypefnx {C Function} SCM scm_from_locale_keywordn (const char *str, size_t len)
Equivalent to @code{scm_symbol_to_keyword (scm_from_locale_symbol
(@var{str}))} and @code{scm_symbol_to_keyword (scm_from_locale_symboln
(@var{str}, @var{len}))}, respectively.
@end deftypefn

@node Other Types
@subsection ``Functionality-Centric'' Data Types

Procedures and macros are documented in their own chapter: see
@ref{Procedures and Macros}.

Variable objects are documented as part of the description of Guile's
module system: see @ref{Variables}.

Asyncs, dynamic roots and fluids are described in the chapter on
scheduling: see @ref{Scheduling}.

Hooks are documented in the chapter on general utility functions: see
@ref{Hooks}.

Ports are described in the chapter on I/O: see @ref{Input and Output}.


@c Local Variables:
@c TeX-master: "guile.texi"
@c End: