summaryrefslogtreecommitdiff
path: root/module/language/cps/specialize-numbers.scm
blob: d5587037b992546c25e9532186c01cbcdf3e8c86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
;;; Continuation-passing style (CPS) intermediate language (IL)

;; Copyright (C) 2015, 2016 Free Software Foundation, Inc.

;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

;;; Commentary:
;;;
;;; Some arithmetic operations have multiple implementations: one
;;; polymorphic implementation that works on all kinds of numbers, like
;;; `add', and one or more specialized variants for unboxed numbers of
;;; some kind, like `fadd'.  If we can replace a polymorphic
;;; implementation with a monomorphic implementation, we should do so --
;;; it will speed up the runtime and avoid boxing numbers.
;;;
;;; A polymorphic operation can be specialized if its result is
;;; specialized.  To specialize an operation, we manually unbox its
;;; arguments and box its return value, relying on CSE to remove boxes
;;; where possible.
;;;
;;; We also want to specialize phi variables.  A phi variable is bound
;;; by a continuation with more than one predecessor.  For example in
;;; this code:
;;;
;;;   (+ 1.0 (if a 2.0 3.0))
;;;
;;; We want to specialize this code to:
;;;
;;;   (f64->scm (fl+ (scm->f64 1.0) (if a (scm->f64 2.0) (scm->f64 3.0))))
;;;
;;; Hopefully later passes will remove the conversions.  In any case,
;;; specialization will likely result in a lower heap-number allocation
;;; rate, and that cost is higher than the extra opcodes to do
;;; conversions.  This transformation is especially important for loop
;;; variables.
;;;
;;; Code:

(define-module (language cps specialize-numbers)
  #:use-module (ice-9 match)
  #:use-module (srfi srfi-1)
  #:use-module (srfi srfi-11)
  #:use-module (language cps)
  #:use-module (language cps intmap)
  #:use-module (language cps intset)
  #:use-module (language cps renumber)
  #:use-module (language cps types)
  #:use-module (language cps utils)
  #:use-module (language cps with-cps)
  #:export (specialize-numbers))

(define (specialize-f64-binop cps k src op a b)
  (let ((fop (match op
               ('add 'fadd)
               ('sub 'fsub)
               ('mul 'fmul)
               ('div 'fdiv))))
    (with-cps cps
      (letv f64-a f64-b result)
      (letk kbox ($kargs ('result) (result)
                   ($continue k src
                     ($primcall 'f64->scm (result)))))
      (letk kop ($kargs ('f64-b) (f64-b)
                  ($continue kbox src
                    ($primcall fop (f64-a f64-b)))))
      (letk kunbox-b ($kargs ('f64-a) (f64-a)
                       ($continue kop src
                         ($primcall 'scm->f64 (b)))))
      (build-term
        ($continue kunbox-b src
          ($primcall 'scm->f64 (a)))))))

(define* (specialize-u64-binop cps k src op a b #:key
                               (unbox-a 'scm->u64)
                               (unbox-b 'scm->u64))
  (let ((uop (match op
               ('add 'uadd)
               ('sub 'usub)
               ('mul 'umul)
               ('logand 'ulogand)
               ('logior 'ulogior)
               ('logxor 'ulogxor)
               ('logsub 'ulogsub)
               ('rsh 'ursh)
               ('lsh 'ulsh))))
    (with-cps cps
      (letv u64-a u64-b result)
      (letk kbox ($kargs ('result) (result)
                   ($continue k src
                     ($primcall 'u64->scm (result)))))
      (letk kop ($kargs ('u64-b) (u64-b)
                  ($continue kbox src
                    ($primcall uop (u64-a u64-b)))))
      (letk kunbox-b ($kargs ('u64-a) (u64-a)
                       ($continue kop src
                         ($primcall unbox-b (b)))))
      (build-term
        ($continue kunbox-b src
          ($primcall unbox-a (a)))))))

(define (truncate-u64 cps k src scm)
  (with-cps cps
    (letv u64)
    (letk kbox ($kargs ('u64) (u64)
                 ($continue k src
                   ($primcall 'u64->scm (u64)))))
    (build-term
      ($continue kbox src
        ($primcall 'scm->u64/truncate (scm))))))

(define (specialize-u64-comparison cps kf kt src op a b)
  (let ((op (symbol-append 'u64- op)))
    (with-cps cps
      (letv u64-a u64-b)
      (letk kop ($kargs ('u64-b) (u64-b)
                  ($continue kf src
                    ($branch kt ($primcall op (u64-a u64-b))))))
      (letk kunbox-b ($kargs ('u64-a) (u64-a)
                       ($continue kop src
                         ($primcall 'scm->u64 (b)))))
      (build-term
        ($continue kunbox-b src
          ($primcall 'scm->u64 (a)))))))

(define (specialize-u64-scm-comparison cps kf kt src op a-u64 b-scm)
  (let ((op (symbol-append 'u64- op '-scm)))
    (with-cps cps
      (letv u64)
      (letk kop ($kargs ('u64) (u64)
                  ($continue kf src
                    ($branch kt ($primcall op (u64 b-scm))))))
      (build-term
        ($continue kop src
          ($primcall 'scm->u64 (a-u64)))))))

(define (specialize-f64-comparison cps kf kt src op a b)
  (let ((op (symbol-append 'f64- op)))
    (with-cps cps
      (letv f64-a f64-b)
      (letk kop ($kargs ('f64-b) (f64-b)
                  ($continue kf src
                    ($branch kt ($primcall op (f64-a f64-b))))))
      (letk kunbox-b ($kargs ('f64-a) (f64-a)
                       ($continue kop src
                         ($primcall 'scm->f64 (b)))))
      (build-term
        ($continue kunbox-b src
          ($primcall 'scm->f64 (a)))))))

(define (sigbits-union x y)
  (and x y (logior x y)))

(define (sigbits-intersect x y)
  (cond
   ((not x) y)
   ((not y) x)
   (else (logand x y))))

(define (sigbits-intersect3 a b c)
  (sigbits-intersect a (sigbits-intersect b c)))

(define (next-power-of-two n)
  (let lp ((out 1))
    (if (< n out)
        out
        (lp (ash out 1)))))

(define (range->sigbits min max)
  (cond
   ((or (< min 0) (> max #xffffFFFFffffFFFF)) #f)
   ((eqv? min max) min)
   (else (1- (next-power-of-two max)))))

(define (inferred-sigbits types label var)
  (call-with-values (lambda () (lookup-pre-type types label var))
    (lambda (type min max)
      (and (or (eqv? type &exact-integer) (eqv? type &u64))
           (range->sigbits min max)))))

(define significant-bits-handlers (make-hash-table))
(define-syntax-rule (define-significant-bits-handler
                      ((primop label types out def ...) arg ...)
                      body ...)
  (hashq-set! significant-bits-handlers 'primop
              (lambda (label types out args defs)
                (match args ((arg ...) (match defs ((def ...) body ...)))))))

(define-significant-bits-handler ((logand label types out res) a b)
  (let ((sigbits (sigbits-intersect3 (inferred-sigbits types label a)
                                     (inferred-sigbits types label b)
                                     (intmap-ref out res (lambda (_) 0)))))
    (intmap-add (intmap-add out a sigbits sigbits-union)
                b sigbits sigbits-union)))

(define (significant-bits-handler primop)
  (hashq-ref significant-bits-handlers primop))

(define (compute-significant-bits cps types kfun)
  "Given the locally inferred types @var{types}, compute a map of VAR ->
BITS indicating the significant bits needed for a variable.  BITS may be
#f to indicate all bits, or a non-negative integer indicating a bitmask."
  (let ((preds (invert-graph (compute-successors cps kfun))))
    (let lp ((worklist (intmap-keys preds)) (visited empty-intset)
             (out empty-intmap))
      (match (intset-prev worklist)
        (#f out)
        (label
         (let ((worklist (intset-remove worklist label))
               (visited* (intset-add visited label)))
           (define (continue out*)
             (if (and (eq? out out*) (eq? visited visited*))
                 (lp worklist visited out)
                 (lp (intset-union worklist (intmap-ref preds label))
                     visited* out*)))
           (define (add-def out var)
             (intmap-add out var 0 sigbits-union))
           (define (add-defs out vars)
             (match vars
               (() out)
               ((var . vars) (add-defs (add-def out var) vars))))
           (define (add-unknown-use out var)
             (intmap-add out var (inferred-sigbits types label var)
                         sigbits-union))
           (define (add-unknown-uses out vars)
             (match vars
               (() out)
               ((var . vars)
                (add-unknown-uses (add-unknown-use out var) vars))))
           (continue
            (match (intmap-ref cps label)
              (($ $kfun src meta self)
               (add-def out self))
              (($ $kargs names vars ($ $continue k src exp))
               (let ((out (add-defs out vars)))
                 (match exp
                   ((or ($ $const) ($ $prim) ($ $fun) ($ $closure) ($ $rec))
                    ;; No uses, so no info added to sigbits.
                    out)
                   (($ $values args)
                    (match (intmap-ref cps k)
                      (($ $kargs _ vars)
                       (if (intset-ref visited k)
                           (fold (lambda (arg var out)
                                   (intmap-add out arg (intmap-ref out var)
                                               sigbits-union))
                                 out args vars)
                           out))
                      (($ $ktail)
                       (add-unknown-uses out args))))
                   (($ $call proc args)
                    (add-unknown-use (add-unknown-uses out args) proc))
                   (($ $callk label proc args)
                    (add-unknown-use (add-unknown-uses out args) proc))
                   (($ $branch kt ($ $values (arg)))
                    (add-unknown-use out arg))
                   (($ $branch kt ($ $primcall name args))
                    (add-unknown-uses out args))
                   (($ $primcall name args)
                    (let ((h (significant-bits-handler name)))
                      (if h
                          (match (intmap-ref cps k)
                            (($ $kargs _ defs)
                             (h label types out args defs)))
                          (add-unknown-uses out args))))
                   (($ $prompt escape? tag handler)
                    (add-unknown-use out tag)))))
              (_ out)))))))))

(define (specialize-operations cps)
  (define (visit-cont label cont cps types sigbits)
    (define (operand-in-range? var &type &min &max)
      (call-with-values (lambda ()
                          (lookup-pre-type types label var))
        (lambda (type min max)
          (and (eqv? type &type) (<= &min min max &max)))))
    (define (u64-operand? var)
      (operand-in-range? var &exact-integer 0 #xffffffffffffffff))
    (define (all-u64-bits-set? var)
      (operand-in-range? var &exact-integer
                         #xffffffffffffffff
                         #xffffffffffffffff))
    (define (only-u64-bits-used? var)
      (let ((bits (intmap-ref sigbits var)))
        (and bits (= bits (logand bits #xffffFFFFffffFFFF)))))
    (define (u64-result? result)
      (or (only-u64-bits-used? result)
          (call-with-values
              (lambda ()
                (lookup-post-type types label result 0))
            (lambda (type min max)
              (and (eqv? type &exact-integer)
                   (<= 0 min max #xffffffffffffffff))))))
    (define (f64-operands? vara varb)
      (let-values (((typea mina maxa) (lookup-pre-type types label vara))
                   ((typeb minb maxb) (lookup-pre-type types label varb)))
        (and (zero? (logand (logior typea typeb) (lognot &real)))
             (or (eqv? typea &flonum)
                 (eqv? typeb &flonum)))))
    (match cont
      (($ $kfun)
       (let ((types (infer-types cps label)))
         (values cps types (compute-significant-bits cps types label))))
      (($ $kargs names vars
          ($ $continue k src
             ($ $primcall (and op (or 'add 'sub 'mul 'div)) (a b))))
       (match (intmap-ref cps k)
         (($ $kargs (_) (result))
          (call-with-values (lambda ()
                              (lookup-post-type types label result 0))
            (lambda (type min max)
              (values
               (cond
                ((eqv? type &flonum)
                 (with-cps cps
                   (let$ body (specialize-f64-binop k src op a b))
                   (setk label ($kargs names vars ,body))))
                ((and (eqv? type &exact-integer)
                      (or (<= 0 min max #xffffffffffffffff)
                          (only-u64-bits-used? result))
                      (u64-operand? a) (u64-operand? b)
                      (not (eq? op 'div)))
                 (with-cps cps
                   (let$ body (specialize-u64-binop k src op a b))
                   (setk label ($kargs names vars ,body))))
                (else
                 cps))
               types
               sigbits))))))
      (($ $kargs names vars
          ($ $continue k src ($ $primcall 'ash (a b))))
       (match (intmap-ref cps k)
         (($ $kargs (_) (result))
          (call-with-values (lambda ()
                              (lookup-pre-type types label b))
            (lambda (b-type b-min b-max)
              (values
               (cond
                ((or (not (u64-result? result))
                     (not (u64-operand? a))
                     (not (eqv? b-type &exact-integer))
                     (< b-min 0 b-max)
                     (<= b-min -64)
                     (<= 64 b-max))
                 cps)
                ((and (< b-min 0) (= b-min b-max))
                 (with-cps cps
                   (let$ body
                         (with-cps-constants ((bits (- b-min)))
                           ($ (specialize-u64-binop k src 'rsh a bits))))
                   (setk label ($kargs names vars ,body))))
                ((< b-min 0)
                 (with-cps cps
                   (let$ body
                         (with-cps-constants ((zero 0))
                           (letv bits)
                           (let$ body
                                 (specialize-u64-binop k src 'rsh a bits))
                           (letk kneg ($kargs ('bits) (bits) ,body))
                           (build-term
                             ($continue kneg src
                               ($primcall 'sub (zero b))))))
                   (setk label ($kargs names vars ,body))))
                (else
                 (with-cps cps
                   (let$ body (specialize-u64-binop k src 'lsh a b))
                   (setk label ($kargs names vars ,body)))))
               types
               sigbits))))))
      (($ $kargs names vars
          ($ $continue k src
             ($ $primcall (and op (or 'logand 'logior 'logsub 'logxor)) (a b))))
       (match (intmap-ref cps k)
         (($ $kargs (_) (result))
          (values
           (cond
            ((u64-result? result)
             ;; Given that we know the result can be unboxed to a u64,
             ;; any out-of-range bits won't affect the result and so we
             ;; can unconditionally project the operands onto u64.
             (cond
              ((and (eq? op 'logand) (all-u64-bits-set? a))
               (with-cps cps
                 (let$ body (truncate-u64 k src b))
                 (setk label ($kargs names vars ,body))))
              ((and (eq? op 'logand) (all-u64-bits-set? b))
               (with-cps cps
                 (let$ body (truncate-u64 k src a))
                 (setk label ($kargs names vars ,body))))
              (else
               (with-cps cps
                 (let$ body (specialize-u64-binop k src op a b
                                                  #:unbox-a
                                                  'scm->u64/truncate
                                                  #:unbox-b
                                                  'scm->u64/truncate))
                 (setk label ($kargs names vars ,body))))))
            (else cps))
           types sigbits))))
      (($ $kargs names vars
          ($ $continue k src
             ($ $branch kt ($ $primcall (and op (or '< '<= '= '>= '>)) (a b)))))
       (values
        (cond
         ((f64-operands? a b)
          (with-cps cps
            (let$ body (specialize-f64-comparison k kt src op a b))
            (setk label ($kargs names vars ,body))))
         ((u64-operand? a)
          (let ((specialize (if (u64-operand? b)
                                specialize-u64-comparison
                                specialize-u64-scm-comparison)))
            (with-cps cps
              (let$ body (specialize k kt src op a b))
              (setk label ($kargs names vars ,body)))))
         ((u64-operand? b)
          (let ((op (match op
                      ('< '>) ('<= '>=) ('= '=) ('>= '<=) ('> '<))))
            (with-cps cps
              (let$ body (specialize-u64-scm-comparison k kt src op b a))
              (setk label ($kargs names vars ,body)))))
         (else cps))
        types
        sigbits))
      (_ (values cps types sigbits))))

  (values (intmap-fold visit-cont cps cps #f #f)))

;; Compute a map from VAR -> LABEL, where LABEL indicates the cont that
;; binds VAR.
(define (compute-defs conts labels)
  (intset-fold
   (lambda (label defs)
     (match (intmap-ref conts label)
       (($ $kfun src meta self tail clause)
        (intmap-add defs self label))
       (($ $kargs names vars)
        (fold1 (lambda (var defs)
                 (intmap-add defs var label))
               vars defs))
       (_ defs)))
   labels empty-intmap))

;; Compute vars whose definitions are all unboxable and whose uses
;; include an unbox operation.
(define (compute-specializable-vars cps body preds defs
                                    exp-result-unboxable?
                                    unbox-ops)
  ;; Compute a map of VAR->LABEL... indicating the set of labels that
  ;; define VAR with unboxable values, given the set of vars
  ;; UNBOXABLE-VARS which is known already to be unboxable.
  (define (collect-unboxable-def-labels unboxable-vars)
    (define (add-unboxable-def unboxable-defs var label)
      (intmap-add unboxable-defs var (intset label) intset-union))
    (intset-fold (lambda (label unboxable-defs)
                   (match (intmap-ref cps label)
                     (($ $kargs _ _ ($ $continue k _ exp))
                      (match exp
                        ((? exp-result-unboxable?)
                         (match (intmap-ref cps k)
                           (($ $kargs (_) (def))
                            (add-unboxable-def unboxable-defs def label))))
                        (($ $values vars)
                         (match (intmap-ref cps k)
                           (($ $kargs _ defs)
                            (fold
                             (lambda (var def unboxable-defs)
                               (if (intset-ref unboxable-vars var)
                                   (add-unboxable-def unboxable-defs def label)
                                   unboxable-defs))
                             unboxable-defs vars defs))
                           ;; Could be $ktail for $values.
                           (_ unboxable-defs)))
                        (_ unboxable-defs)))
                     (_ unboxable-defs)))
                 body empty-intmap))

  ;; Compute the set of vars which are always unboxable.
  (define (compute-unboxable-defs)
    (fixpoint
     (lambda (unboxable-vars)
       (intmap-fold
        (lambda (def unboxable-pred-labels unboxable-vars)
          (if (and (not (intset-ref unboxable-vars def))
                   ;; Are all defining expressions unboxable?
                   (and-map (lambda (pred)
                              (intset-ref unboxable-pred-labels pred))
                            (intmap-ref preds (intmap-ref defs def))))
              (intset-add unboxable-vars def)
              unboxable-vars))
        (collect-unboxable-def-labels unboxable-vars)
        unboxable-vars))
     empty-intset))

  ;; Compute the set of vars that may ever be unboxed.
  (define (compute-unbox-uses unboxable-defs)
    (intset-fold
     (lambda (label unbox-uses)
       (match (intmap-ref cps label)
         (($ $kargs _ _ ($ $continue k _ exp))
          (match exp
            (($ $primcall (? (lambda (op) (memq op unbox-ops))) (var))
             (intset-add unbox-uses var))
            (($ $values vars)
             (match (intmap-ref cps k)
               (($ $kargs _ defs)
                (fold (lambda (var def unbox-uses)
                        (if (intset-ref unboxable-defs def)
                            (intset-add unbox-uses var)
                            unbox-uses))
                      unbox-uses vars defs))
               (($ $ktail)
                ;; Assume return is rare and that any unboxable def can
                ;; be reboxed when leaving the procedure.
                (fold (lambda (var unbox-uses)
                        (intset-add unbox-uses var))
                      unbox-uses vars))))
            (_ unbox-uses)))
         (_ unbox-uses)))
     body empty-intset))

  (let ((unboxable-defs (compute-unboxable-defs)))
    (intset-intersect unboxable-defs (compute-unbox-uses unboxable-defs))))

;; Compute vars whose definitions are all inexact reals and whose uses
;; include an unbox operation.
(define (compute-specializable-f64-vars cps body preds defs)
  ;; Can the result of EXP definitely be unboxed as an f64?
  (define (exp-result-f64? exp)
    (match exp
      ((or ($ $primcall 'f64->scm (_))
           ($ $const (and (? number?) (? inexact?) (? real?))))
       #t)
      (_ #f)))
  (compute-specializable-vars cps body preds defs exp-result-f64? '(scm->f64)))

;; Compute vars whose definitions are all exact integers in the u64
;; range and whose uses include an unbox operation.
(define (compute-specializable-u64-vars cps body preds defs)
  ;; Can the result of EXP definitely be unboxed as a u64?
  (define (exp-result-u64? exp)
    (match exp
      ((or ($ $primcall 'u64->scm (_))
           ($ $const (and (? number?) (? exact-integer?)
                          (? (lambda (n) (<= 0 n #xffffffffffffffff))))))
       #t)
      (_ #f)))

  (compute-specializable-vars cps body preds defs exp-result-u64?
                              '(scm->u64 'scm->u64/truncate)))

(define (compute-phi-vars cps preds)
  (intmap-fold (lambda (label preds phis)
                 (match preds
                   (() phis)
                   ((_) phis)
                   (_
                    (match (intmap-ref cps label)
                      (($ $kargs names vars)
                       (fold1 (lambda (var phis)
                                (intset-add phis var))
                              vars phis))
                      (_ phis)))))
               preds empty-intset))

;; Compute the set of variables which have more than one definition,
;; whose definitions are always f64-valued or u64-valued, and which have
;; at least one use that is an unbox operation.
(define (compute-specializable-phis cps body preds defs)
  (let ((f64-vars (compute-specializable-f64-vars cps body preds defs))
        (u64-vars (compute-specializable-u64-vars cps body preds defs))
        (phi-vars (compute-phi-vars cps preds)))
    (unless (eq? empty-intset (intset-intersect f64-vars u64-vars))
      (error "expected f64 and u64 vars to be disjoint sets"))
    (intset-fold (lambda (var out) (intmap-add out var 'u64))
                 (intset-intersect u64-vars phi-vars)
                 (intset-fold (lambda (var out) (intmap-add out var 'f64))
                              (intset-intersect f64-vars phi-vars)
                              empty-intmap))))

;; Each definition of an f64/u64 variable should unbox that variable.
;; The cont that binds the variable should re-box it under its original
;; name, and rely on CSE to remove the boxing as appropriate.
(define (apply-specialization cps kfun body preds defs phis)
  (define (compute-unbox-labels)
    (intmap-fold (lambda (phi kind labels)
                   (fold1 (lambda (pred labels)
                            (intset-add labels pred))
                          (intmap-ref preds (intmap-ref defs phi))
                          labels))
                 phis empty-intset))
  (define (unbox-op var)
    (match (intmap-ref phis var)
      ('f64 'scm->f64)
      ('u64 'scm->u64)))
  (define (box-op var)
    (match (intmap-ref phis var)
      ('f64 'f64->scm)
      ('u64 'u64->scm)))
  (define (unbox-operands)
    (define (unbox-arg cps arg def-var have-arg)
      (if (intmap-ref phis def-var (lambda (_) #f))
          (with-cps cps
            (letv unboxed)
            (let$ body (have-arg unboxed))
            (letk kunboxed ($kargs ('unboxed) (unboxed) ,body))
            (build-term
              ($continue kunboxed #f ($primcall (unbox-op def-var) (arg)))))
          (have-arg cps arg)))
    (define (unbox-args cps args def-vars have-args)
      (match args
        (() (have-args cps '()))
        ((arg . args)
         (match def-vars
           ((def-var . def-vars)
            (unbox-arg cps arg def-var
                       (lambda (cps arg)
                         (unbox-args cps args def-vars
                                     (lambda (cps args)
                                       (have-args cps (cons arg args)))))))))))
    (intset-fold
     (lambda (label cps)
       (match (intmap-ref cps label)
         (($ $kargs names vars ($ $continue k src exp))
          (match (intmap-ref cps k)
            (($ $kargs _ defs)
             (match exp
               ;; For expressions that define a single value, we know we need
               ;; to unbox that value.  For $values though we might have to
               ;; unbox just a subset of values.
               (($ $values args)
                (with-cps cps
                  (let$ term (unbox-args
                              args defs
                              (lambda (cps args)
                                (with-cps cps
                                  (build-term
                                    ($continue k src ($values args)))))))
                  (setk label ($kargs names vars ,term))))
               (_
                (match defs
                  ((def)
                   (with-cps cps
                     (letv boxed)
                     (letk kunbox ($kargs ('boxed) (boxed)
                                    ($continue k src
                                      ($primcall (unbox-op def) (boxed)))))
                     (setk label ($kargs names vars
                                   ($continue kunbox src ,exp)))))))))))))
     (compute-unbox-labels)
     cps))
  (define (compute-box-labels)
    (intmap-fold (lambda (phi kind labels)
                   (intset-add labels (intmap-ref defs phi)))
                 phis empty-intset))
  (define (box-results cps)
    (intset-fold
     (lambda (label cps)
       (match (intmap-ref cps label)
         (($ $kargs names vars term)
          (let* ((boxed (fold1 (lambda (var boxed)
                                 (if (intmap-ref phis var (lambda (_) #f))
                                     (intmap-add boxed var (fresh-var))
                                     boxed))
                               vars empty-intmap))
                 (bound-vars (map (lambda (var)
                                    (intmap-ref boxed var (lambda (var) var)))
                                  vars)))
            (define (box-var cps name var done)
              (let ((unboxed (intmap-ref boxed var (lambda (_) #f))))
                (if unboxed
                    (with-cps cps
                      (let$ term (done))
                      (letk kboxed ($kargs (name) (var) ,term))
                      (build-term
                        ($continue kboxed #f
                          ($primcall (box-op var) (unboxed)))))
                    (done cps))))
            (define (box-vars cps names vars done)
              (match vars
                (() (done cps))
                ((var . vars)
                 (match names
                   ((name . names)
                    (box-var cps name var
                             (lambda (cps)
                               (box-vars cps names vars done))))))))
            (with-cps cps
              (let$ box-term (box-vars names vars
                                       (lambda (cps)
                                         (with-cps cps term))))
              (setk label ($kargs names bound-vars ,box-term)))))))
     (compute-box-labels)
     cps))
  (box-results (unbox-operands)))

(define (specialize-phis cps)
  (intmap-fold
   (lambda (kfun body cps)
     (let* ((preds (compute-predecessors cps kfun #:labels body))
            (defs (compute-defs cps body))
            (phis (compute-specializable-phis cps body preds defs)))
       (if (eq? phis empty-intmap)
           cps
           (apply-specialization cps kfun body preds defs phis))))
   (compute-reachable-functions cps)
   cps))

(define (specialize-numbers cps)
  ;; Type inference wants a renumbered graph; OK.
  (let ((cps (renumber cps)))
    (with-fresh-name-state cps
      (specialize-phis (specialize-operations cps)))))