summaryrefslogtreecommitdiff
path: root/doc/ref/gh.texi
blob: 95dfd92913f789185755b2b0134745e5ea8ea0a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
@c -*-texinfo-*-
@c This is part of the GNU Guile Reference Manual.
@c Copyright (C)  1996, 1997, 2000, 2001, 2002, 2003, 2004
@c   Free Software Foundation, Inc.
@c See the file guile.texi for copying conditions.

@page
@node GH
@section GH: A Portable C to Scheme Interface
@cindex libguile - gh
@cindex gh
@cindex gh - reference manual

This chapter shows how to use the GH interface to call Guile from your
application's C code, and to add new Scheme level procedures to Guile
whose behaviour is specified by application specific code written in C.

Note, however, that the GH interface is now deprecated, and developers
are encouraged to switch to using the scm interface instead.  Therefore,
for each GH feature, this chapter also documents how to achieve
the same result using the scm interface.

@menu
* GH deprecation::              Why the GH interface is now deprecated.
* Transitioning away from GH::
* GH preliminaries::            
* Data types and constants defined by GH::  
* Starting and controlling the interpreter::  
* Error messages::              
* Executing Scheme code::       
* Defining new Scheme procedures in C::  
* Converting data between C and Scheme::  
* Type predicates::             
* Equality predicates::         
* Memory allocation and garbage collection::  
* Calling Scheme procedures from C::  
@end menu


@node GH deprecation
@subsection Why the GH Interface is Now Deprecated

Historically, the GH interface was the product of a practical problem
and a neat idea.  The practical problem was that the interface of the
@code{scm_} functions with which Guile itself was written (inherited
from Aubrey Jaffer's SCM) was so closely tied to the (rather arcane)
details of the internal data representation that it was extremely
difficult to write a Guile extension using these functions.  The neat
idea was to define a high level language extension interface in such a
way that other extension language projects, not just Guile, would be
able to provide an implementation of that interface; then applications
using this interface could be compiled with whichever of the various
available implementations they chose.  So the GH interface was created,
and advertised both as the recommended interface for application
developers wishing to use Guile, and as a portable high level interface
that could theoretically be implemented by other extension language
projects.

Time passed, and various things changed.  Crucially, an enormous number
of improvements were made to the @code{scm_} interface that Guile itself
uses in its implementation, with the result that it is now both easy and
comfortable to write a Guile extension with this interface.  At the same
time, the contents of the GH interface were somewhat neglected by the
core Guile developers, such that some key operations --- such as smob
creation and management --- are simply not possible using GH alone.
Finally, the idea of multiple implementations of the GH interface did
not really crystallize (apart, I believe, from a short lived
implementation by the MzScheme project).

For all these reasons, the Guile developers have decided to deprecate
the GH interface --- which means that support for GH will be completely
removed after the next few releases --- and to focus only on the
@code{scm_} interface, with additions to ensure that it is as easy to
use in all respects as GH was.

It remains an open question whether a deep kind of interface portability
would be useful for extension language-based applications, and it may
still be an interesting project to attempt to define a corresponding
GH-like interface, but the Guile developers no longer plan to try to do
this as part of the core Guile project.

@node Transitioning away from GH
@subsection Transitioning away from GH

The following table summarizes how to transition from the GH to the
scm interface.  The replacements that are recommended are not always
completely equivalent to the GH functionality that they should
replace.  Therefore, you should read the reference documentation of
the replacements carefully if you are not yet familiar with them.

@table @asis
@item Header file
Use @code{#include <libguile.h>} instead of @code{#include
<guile/gh.h>}.

@item Compiling and Linking
Use @code{guile-config} to pick up the flags required to compile C or
C++ code that uses @code{libguile}, like so

@smallexample
$(CC) -o prog.o -c prog.c `guile-config compile`
@end smallexample

If you are using libtool to link your executables, just use
@code{-lguile} in your link command.  Libtool will expand this into
the needed linker options automatically.  If you are not using
libtool, use the @code{guile-config} program to query the needed
options explicitly.  A linker command like

@smallexample
$(CC) -o prog prog.o `guile-config link`
@end smallexample

should be all that is needed.  To link shared libraries that will be
used as Guile Extensions, use libtool to control both the compilation
and the link stage.

@item The @code{SCM} type
No change: the scm interface also uses this type to represent an
arbitrary Scheme value.

@item @code{SCM_BOOL_F} and @code{SCM_BOOL_T}
No change.

@item @code{SCM_UNSPECIFIED} and @code{SCM_UNDEFINED}
No change.

@item @code{gh_enter}
Use @code{scm_boot_guile} instead, but note that @code{scm_boot_guile}
has a slightly different calling convention from @code{gh_enter}:
@code{scm_boot_guile}, and the main program function that you specify
for @code{scm_boot_guile} to call, both take an additional @var{closure}
parameter.  @ref{Guile Initialization Functions} for more details.

@item @code{gh_repl}
Use @code{scm_shell} instead.

@item @code{gh_init}
Use @code{scm_init_guile} instead.

@item @code{gh_catch}
Use @code{scm_internal_catch} instead.

@item @code{gh_eval_str}
Use @code{scm_c_eval_string} instead.

@item @code{gh_eval_str_with_catch}
Use @code{scm_c_eval_string} together with @code{scm_internal_catch}
instead.

@item @code{gh_eval_str_with_standard_handler}
Use @code{scm_c_eval_string} together with @code{scm_internal_catch}
and @code{scm_handle_by_message_no_exit} instead.

@item @code{gh_eval_str_with_stack_saving_handler}
Use @code{scm_c_eval_string} together with
@code{scm_internal_stack_catch} and
@code{scm_handle_by_message_no_exit} instead.

@item @code{gh_eval_file} or @code{gh_load}
Use @code{scm_c_primitive_load} instead.

@item @code{gh_eval_file_with_catch}
Use @code{scm_c_primitive_load} together with
@code{scm_internal_catch} instead.

@item @code{gh_eval_file_with_standard_handler}
Use @code{scm_c_primitive_load} together with
@code{scm_internal_catch} and @code{scm_handle_by_message_no_exit}
instead.

@item  @code{gh_new_procedure}
@itemx @code{gh_new_procedure0_0}
@itemx @code{gh_new_procedure0_1}
@itemx @code{gh_new_procedure0_2}
@itemx @code{gh_new_procedure1_0}
@itemx @code{gh_new_procedure1_1}
@itemx @code{gh_new_procedure1_2}
@itemx @code{gh_new_procedure2_0}
@itemx @code{gh_new_procedure2_1}
@itemx @code{gh_new_procedure2_2}
@itemx @code{gh_new_procedure3_0} 
@itemx @code{gh_new_procedure4_0} 
@itemx @code{gh_new_procedure5_0} 
Use @code{scm_c_define_gsubr} instead, but note that the arguments are
in a different order: for @code{scm_c_define_gsubr} the C function
pointer is the last argument.  @ref{A Sample Guile Extension} for an
example.

@item @code{gh_defer_ints} and @code{gh_allow_ints}
Use @code{SCM_CRITICAL_SECTION_START} and
@code{SCM_CRITICAL_SECTION_END} instead.  Note that these macros are
used without parentheses, as in @code{SCM_DEFER_INTS;}.

@item @code{gh_bool2scm}
Use @code{scm_from_bool} instead.

@item @code{gh_int2scm}
Use @code{scm_from_int} instead.

@item @code{gh_ulong2scm}
Use @code{scm_from_ulong} instead.

@item @code{gh_long2scm}
Use @code{scm_from_long} instead.

@item @code{gh_double2scm}
Use @code{scm_make_real} instead.

@item @code{gh_char2scm}
Use @code{SCM_MAKE_CHAR} instead.

@item @code{gh_str2scm}
Use @code{scm_from_locale_stringn} instead.

@item @code{gh_str02scm}
Use @code{scm_from_locale_string} instead.

@item @code{gh_set_substr}
Use @code{scm_string_copy_x}.

@item @code{gh_symbol2scm}
Use @code{scm_from_locale_symbol} instead.

@item  @code{gh_ints2scm}
@itemx @code{gh_doubles2scm}
@itemx @code{gh_chars2byvect}
@itemx @code{gh_shorts2svect}
@itemx @code{gh_longs2ivect}
@itemx @code{gh_ulongs2uvect}
@itemx @code{gh_floats2fvect}
@itemx @code{gh_doubles2dvect}
Use the uniform numeric vector function, @xref{Uniform Numeric
Vectors}.

@item @code{gh_scm2bool}
Use @code{scm_is_true} or @code{scm_to_bool} instead.

@item @code{gh_scm2int}
Use @code{scm_to_int} instead.

@item @code{gh_scm2ulong}
Use @code{scm_to_ulong} instead.

@item @code{gh_scm2long}
Use @code{scm_to_long} instead.

@item @code{gh_scm2double}
Use @code{scm_to_double} instead.

@item @code{gh_scm2char}
Use @code{scm_to_char} instead.

@item @code{gh_scm2newstr}
Use @code{scm_to_locale_string} or similar instead.

@item @code{gh_get_substr}
Use @code{scm_c_substring} together with @code{scm_to_locale_string}
or similar instead.

@item @code{gh_symbol2newstr}
Use @code{scm_symbol_to_string} together with @code{scm_to_locale_string} or similar instead.

@item @code{gh_scm2chars}
Use @code{scm_from_locale_string} (or similar) or the uniform numeric
vector functions (@pxref{Uniform Numeric Vectors}) instead.

@item  @code{gh_scm2shorts}
@itemx @code{gh_scm2longs}
@itemx @code{gh_scm2floats}
@itemx @code{gh_scm2doubles}
Use the uniform numeric vector function, @xref{Uniform Numeric
Vectors}.

@item @code{gh_boolean_p}
Use @code{scm_is_bool} instead.

@item @code{gh_symbol_p}
Use @code{scm_is_symbol} instead.

@item @code{gh_char_p}
Replace @code{gh_char_p (@var{obj})} with
@example
scm_is_true (scm_char_p (@var{obj}))
@end example

@item @code{gh_vector_p}
Replace @code{gh_vector_p (@var{obj})} with
@example
scm_is_true (scm_vector_p (@var{obj}))
@end example

@item @code{gh_pair_p}
Replace @code{gh_pair_p (@var{obj})} with
@example
scm_is_true (scm_pair_p (@var{obj}))
@end example

@item @code{gh_number_p}
Use @code{scm_is_number} instead.

@item @code{gh_string_p}
Use @code{scm_is_string} instead.

@item @code{gh_procedure_p}
Replace @code{gh_procedure_p (@var{obj})} by
@example
scm_is_true (scm_procedure_p (@var{obj}))
@end example

@item @code{gh_list_p}
Replace @code{gh_list_p (@var{obj})} with
@example
scm_is_true (scm_list_p (@var{obj}))
@end example

@item @code{gh_inexact_p}
Replace @code{gh_inexact_p (@var{obj})} with
@example
scm_is_true (scm_inexact_p (@var{obj}))
@end example

@item @code{gh_exact_p}
Replace @code{gh_exact_p (@var{obj})} with
@example
scm_is_true (scm_exact_p (@var{obj}))
@end example

@item @code{gh_eq_p}
Use @code{scm_is_eq} instead.

@item @code{gh_eqv_p}
Replace @code{gh_eqv_p (@var{x}, @var{y})} with
@example
scm_is_true (scm_eqv_p (@var{x}, @var{y}))
@end example

@item @code{gh_equal_p}
Replace @code{gh_equal_p (@var{x}, @var{y})} with
@example
scm_is_true (scm_equal_p (@var{x}, @var{y}))
@end example

@item @code{gh_string_equal_p}
Replace @code{gh_string_equal_p (@var{x}, @var{y})} with
@example
scm_is_true (scm_string_equal_p (@var{x}, @var{y}))
@end example

@item @code{gh_null_p}
Use @code{scm_is_null} instead.

@item @code{gh_not}
Use @code{scm_not} instead.

@item @code{gh_make_string}
Use @code{scm_make_string} instead.

@item @code{gh_string_length}
Use @code{scm_string_length} instead.

@item @code{gh_string_ref}
Use @code{scm_string_ref} instead.

@item @code{gh_string_set_x}
Use @code{scm_string_set_x} instead.

@item @code{gh_substring}
Use @code{scm_substring} instead.

@item @code{gh_string_append}
Use @code{scm_string_append} instead.

@item @code{gh_cons}
Use @code{scm_cons} instead.

@item @code{gh_car} and @code{gh_cdr}
Use @code{scm_car} and @code{scm_cdr} instead.

@item @code{gh_cxxr} and @code{gh_cxxxr}
(Where each x is either @samp{a} or @samp{d}.)  Use the corresponding
@code{scm_cxxr} or @code{scm_cxxxr} function instead.

@item @code{gh_set_car_x} and @code{gh_set_cdr_x}
Use @code{scm_set_car_x} and @code{scm_set_cdr_x} instead.

@item @code{gh_list}
Use @code{scm_list_n} instead.

@item @code{gh_length}
Replace @code{gh_length (@var{lst})} with
@example
scm_to_size_t (scm_length (@var{lst}))
@end example

@item @code{gh_append}
Use @code{scm_append} instead.

@item @code{gh_append2}, @code{gh_append3}, @code{gh_append4}
Replace @code{gh_append@var{N} (@var{l1}, @dots{}, @var{lN})} by
@example
scm_append (scm_list_n (@var{l1}, @dots{}, @var{lN}, SCM_UNDEFINED))
@end example

@item @code{gh_reverse}
Use @code{scm_reverse} instead.

@item @code{gh_list_tail} and @code{gh_list_ref}
Use @code{scm_list_tail} and @code{scm_list_ref} instead.

@item @code{gh_memq}, @code{gh_memv} and @code{gh_member}
Use @code{scm_memq}, @code{scm_memv} and @code{scm_member} instead.

@item @code{gh_assq}, @code{gh_assv} and @code{gh_assoc}
Use @code{scm_assq}, @code{scm_assv} and @code{scm_assoc} instead.

@item @code{gh_make_vector}
Use @code{scm_make_vector} instead.

@item @code{gh_vector} or @code{gh_list_to_vector}
Use @code{scm_vector} instead.

@item @code{gh_vector_ref} and @code{gh_vector_set_x}
Use @code{scm_vector_ref} and @code{scm_vector_set_x} instead.

@item @code{gh_vector_length}
Use @code{scm_c_vector_length} instead.

@item @code{gh_uniform_vector_length}
Use @code{scm_c_uniform_vector_length} instead.

@item @code{gh_uniform_vector_ref}
Use @code{scm_c_uniform_vector_ref} instead.

@item @code{gh_vector_to_list}
Use @code{scm_vector_to_list} instead.

@item @code{gh_apply}
Use @code{scm_apply_0} instead.

@item  @code{gh_call0}
@itemx @code{gh_call1}
@itemx @code{gh_call2}
@itemx @code{gh_call3}
Use @code{scm_call_0}, @code{scm_call_1}, etc instead.

@item  @code{gh_display}
@itemx @code{gh_write}
@itemx @code{gh_newline}
Use @code{scm_display (obj, scm_current_output_port ())} instead, etc.

@item @code{gh_lookup}
Use @code{scm_variable_ref (scm_c_lookup (name))} instead.

@item @code{gh_module_lookup}
Use @code{scm_variable_ref (scm_c_module_lookup (module, name))} instead.

@end table

@node GH preliminaries
@subsection GH preliminaries

To use gh, you must have the following toward the beginning of your C
source:
@smallexample
#include <guile/gh.h>
@end smallexample
@cindex gh - headers

When you link, you will have to add at least @code{-lguile} to the list
of libraries.  If you are using more of Guile than the basic Scheme
interpreter, you will have to add more libraries.
@cindex gh - linking


@node Data types and constants defined by GH
@subsection Data types and constants defined by GH

The following C constants and data types are defined in gh:

@code{SCM} is a C data type used to store all Scheme data, no matter what the
Scheme type.  Values are converted between C data types and the SCM type
with utility functions described below (@pxref{Converting data between C
and Scheme}).  [FIXME: put in references to Jim's essay and so forth.]

@defvr Constant SCM_BOOL_T
@defvrx Constant SCM_BOOL_F
The @emph{Scheme} values returned by many boolean procedures in
libguile.

This can cause confusion because they are different from 0 and 1.  In
testing a boolean function in libguile programming, you must always make
sure that you check the spec: @code{gh_} and @code{scm_} functions will
usually return @code{SCM_BOOL_T} and @code{SCM_BOOL_F}, but other C
functions usually can be tested against 0 and 1, so programmers' fingers
tend to just type @code{if (boolean_function()) @{ ... @}}
@end defvr

@defvr Constant SCM_UNSPECIFIED
This is a SCM value that is not the same as any legal Scheme value.  It
is the value that a Scheme function returns when its specification says
that its return value is unspecified.
@end defvr

@defvr Constant SCM_UNDEFINED
This is another SCM value that is not the same as any legal Scheme
value.  It is the value used to mark variables that do not yet have a
value, and it is also used in C to terminate functions with variable
numbers of arguments, such as @code{gh_list()}.
@end defvr


@node Starting and controlling the interpreter
@subsection Starting and controlling the interpreter
@cindex libguile - start interpreter

In almost every case, your first @code{gh_} call will be:

@deftypefun void gh_enter (int @var{argc}, char *@var{argv}[], void (*@var{main_prog})())
Starts up a Scheme interpreter with all the builtin Scheme primitives.
@code{gh_enter()} never exits, and the user's code should all be in the
@code{@var{main_prog}()} function.  @code{argc} and @code{argv} will be
passed to @var{main_prog}.

@deftypefun void main_prog (int @var{argc}, char *@var{argv}[])
This is the user's main program.  It will be invoked by
@code{gh_enter()} after Guile has been started up.
@end deftypefun

Note that you can use @code{gh_repl} inside @code{gh_enter} (in other
words, inside the code for @code{main-prog}) if you want the program to
be controlled by a Scheme read-eval-print loop.
@end deftypefun

@cindex read eval print loop -- from the gh_ interface
@cindex REPL -- from the gh_ interface
A convenience routine which enters the Guile interpreter with the
standard Guile read-eval-print loop (@dfn{REPL}) is:

@deftypefun void gh_repl (int @var{argc}, char *@var{argv}[])
Enters the Scheme interpreter giving control to the Scheme REPL.
Arguments are processed as if the Guile program @file{guile} were being
invoked.

Note that @code{gh_repl} should be used @emph{inside} @code{gh_enter},
since any Guile interpreter calls are meaningless unless they happen in
the context of the interpreter.

Also note that when you use @code{gh_repl}, your program will be
controlled by Guile's REPL (which is written in Scheme and has many
useful features).  Use straight C code inside @code{gh_enter} if you
want to maintain execution control in your C program.
@end deftypefun

You will typically use @code{gh_enter} and @code{gh_repl} when you
want a Guile interpreter enhanced by your own libraries, but otherwise
quite normal.  For example, to build a Guile--derived program that
includes some random number routines @dfn{GSL} (GNU Scientific Library),
you would write a C program that looks like this:

@smallexample
#include <guile/gh.h>
#include <gsl_ran.h>

/* random number suite */
SCM gw_ran_seed(SCM s)
@{
  gsl_ran_seed(gh_scm2int(s));
  return SCM_UNSPECIFIED;
@}

SCM gw_ran_random()
@{
  SCM x;

  x = gh_ulong2scm(gsl_ran_random());
  return x;
@}

SCM gw_ran_uniform()
@{
  SCM x;

  x = gh_double2scm(gsl_ran_uniform());
  return x;
@}
SCM gw_ran_max()
@{
  return gh_double2scm(gsl_ran_max());
@}

void
init_gsl()
@{
  /* random number suite */
  gh_new_procedure("gsl-ran-seed", gw_ran_seed, 1, 0, 0);
  gh_new_procedure("gsl-ran-random", gw_ran_random, 0, 0, 0);
  gh_new_procedure("gsl-ran-uniform", gw_ran_uniform, 0, 0, 0);
  gh_new_procedure("gsl-ran-max", gw_ran_max, 0, 0, 0);
@}

void
main_prog (int argc, char *argv[])
@{
  init_gsl();

  gh_repl(argc, argv);
@}

int
main (int argc, char *argv[])
@{
  gh_enter (argc, argv, main_prog);
@}
@end smallexample

Then, supposing the C program is in @file{guile-gsl.c}, you could
compile it with @kbd{gcc -o guile-gsl guile-gsl.c -lguile -lgsl}.

The resulting program @file{guile-gsl} would have new primitive
procedures @code{gsl-ran-random}, @code{gsl-ran-gaussian} and so forth.


@node Error messages
@subsection Error messages
@cindex libguile - error messages
@cindex error messages in libguile

[FIXME: need to fill this based on Jim's new mechanism]


@node Executing Scheme code
@subsection Executing Scheme code
@cindex libguile - executing Scheme
@cindex executing Scheme

Once you have an interpreter running, you can ask it to evaluate Scheme
code.  There are two calls that implement this:

@deftypefun SCM gh_eval_str (char *@var{scheme_code})
This asks the interpreter to evaluate a single string of Scheme code,
and returns the result of the last expression evaluated.

Note that the line of code in @var{scheme_code} must be a well formed
Scheme expression.  If you have many lines of code before you balance
parentheses, you must either concatenate them into one string, or use
@code{gh_eval_file()}.
@end deftypefun

@deftypefun SCM gh_eval_file (char *@var{fname})
@deftypefunx SCM gh_load (char *@var{fname})
@code{gh_eval_file} is completely analogous to @code{gh_eval_str()},
except that a whole file is evaluated instead of a string.
@code{gh_eval_file} returns @code{SCM_UNSPECIFIED}.

@code{gh_load} is identical to @code{gh_eval_file} (it's a macro that
calls @code{gh_eval_file} on its argument).  It is provided to start
making the @code{gh_} interface match the R5RS Scheme procedures
closely.
@end deftypefun


@node Defining new Scheme procedures in C
@subsection Defining new Scheme procedures in C
@cindex libguile - new procedures
@cindex new procedures
@cindex procedures, new
@cindex new primitives
@cindex primitives, new

The real interface between C and Scheme comes when you can write new
Scheme procedures in C.  This is done through the routine


@deftypefn {Libguile high} SCM gh_new_procedure (char *@var{proc_name}, SCM (*@var{fn})(), int @var{n_required_args}, int @var{n_optional_args}, int @var{restp})
@code{gh_new_procedure} defines a new Scheme procedure.  Its Scheme name
will be @var{proc_name}, it will be implemented by the C function
(*@var{fn})(), it will take at least @var{n_required_args} arguments,
and at most @var{n_optional_args} extra arguments.

When the @var{restp} parameter is 1, the procedure takes a final
argument: a list of remaining parameters.

@code{gh_new_procedure} returns an SCM value representing the procedure.

The C function @var{fn} should have the form
@deftypefn {Libguile high} SCM fn (SCM @var{req1}, SCM @var{req2}, ..., SCM @var{opt1},  SCM @var{opt2}, ...,  SCM @var{rest_args})
The arguments are all passed as SCM values, so the user will have to use
the conversion functions to convert to standard C types.

Examples of C functions used as new Scheme primitives can be found in
the sample programs @code{learn0} and @code{learn1}.
@end deftypefn

@end deftypefn

@strong{Rationale:} this is the correct way to define new Scheme
procedures in C.  The ugly mess of arguments is required because of how
C handles procedures with variable numbers of arguments.

@strong{NB:} what about documentation strings?

@cartouche
There are several important considerations to be made when writing the C
routine @code{(*fn)()}.

First of all the C routine has to return type @code{SCM}.

Second, all arguments passed to the C function will be of type
@code{SCM}.

Third: the C routine is now subject to Scheme flow control, which means
that it could be interrupted at any point, and then reentered.  This
means that you have to be very careful with operations such as
allocating memory, modifying static data @dots{}

Fourth: to get around the latter issue, you can use
@code{GH_DEFER_INTS} and @code{GH_ALLOW_INTS}.
@end cartouche

@defmac GH_DEFER_INTS
@defmacx GH_ALLOW_INTS
These macros disable and re-enable Scheme's flow control.  They 
@end defmac


@c [??? have to do this right; maybe using subsections, or maybe creating a
@c section called Flow control issues...]

@c [??? Go into exhaustive detail with examples of the various possible
@c combinations of required and optional args...]


@node Converting data between C and Scheme
@subsection Converting data between C and Scheme
@cindex libguile - converting data
@cindex data conversion
@cindex converting data

Guile provides mechanisms to convert data between C and Scheme.  This
allows new builtin procedures to understand their arguments (which are
of type @code{SCM}) and return values of type @code{SCM}.


@menu
* C to Scheme::                 
* Scheme to C::                 
@end menu

@node C to Scheme
@subsubsection C to Scheme

@deftypefun SCM gh_bool2scm (int @var{x})
Returns @code{#f} if @var{x} is zero, @code{#t} otherwise.
@end deftypefun

@deftypefun SCM gh_ulong2scm (unsigned long @var{x})
@deftypefunx SCM gh_long2scm (long @var{x})
@deftypefunx SCM gh_double2scm (double @var{x})
@deftypefunx SCM gh_char2scm (char @var{x})
Returns a Scheme object with the value of the C quantity @var{x}.
@end deftypefun

@deftypefun SCM gh_str2scm (char *@var{s}, int @var{len})
Returns a new Scheme string with the (not necessarily null-terminated) C
array @var{s} data.
@end deftypefun

@deftypefun SCM gh_str02scm (char *@var{s})
Returns a new Scheme string with the null-terminated C string @var{s}
data.
@end deftypefun

@deftypefun SCM gh_set_substr (char *@var{src}, SCM @var{dst}, int @var{start}, int @var{len})
Copy @var{len} characters at @var{src} into the @emph{existing} Scheme
string @var{dst}, starting at @var{start}.  @var{start} is an index into
@var{dst}; zero means the beginning of the string.

If @var{start} + @var{len} is off the end of @var{dst}, signal an
out-of-range error.
@end deftypefun

@deftypefun SCM gh_symbol2scm (char *@var{name})
Given a null-terminated string @var{name}, return the symbol with that
name.
@end deftypefun

@deftypefun SCM gh_ints2scm (int *@var{dptr}, int @var{n})
@deftypefunx SCM gh_doubles2scm (double *@var{dptr}, int @var{n})
Make a scheme vector containing the @var{n} ints or doubles at memory
location @var{dptr}.
@end deftypefun

@deftypefun SCM gh_chars2byvect (char *@var{dptr}, int @var{n})
@deftypefunx SCM gh_shorts2svect (short *@var{dptr}, int @var{n})
@deftypefunx SCM gh_longs2ivect (long *@var{dptr}, int @var{n})
@deftypefunx SCM gh_ulongs2uvect (ulong *@var{dptr}, int @var{n})
@deftypefunx SCM gh_floats2fvect (float *@var{dptr}, int @var{n})
@deftypefunx SCM gh_doubles2dvect (double *@var{dptr}, int @var{n})
Make a scheme uniform vector containing the @var{n} chars, shorts,
longs, unsigned longs, floats or doubles at memory location @var{dptr}.
@end deftypefun



@node Scheme to C
@subsubsection Scheme to C

@deftypefun int gh_scm2bool (SCM @var{obj})
@deftypefunx {unsigned long} gh_scm2ulong (SCM @var{obj})
@deftypefunx long gh_scm2long (SCM @var{obj})
@deftypefunx double gh_scm2double (SCM @var{obj})
@deftypefunx int gh_scm2char (SCM @var{obj})
These routines convert the Scheme object to the given C type.
@end deftypefun

@deftypefun {char *} gh_scm2newstr (SCM @var{str}, size_t *@var{lenp})
Given a Scheme string @var{str}, return a pointer to a new copy of its
contents, followed by a null byte.  If @var{lenp} is non-null, set
@code{*@var{lenp}} to the string's length.

This function uses malloc to obtain storage for the copy; the caller is
responsible for freeing it.

Note that Scheme strings may contain arbitrary data, including null
characters.  This means that null termination is not a reliable way to
determine the length of the returned value.  However, the function
always copies the complete contents of @var{str}, and sets @var{*lenp}
to the true length of the string (when @var{lenp} is non-null).
@end deftypefun


@deftypefun void gh_get_substr (SCM str, char *return_str, int *lenp)
Copy @var{len} characters at @var{start} from the Scheme string
@var{src} to memory at @var{dst}.  @var{start} is an index into
@var{src}; zero means the beginning of the string.  @var{dst} has
already been allocated by the caller.

If @var{start} + @var{len} is off the end of @var{src}, signal an
out-of-range error.
@end deftypefun

@deftypefun {char *} gh_symbol2newstr (SCM @var{sym}, int *@var{lenp})
Takes a Scheme symbol and returns a string of the form
@code{"'symbol-name"}.  If @var{lenp} is non-null, the string's length
is returned in @code{*@var{lenp}}.

This function uses malloc to obtain storage for the returned string; the
caller is responsible for freeing it.
@end deftypefun

@deftypefun {char *} gh_scm2chars (SCM @var{vector}, chars *@var{result})
@deftypefunx {short *} gh_scm2shorts (SCM @var{vector}, short *@var{result})
@deftypefunx {long *} gh_scm2longs (SCM @var{vector}, long *@var{result})
@deftypefunx {float *} gh_scm2floats (SCM @var{vector}, float *@var{result})
@deftypefunx {double *} gh_scm2doubles (SCM @var{vector}, double *@var{result})
Copy the numbers in @var{vector} to the array pointed to by @var{result}
and return it.  If @var{result} is NULL, allocate a double array large
enough.

@var{vector} can be an ordinary vector, a weak vector, or a signed or
unsigned uniform vector of the same type as the result array.  For
chars, @var{vector} can be a string or substring.  For floats and
doubles, @var{vector} can contain a mix of inexact and integer values.

If @var{vector} is of unsigned type and contains values too large to fit
in the signed destination array, those values will be wrapped around,
that is, data will be copied as if the destination array was unsigned.
@end deftypefun


@node Type predicates
@subsection Type predicates

These C functions mirror Scheme's type predicate procedures with one
important difference.  The C routines return C boolean values (0 and 1)
instead of @code{SCM_BOOL_T} and @code{SCM_BOOL_F}.

The Scheme notational convention of putting a @code{?} at the end of
predicate procedure names is mirrored in C by placing @code{_p} at the
end of the procedure.  For example, @code{(pair? ...)} maps to
@code{gh_pair_p(...)}.

@deftypefun int gh_boolean_p (SCM @var{val})
Returns 1 if @var{val} is a boolean, 0 otherwise.
@end deftypefun

@deftypefun int gh_symbol_p (SCM @var{val})
Returns 1 if @var{val} is a symbol, 0 otherwise.
@end deftypefun

@deftypefun int gh_char_p (SCM @var{val})
Returns 1 if @var{val} is a char, 0 otherwise.
@end deftypefun

@deftypefun int gh_vector_p (SCM @var{val})
Returns 1 if @var{val} is a vector, 0 otherwise.
@end deftypefun

@deftypefun int gh_pair_p (SCM @var{val})
Returns 1 if @var{val} is a pair, 0 otherwise.
@end deftypefun

@deftypefun int gh_procedure_p (SCM @var{val})
Returns 1 if @var{val} is a procedure, 0 otherwise.
@end deftypefun

@deftypefun int gh_list_p (SCM @var{val})
Returns 1 if @var{val} is a list, 0 otherwise.
@end deftypefun

@deftypefun int gh_inexact_p (SCM @var{val})
Returns 1 if @var{val} is an inexact number, 0 otherwise.
@end deftypefun

@deftypefun int gh_exact_p (SCM @var{val})
Returns 1 if @var{val} is an exact number, 0 otherwise.
@end deftypefun


@node Equality predicates
@subsection Equality predicates

These C functions mirror Scheme's equality predicate procedures with one
important difference.  The C routines return C boolean values (0 and 1)
instead of @code{SCM_BOOL_T} and @code{SCM_BOOL_F}.

The Scheme notational convention of putting a @code{?} at the end of
predicate procedure names is mirrored in C by placing @code{_p} at the
end of the procedure.  For example, @code{(equal? ...)} maps to
@code{gh_equal_p(...)}.

@deftypefun int gh_eq_p (SCM x, SCM y)
Returns 1 if @var{x} and @var{y} are equal in the sense of Scheme's
@code{eq?} predicate, 0 otherwise.
@end deftypefun

@deftypefun int gh_eqv_p (SCM x, SCM y)
Returns 1 if @var{x} and @var{y} are equal in the sense of Scheme's
@code{eqv?} predicate, 0 otherwise.
@end deftypefun

@deftypefun int gh_equal_p (SCM x, SCM y)
Returns 1 if @var{x} and @var{y} are equal in the sense of Scheme's
@code{equal?} predicate, 0 otherwise.
@end deftypefun

@deftypefun int gh_string_equal_p (SCM @var{s1}, SCM @var{s2})
Returns 1 if the strings @var{s1} and @var{s2} are equal, 0 otherwise.
@end deftypefun

@deftypefun int gh_null_p (SCM @var{l})
Returns 1 if @var{l} is an empty list or pair; 0 otherwise.
@end deftypefun


@node Memory allocation and garbage collection
@subsection Memory allocation and garbage collection

@c [FIXME: flesh this out with some description of garbage collection in
@c scm/guile]

@c @deftypefun SCM gh_mkarray (int size)
@c Allocate memory for a Scheme object in a garbage-collector-friendly
@c manner.
@c @end deftypefun


@node Calling Scheme procedures from C
@subsection Calling Scheme procedures from C

Many of the Scheme primitives are available in the @code{gh_}
interface; they take and return objects of type SCM, and one could
basically use them to write C code that mimics Scheme code.

I will list these routines here without much explanation, since what
they do is the same as documented in @ref{Standard procedures, R5RS, ,
r5rs, R5RS}.  But I will point out that when a procedure takes a
variable number of arguments (such as @code{gh_list}), you should pass
the constant @var{SCM_UNDEFINED} from C to signify the end of the list.

@deftypefun SCM gh_define (char *@var{name}, SCM @var{val})
Corresponds to the Scheme @code{(define name val)}: it binds a value to
the given name (which is a C string).  Returns the new object.
@end deftypefun

@heading Pairs and lists

@deftypefun SCM gh_cons (SCM @var{a}, SCM @var{b})
@deftypefunx SCM gh_list (SCM l0, SCM l1, ... , SCM_UNDEFINED)
These correspond to the Scheme @code{(cons a b)} and @code{(list l0 l1
...)} procedures.  Note that @code{gh_list()} is a C macro that invokes
@code{scm_list_n()}.
@end deftypefun

@deftypefun SCM gh_car (SCM @var{obj})
@deftypefunx SCM gh_cdr (SCM @var{obj})
@dots{}

@deftypefunx SCM gh_c[ad][ad][ad][ad]r (SCM @var{obj})
These correspond to the Scheme @code{(caadar ls)} procedures etc @dots{}
@end deftypefun

@deftypefun SCM gh_set_car_x (SCM @var{pair}, SCM @var{value})
Modifies the CAR of @var{pair} to be @var{value}.  This is equivalent to
the Scheme procedure @code{(set-car! ...)}.
@end deftypefun

@deftypefun SCM gh_set_cdr_x (SCM @var{pair}, SCM @var{value})
Modifies the CDR of @var{pair} to be @var{value}.  This is equivalent to
the Scheme procedure @code{(set-cdr! ...)}.
@end deftypefun

@deftypefun {unsigned long} gh_length (SCM @var{ls})
Returns the length of the list.
@end deftypefun

@deftypefun SCM gh_append (SCM @var{args})
@deftypefunx SCM gh_append2 (SCM @var{l1}, SCM @var{l2})
@deftypefunx SCM gh_append3 (SCM @var{l1}, SCM @var{l2}, @var{l3})
@deftypefunx SCM gh_append4 (SCM @var{l1}, SCM @var{l2}, @var{l3}, @var{l4})
@code{gh_append()} takes @var{args}, which is a list of lists
@code{(list1 list2 ...)}, and returns a list containing all the elements
of the individual lists.

A typical invocation of @code{gh_append()} to append 5 lists together
would be
@smallexample
  gh_append(gh_list(l1, l2, l3, l4, l5, SCM_UNDEFINED));
@end smallexample

The functions @code{gh_append2()}, @code{gh_append2()},
@code{gh_append3()} and @code{gh_append4()} are convenience routines to
make it easier for C programs to form the list of lists that goes as an
argument to @code{gh_append()}.
@end deftypefun

@deftypefun SCM gh_reverse (SCM @var{ls})
Returns a new list that has the same elements as @var{ls} but in the
reverse order.  Note that this is implemented as a macro which calls
@code{scm_reverse()}.
@end deftypefun

@deftypefun SCM gh_list_tail (SCM @var{ls}, SCM @var{k})
Returns the sublist of @var{ls} with the last @var{k} elements.
@end deftypefun

@deftypefun SCM gh_list_ref (SCM @var{ls}, SCM @var{k})
Returns the @var{k}th element of the list @var{ls}.
@end deftypefun

@deftypefun SCM gh_memq (SCM @var{x}, SCM @var{ls})
@deftypefunx SCM gh_memv (SCM @var{x}, SCM @var{ls})
@deftypefunx SCM gh_member (SCM @var{x}, SCM @var{ls})
These functions return the first sublist of @var{ls} whose CAR is
@var{x}.  They correspond to @code{(memq x ls)}, @code{(memv x ls)} and
@code{(member x ls)}, and hence use (respectively) @code{eq?},
@code{eqv?} and @code{equal?} to do comparisons.

If @var{x} does not appear in @var{ls}, the value @code{SCM_BOOL_F} (not
the empty list) is returned.

Note that these functions are implemented as macros which call
@code{scm_memq()}, @code{scm_memv()} and @code{scm_member()}
respectively.
@end deftypefun

@deftypefun SCM gh_assq (SCM @var{x}, SCM @var{alist})
@deftypefunx SCM gh_assv (SCM @var{x}, SCM @var{alist})
@deftypefunx SCM gh_assoc (SCM @var{x}, SCM @var{alist})
These functions search an @dfn{association list} (list of pairs)
@var{alist} for the first pair whose CAR is @var{x}, and they return
that pair.

If no pair in @var{alist} has @var{x} as its CAR, the value
@code{SCM_BOOL_F} (not the empty list) is returned.

Note that these functions are implemented as macros which call
@code{scm_assq()}, @code{scm_assv()} and @code{scm_assoc()}
respectively.
@end deftypefun


@heading Symbols

@c @deftypefun SCM gh_symbol (SCM str, SCM len)
@c @deftypefunx SCM gh_tmp_symbol (SCM str, SCM len)
@c Takes the given string @var{str} of length @var{len} and returns a
@c symbol corresponding to that string.
@c @end deftypefun


@heading Vectors

@deftypefun SCM gh_make_vector (SCM @var{n}, SCM @var{fill})
@deftypefunx SCM gh_vector (SCM @var{ls})
@deftypefunx SCM gh_vector_ref (SCM @var{v}, SCM @var{i})
@deftypefunx SCM gh_vector_set (SCM @var{v}, SCM @var{i}, SCM @var{val})
@deftypefunx {unsigned long} gh_vector_length (SCM @var{v})
@deftypefunx SCM gh_list_to_vector (SCM @var{ls})
These correspond to the Scheme @code{(make-vector n fill)},
@code{(vector a b c ...)} @code{(vector-ref v i)} @code{(vector-set v i
value)} @code{(vector-length v)} @code{(list->vector ls)} procedures.

The correspondence is not perfect for @code{gh_vector}: this routine
takes a list @var{ls} instead of the individual list elements, thus
making it identical to @code{gh_list_to_vector}.

There is also a difference in gh_vector_length: the value returned is a
C @code{unsigned long} instead of an SCM object.
@end deftypefun


@heading Procedures

@c @deftypefun SCM gh_make_subr (SCM (*@var{fn})(), int @var{req}, int @var{opt}, int @var{restp}, char *@var{sym})
@c Make the C function @var{fn} available to Scheme programs.  The function
@c will be bound to the symbol @var{sym}.  The arguments @var{req},
@c @var{opt} and @var{restp} describe @var{fn}'s calling conventions.  The
@c function must take @var{req} required arguments and may take @var{opt}
@c optional arguments.  Any optional arguments which are not supplied by
@c the caller will be bound to @var{SCM_UNSPECIFIED}.  If @var{restp} is
@c non-zero, it means that @var{fn} may be called with an arbitrary number
@c of arguments, and that any extra arguments supplied by the caller will
@c be passed to @var{fn} as a list.  The @var{restp} argument is exactly
@c like Scheme's @code{(lambda (arg1 arg2 . arglist))} calling convention.
@c 
@c For example, the procedure @code{read-line}, which takes optional
@c @var{port} and @var{handle-delim} arguments, would be declared like so:
@c 
@c @example
@c SCM scm_read_line (SCM port, SCM handle_delim);
@c gh_make_subr (scm_read_line, 0, 2, 0, "read-line");
@c @end example
@c 
@c The @var{req} argument to @code{gh_make_subr} is 0 to indicate that
@c there are no required arguments, so @code{read-line} may be called
@c without any arguments at all.  The @var{opt} argument is 2, to indicate
@c that both the @var{port} and @var{handle_delim} arguments to
@c @code{scm_read_line} are optional, and will be bound to
@c @code{SCM_UNSPECIFIED} if the calling program does not supply them.
@c Because the @var{restp} argument is 0, this function may not be called
@c with more than two arguments.
@c @end deftypefun

@deftypefun SCM gh_apply (SCM proc, SCM args)
Call the Scheme procedure @var{proc}, with the elements of @var{args} as
arguments.  @var{args} must be a proper list.  
@end deftypefun

@deftypefun SCM gh_call0 (SCM proc)
@deftypefunx SCM gh_call1 (SCM proc, SCM arg)
@deftypefunx SCM gh_call2 (SCM proc, SCM arg1, SCM arg2)
@deftypefunx SCM gh_call3 (SCM proc, SCM arg1, SCM arg2, SCM arg3)
Call the Scheme procedure @var{proc} with no arguments
(@code{gh_call0}), one argument (@code{gh_call1}), and so on.  You can
get the same effect by wrapping the arguments up into a list, and
calling @code{gh_apply}; Guile provides these functions for convenience.
@end deftypefun


@deftypefun SCM gh_catch (SCM key, SCM thunk, SCM handler)
@deftypefunx SCM gh_throw (SCM key, SCM args)
Corresponds to the Scheme @code{catch} and @code{throw} procedures,
which in Guile are provided as primitives.
@end deftypefun

@c [FIXME: must add the I/O section in gscm.h]

@deftypefun SCM gh_is_eq (SCM a, SCM b)
@deftypefunx SCM gh_is_eqv (SCM a, SCM b)
@deftypefunx SCM gh_is_equal (SCM a, SCM b)
These correspond to the Scheme @code{eq?}, @code{eqv?} and @code{equal?}
predicates.
@end deftypefun

@deftypefun int gh_obj_length (SCM @var{obj})
Returns the raw object length.
@end deftypefun

@heading Data lookup

For now I just include Tim Pierce's comments from the @file{gh_data.c}
file; it should be organized into a documentation of the two functions
here.

@smallexample
/* Data lookups between C and Scheme

   Look up a symbol with a given name, and return the object to which
   it is bound.  gh_lookup examines the Guile top level, and
   gh_module_lookup checks the module name space specified by the
   `vec' argument.

   The return value is the Scheme object to which SNAME is bound, or
   SCM_UNDEFINED if SNAME is not bound in the given context. [FIXME:
   should this be SCM_UNSPECIFIED?  Can a symbol ever legitimately be
   bound to SCM_UNDEFINED or SCM_UNSPECIFIED?  What is the difference?
   -twp] */
@end smallexample