summaryrefslogtreecommitdiff
path: root/module/language/elisp/compile-tree-il.scm
blob: 3830bffb2a6c0ac4292401b5d0d7b42bac9a524a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
;;; Guile Emacs Lisp

;;; Copyright (C) 2009, 2010 Free Software Foundation, Inc.
;;;
;;; This program is free software; you can redistribute it and/or modify
;;; it under the terms of the GNU General Public License as published by
;;; the Free Software Foundation; either version 3, or (at your option)
;;; any later version.
;;;
;;; This program is distributed in the hope that it will be useful, but
;;; WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;; General Public License for more details.
;;;
;;; You should have received a copy of the GNU General Public License
;;; along with this program; see the file COPYING. If not, write to the
;;; Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
;;; MA 02111-1307, USA.

;;; Code:

(define-module (language elisp compile-tree-il)
  #:use-module (language elisp bindings)
  #:use-module (language elisp runtime)
  #:use-module (language tree-il)
  #:use-module (system base pmatch)
  #:use-module (system base compile)
  #:use-module (srfi srfi-1)
  #:use-module (srfi srfi-8)
  #:use-module (srfi srfi-11)
  #:use-module (srfi srfi-26)
  #:export (compile-tree-il
            compile-progn
            compile-if
            compile-defconst
            compile-defvar
            compile-setq
            compile-let
            compile-lexical-let
            compile-flet
            compile-let*
            compile-lexical-let*
            compile-flet*
            compile-without-void-checks
            compile-with-always-lexical
            compile-guile-ref
            compile-guile-primitive
            compile-while
            compile-function
            compile-defmacro
            compile-defun
            #{compile-`}#
            compile-quote))

;;; Certain common parameters (like the bindings data structure or
;;; compiler options) are not always passed around but accessed using
;;; fluids to simulate dynamic binding (hey, this is about elisp).

;;; The bindings data structure to keep track of symbol binding related
;;; data.

(define bindings-data (make-fluid))

;;; Store for which symbols (or all/none) void checks are disabled.

(define disable-void-check (make-fluid))

;;; Store which symbols (or all/none) should always be bound lexically,
;;; even with ordinary let and as lambda arguments.

(define always-lexical (make-fluid))

;;; Find the source properties of some parsed expression if there are
;;; any associated with it.

(define (location x)
  (and (pair? x)
       (let ((props (source-properties x)))
         (and (not (null? props))
              props))))

;;; Values to use for Elisp's nil and t.

(define (nil-value loc)
  (make-const loc (@ (language elisp runtime) nil-value)))

(define (t-value loc)
  (make-const loc (@ (language elisp runtime) t-value)))

;;; Modules that contain the value and function slot bindings.

(define runtime '(language elisp runtime))

(define value-slot (@ (language elisp runtime) value-slot-module))

(define function-slot (@ (language elisp runtime) function-slot-module))

;;; The backquoting works the same as quasiquotes in Scheme, but the
;;; forms are named differently; to make easy adaptions, we define these
;;; predicates checking for a symbol being the car of an
;;; unquote/unquote-splicing/backquote form.

(define (unquote? sym)
  (and (symbol? sym) (eq? sym '#{,}#)))

(define (unquote-splicing? sym)
  (and (symbol? sym) (eq? sym '#{,@}#)))

;;; Build a call to a primitive procedure nicely.

(define (call-primitive loc sym . args)
  (make-application loc (make-primitive-ref loc sym) args))

;;; Error reporting routine for syntax/compilation problems or build
;;; code for a runtime-error output.

(define (report-error loc . args)
  (apply error args))

(define (runtime-error loc msg . args)
  (make-application loc
                    (make-primitive-ref loc 'error)
                    (cons (make-const loc msg) args)))

;;; Generate code to ensure a global symbol is there for further use of
;;; a given symbol. In general during the compilation, those needed are
;;; only tracked with the bindings data structure. Afterwards, however,
;;; for all those needed symbols the globals are really generated with
;;; this routine.

(define (generate-ensure-global loc sym module)
  (make-application loc
                    (make-module-ref loc runtime 'ensure-fluid! #t)
                    (list (make-const loc module)
                          (make-const loc sym))))

(define (ensuring-globals loc bindings body)
  (make-sequence
   loc
   `(,@(map-globals-needed (fluid-ref bindings)
                           (lambda (mod sym)
                             (generate-ensure-global loc sym mod)))
     ,body)))

;;; Build a construct that establishes dynamic bindings for certain
;;; variables. We may want to choose between binding with fluids and
;;; with-fluids* and using just ordinary module symbols and
;;; setting/reverting their values with a dynamic-wind.

(define (let-dynamic loc syms module vals body)
  (call-primitive
   loc
   'with-fluids*
   (make-application loc
                     (make-primitive-ref loc 'list)
                     (map (lambda (sym)
                            (make-module-ref loc module sym #t))
                          syms))
   (make-application loc (make-primitive-ref loc 'list) vals)
   (make-lambda loc
                '()
                (make-lambda-case #f '() #f #f #f '() '() body #f))))

;;; Handle access to a variable (reference/setting) correctly depending
;;; on whether it is currently lexically or dynamically bound. lexical
;;; access is done only for references to the value-slot module!

(define (access-variable loc sym module handle-lexical handle-dynamic)
  (let ((lexical (get-lexical-binding (fluid-ref bindings-data) sym)))
    (if (and lexical (equal? module value-slot))
        (handle-lexical lexical)
        (handle-dynamic))))

;;; Generate code to reference a variable. For references in the
;;; value-slot module, we may want to generate a lexical reference
;;; instead if the variable has a lexical binding.

(define (reference-variable loc sym module)
  (access-variable
   loc
   sym
   module
   (lambda (lexical) (make-lexical-ref loc lexical lexical))
   (lambda ()
     (mark-global-needed! (fluid-ref bindings-data) sym module)
     (call-primitive loc
                     'fluid-ref
                     (make-module-ref loc module sym #t)))))

;;; Generate code to set a variable. Just as with reference-variable, in
;;; case of a reference to value-slot, we want to generate a lexical set
;;; when the variable has a lexical binding.

(define (set-variable! loc sym module value)
  (access-variable
   loc
   sym
   module
   (lambda (lexical) (make-lexical-set loc lexical lexical value))
   (lambda ()
     (mark-global-needed! (fluid-ref bindings-data) sym module)
     (call-primitive loc
                     'fluid-set!
                     (make-module-ref loc module sym #t)
                     value))))

;;; Process the bindings part of a let or let* expression; that is,
;;; check for correctness and bring it to the form ((sym1 . val1) (sym2
;;; . val2) ...).

(define (process-let-bindings loc bindings)
  (map
   (lambda (b)
     (if (symbol? b)
         (cons b 'nil)
         (if (or (not (list? b))
                 (not (= (length b) 2)))
             (report-error
              loc
              "expected symbol or list of 2 elements in let")
             (if (not (symbol? (car b)))
                 (report-error loc "expected symbol in let")
                 (cons (car b) (cadr b))))))
   bindings))

;;; Split the let bindings into a list to be done lexically and one
;;; dynamically. A symbol will be bound lexically if and only if: We're
;;; processing a lexical-let (i.e. module is 'lexical), OR we're
;;; processing a value-slot binding AND the symbol is already lexically
;;; bound or it is always lexical.

(define (bind-lexically? sym module)
  (or (eq? module 'lexical)
      (and (equal? module value-slot)
           (let ((always (fluid-ref always-lexical)))
             (or (eq? always 'all)
                 (memq sym always)
                 (get-lexical-binding (fluid-ref bindings-data) sym))))))

(define (split-let-bindings bindings module)
  (let iterate ((tail bindings)
                (lexical '())
                (dynamic '()))
    (if (null? tail)
        (values (reverse lexical) (reverse dynamic))
        (if (bind-lexically? (caar tail) module)
            (iterate (cdr tail) (cons (car tail) lexical) dynamic)
            (iterate (cdr tail) lexical (cons (car tail) dynamic))))))

;;; Compile let and let* expressions. The code here is used both for
;;; let/let* and flet/flet*, just with a different bindings module.
;;;
;;; A special module value 'lexical means that we're doing a lexical-let
;;; instead and the bindings should not be saved to globals at all but
;;; be done with the lexical framework instead.

;;; Let is done with a single call to let-dynamic binding them locally
;;; to new values all "at once". If there is at least one variable to
;;; bind lexically among the bindings, we first do a let for all of them
;;; to evaluate all values before any bindings take place, and then call
;;; let-dynamic for the variables to bind dynamically.

(define (generate-let loc module bindings body)
  (let ((bind (process-let-bindings loc bindings)))
    (call-with-values
        (lambda () (split-let-bindings bind module))
      (lambda (lexical dynamic)
        (for-each (lambda (sym)
                    (mark-global-needed! (fluid-ref bindings-data)
                                         sym
                                         module))
                  (map car dynamic))
        (let ((make-values (lambda (for)
                             (map (lambda (el) (compile-expr (cdr el)))
                                  for)))
              (make-body (lambda ()
                           (make-sequence loc (map compile-expr body)))))
          (if (null? lexical)
              (let-dynamic loc (map car dynamic) module
                           (make-values dynamic) (make-body))
              (let* ((lexical-syms (map (lambda (el) (gensym)) lexical))
                     (dynamic-syms (map (lambda (el) (gensym)) dynamic))
                     (all-syms (append lexical-syms dynamic-syms))
                     (vals (append (make-values lexical)
                                   (make-values dynamic))))
                (make-let loc
                          all-syms
                          all-syms
                          vals
                          (with-lexical-bindings
                           (fluid-ref bindings-data)
                           (map car lexical) lexical-syms
                           (lambda ()
                             (if (null? dynamic)
                                 (make-body)
                                 (let-dynamic loc
                                              (map car dynamic)
                                              module
                                              (map
                                               (lambda (sym)
                                                 (make-lexical-ref loc
                                                                   sym
                                                                   sym))
                                               dynamic-syms)
                                              (make-body)))))))))))))

;;; Let* is compiled to a cascaded set of "small lets" for each binding
;;; in turn so that each one already sees the preceding bindings.

(define (generate-let* loc module bindings body)
  (let ((bind (process-let-bindings loc bindings)))
    (begin
      (for-each (lambda (sym)
                  (if (not (bind-lexically? sym module))
                      (mark-global-needed! (fluid-ref bindings-data)
                                           sym
                                           module)))
                (map car bind))
      (let iterate ((tail bind))
        (if (null? tail)
            (make-sequence loc (map compile-expr body))
            (let ((sym (caar tail))
                  (value (compile-expr (cdar tail))))
              (if (bind-lexically? sym module)
                  (let ((target (gensym)))
                    (make-let loc
                              `(,target)
                              `(,target)
                              `(,value)
                              (with-lexical-bindings
                               (fluid-ref bindings-data)
                               `(,sym)
                               `(,target)
                               (lambda () (iterate (cdr tail))))))
                  (let-dynamic loc
                               `(,(caar tail))
                               module
                               `(,value)
                               (iterate (cdr tail))))))))))

;;; Split the argument list of a lambda expression into required,
;;; optional and rest arguments and also check it is actually valid.
;;; Additionally, we create a list of all "local variables" (that is,
;;; required, optional and rest arguments together) and also this one
;;; split into those to be bound lexically and dynamically. Returned is
;;; as multiple values: required optional rest lexical dynamic

(define (bind-arg-lexical? arg)
  (let ((always (fluid-ref always-lexical)))
    (or (eq? always 'all)
        (memq arg always))))

(define (split-lambda-arguments loc args)
  (let iterate ((tail args)
                (mode 'required)
                (required '())
                (optional '())
                (lexical '())
                (dynamic '()))
    (cond
     ((null? tail)
      (let ((final-required (reverse required))
            (final-optional (reverse optional))
            (final-lexical (reverse lexical))
            (final-dynamic (reverse dynamic)))
        (values final-required
                final-optional
                #f
                final-lexical
                final-dynamic)))
     ((and (eq? mode 'required)
           (eq? (car tail) '&optional))
      (iterate (cdr tail) 'optional required optional lexical dynamic))
     ((eq? (car tail) '&rest)
      (if (or (null? (cdr tail))
              (not (null? (cddr tail))))
          (report-error loc "expected exactly one symbol after &rest")
          (let* ((rest (cadr tail))
                 (rest-lexical (bind-arg-lexical? rest))
                 (final-required (reverse required))
                 (final-optional (reverse optional))
                 (final-lexical (reverse (if rest-lexical
                                             (cons rest lexical)
                                             lexical)))
                 (final-dynamic (reverse (if rest-lexical
                                             dynamic
                                             (cons rest dynamic)))))
            (values final-required
                    final-optional
                    rest
                    final-lexical
                    final-dynamic))))
     (else
      (if (not (symbol? (car tail)))
          (report-error loc
                        "expected symbol in argument list, got"
                        (car tail))
          (let* ((arg (car tail))
                 (bind-lexical (bind-arg-lexical? arg))
                 (new-lexical (if bind-lexical
                                  (cons arg lexical)
                                  lexical))
                 (new-dynamic (if bind-lexical
                                  dynamic
                                  (cons arg dynamic))))
            (case mode
              ((required) (iterate (cdr tail) mode
                                   (cons arg required) optional
                                   new-lexical new-dynamic))
              ((optional) (iterate (cdr tail) mode
                                   required (cons arg optional)
                                   new-lexical new-dynamic))
              (else
               (error "invalid mode in split-lambda-arguments"
                      mode)))))))))

;;; Compile a lambda expression. One thing we have to be aware of is
;;; that lambda arguments are usually dynamically bound, even when a
;;; lexical binding is intact for a symbol. For symbols that are marked
;;; as 'always lexical,' however, we lexically bind here as well, and
;;; thus we get them out of the let-dynamic call and register a lexical
;;; binding for them (the lexical target variable is already there,
;;; namely the real lambda argument from TreeIL).

(define (compile-lambda loc args body)
  (if (not (list? args))
      (report-error loc "expected list for argument-list" args))
  (if (null? body)
      (report-error loc "function body must not be empty"))
  (receive (required optional rest lexical dynamic)
           (split-lambda-arguments loc args)
    (define (process-args args)
      (define (find-pairs pairs filter)
        (lset-intersection (lambda (name+sym x)
                             (eq? (car name+sym) x))
                           pairs
                           filter))
      (let* ((syms (map (lambda (x) (gensym)) args))
             (pairs (map cons args syms))
             (lexical-pairs (find-pairs pairs lexical))
             (dynamic-pairs (find-pairs pairs dynamic)))
        (values syms pairs lexical-pairs dynamic-pairs)))
    (let*-values (((required-syms
                    required-pairs
                    required-lex-pairs
                    required-dyn-pairs)
                   (process-args required))
                  ((optional-syms
                    optional-pairs
                    optional-lex-pairs
                    optional-dyn-pairs)
                   (process-args optional))
                  ((rest-syms rest-pairs rest-lex-pairs rest-dyn-pairs)
                   (process-args (if rest (list rest) '())))
                  ((the-rest-sym) (if rest (car rest-syms) #f))
                  ((all-syms) (append required-syms
                                      optional-syms
                                      rest-syms))
                  ((all-lex-pairs) (append required-lex-pairs
                                           optional-lex-pairs
                                           rest-lex-pairs))
                  ((all-dyn-pairs) (append required-dyn-pairs
                                           optional-dyn-pairs
                                           rest-dyn-pairs)))
      (for-each (lambda (sym)
                  (mark-global-needed! (fluid-ref bindings-data)
                                       sym
                                       value-slot))
                dynamic)
      (with-dynamic-bindings
       (fluid-ref bindings-data)
       dynamic
       (lambda ()
         (with-lexical-bindings
          (fluid-ref bindings-data)
          (map car all-lex-pairs)
          (map cdr all-lex-pairs)
          (lambda ()
            (make-lambda
             loc
             '()
             (make-lambda-case
              #f
              required
              optional
              rest
              #f
              (map (lambda (x) (nil-value loc)) optional)
              all-syms
              (let ((compiled-body
                     (make-sequence loc (map compile-expr body))))
                (make-sequence
                 loc
                 (list
                  (if rest
                      (make-conditional
                       loc
                       (call-primitive loc
                                       'null?
                                       (make-lexical-ref loc
                                                         rest
                                                         the-rest-sym))
                       (make-lexical-set loc
                                         rest
                                         the-rest-sym
                                         (nil-value loc))
                       (make-void loc))
                      (make-void loc))
                  (if (null? dynamic)
                      compiled-body
                      (let-dynamic loc
                                   dynamic
                                   value-slot
                                   (map (lambda (name-sym)
                                          (make-lexical-ref
                                           loc
                                           (car name-sym)
                                           (cdr name-sym)))
                                        all-dyn-pairs)
                                   compiled-body)))))
              #f)))))))))

;;; Handle the common part of defconst and defvar, that is, checking for
;;; a correct doc string and arguments as well as maybe in the future
;;; handling the docstring somehow.

(define (handle-var-def loc sym doc)
  (cond
   ((not (symbol? sym)) (report-error loc "expected symbol, got" sym))
   ((> (length doc) 1) (report-error loc "too many arguments to defvar"))
   ((and (not (null? doc)) (not (string? (car doc))))
    (report-error loc "expected string as third argument of defvar, got"
                  (car doc)))
   ;; TODO: Handle doc string if present.
   (else #t)))

;;; Handle macro and special operator bindings.

(define (find-operator sym type)
  (and
   (symbol? sym)
   (module-defined? (resolve-interface function-slot) sym)
   (let* ((op (module-ref (resolve-module function-slot) sym))
          (op (if (fluid? op) (fluid-ref op) op)))
     (if (and (pair? op) (eq? (car op) type))
         (cdr op)
         #f))))

;;; See if a (backquoted) expression contains any unquotes.

(define (contains-unquotes? expr)
  (if (pair? expr)
      (if (or (unquote? (car expr)) (unquote-splicing? (car expr)))
          #t
          (or (contains-unquotes? (car expr))
              (contains-unquotes? (cdr expr))))
      #f))

;;; Process a backquoted expression by building up the needed
;;; cons/append calls. For splicing, it is assumed that the expression
;;; spliced in evaluates to a list. The emacs manual does not really
;;; state either it has to or what to do if it does not, but Scheme
;;; explicitly forbids it and this seems reasonable also for elisp.

(define (unquote-cell? expr)
  (and (list? expr) (= (length expr) 2) (unquote? (car expr))))

(define (unquote-splicing-cell? expr)
  (and (list? expr) (= (length expr) 2) (unquote-splicing? (car expr))))

(define (process-backquote loc expr)
  (if (contains-unquotes? expr)
      (if (pair? expr)
          (if (or (unquote-cell? expr) (unquote-splicing-cell? expr))
              (compile-expr (cadr expr))
              (let* ((head (car expr))
                     (processed-tail (process-backquote loc (cdr expr)))
                     (head-is-list-2 (and (list? head)
                                          (= (length head) 2)))
                     (head-unquote (and head-is-list-2
                                        (unquote? (car head))))
                     (head-unquote-splicing (and head-is-list-2
                                                 (unquote-splicing?
                                                  (car head)))))
                (if head-unquote-splicing
                    (call-primitive loc
                                    'append
                                    (compile-expr (cadr head))
                                    processed-tail)
                    (call-primitive loc 'cons
                                    (if head-unquote
                                        (compile-expr (cadr head))
                                        (process-backquote loc head))
                                    processed-tail))))
          (report-error loc
                        "non-pair expression contains unquotes"
                        expr))
      (make-const loc expr)))

;;; Temporarily update a list of symbols that are handled specially
;;; (disabled void check or always lexical) for compiling body. We need
;;; to handle special cases for already all / set to all and the like.

(define (with-added-symbols loc fluid syms body)
  (if (null? body)
      (report-error loc "symbol-list construct has empty body"))
  (if (not (or (eq? syms 'all)
               (and (list? syms) (and-map symbol? syms))))
      (report-error loc "invalid symbol list" syms))
  (let ((old (fluid-ref fluid))
        (make-body (lambda ()
                     (make-sequence loc (map compile-expr body)))))
    (if (eq? old 'all)
        (make-body)
        (let ((new (if (eq? syms 'all)
                       'all
                       (append syms old))))
          (with-fluids ((fluid new))
            (make-body))))))

;;; Special operators

(defspecial progn (loc args)
  (make-sequence loc (map compile-expr args)))

(defspecial if (loc args)
  (pmatch args
    ((,cond ,then . ,else)
     (make-conditional loc
                       (compile-expr cond)
                       (compile-expr then)
                       (if (null? else)
                           (nil-value loc)
                           (make-sequence loc
                                          (map compile-expr else)))))))

(defspecial defconst (loc args)
  (pmatch args
    ((,sym ,value . ,doc)
     (if (handle-var-def loc sym doc)
         (make-sequence loc
                        (list (set-variable! loc
                                             sym
                                             value-slot
                                             (compile-expr value))
                              (make-const loc sym)))))))

(defspecial defvar (loc args)
  (pmatch args
    ((,sym) (make-const loc sym))
    ((,sym ,value . ,doc)
     (if (handle-var-def loc sym doc)
         (make-sequence
          loc
          (list
           (make-conditional
            loc
            (make-conditional
             loc
             (call-primitive
              loc
              'module-bound?
              (call-primitive loc
                              'resolve-interface
                              (make-const loc value-slot))
              (make-const loc sym))
             (call-primitive loc
                             'fluid-bound?
                             (make-module-ref loc value-slot sym #t))
             (make-const loc #f))
            (make-void loc)
            (set-variable! loc sym value-slot (compile-expr value)))
           (make-const loc sym)))))))

(defspecial setq (loc args)
  (define (car* x) (if (null? x) '() (car x)))
  (define (cdr* x) (if (null? x) '() (cdr x)))
  (define (cadr* x) (car* (cdr* x)))
  (define (cddr* x) (cdr* (cdr* x)))
  (make-sequence
   loc
   (let loop ((args args) (last (nil-value loc)))
     (if (null? args)
         (list last)
         (let ((sym (car args))
               (val (compile-expr (cadr* args))))
           (if (not (symbol? sym))
               (report-error loc "expected symbol in setq")
               (cons
                (set-variable! loc sym value-slot val)
                (loop (cddr* args)
                      (reference-variable loc sym value-slot)))))))))
  
(defspecial let (loc args)
  (pmatch args
    ((,bindings . ,body)
     (generate-let loc value-slot bindings body))))

(defspecial lexical-let (loc args)
  (pmatch args
    ((,bindings . ,body)
     (generate-let loc 'lexical bindings body))))

(defspecial flet (loc args)
  (pmatch args
    ((,bindings . ,body)
     (generate-let loc function-slot bindings body))))

(defspecial let* (loc args)
  (pmatch args
    ((,bindings . ,body)
     (generate-let* loc value-slot bindings body))))

(defspecial lexical-let* (loc args)
  (pmatch args
    ((,bindings . ,body)
     (generate-let* loc 'lexical bindings body))))

(defspecial flet* (loc args)
  (pmatch args
    ((,bindings . ,body)
     (generate-let* loc function-slot bindings body))))

;;; Temporarily set symbols as always lexical only for the lexical scope
;;; of a construct.

(defspecial with-always-lexical (loc args)
  (pmatch args
    ((,syms . ,body)
     (with-added-symbols loc always-lexical syms body))))

;;; guile-ref allows building TreeIL's module references from within
;;; elisp as a way to access data within the Guile universe. The module
;;; and symbol referenced are static values, just like (@ module symbol)
;;; does!

(defspecial guile-ref (loc args)
  (pmatch args
    ((,module ,sym) (guard (and (list? module) (symbol? sym)))
     (make-module-ref loc module sym #t))))

;;; guile-primitive allows to create primitive references, which are
;;; still a little faster.

(defspecial guile-primitive (loc args)
  (pmatch args
    ((,sym)
     (make-primitive-ref loc sym))))

;;; A while construct is transformed into a tail-recursive loop like
;;; this:
;;;
;;; (letrec ((iterate (lambda ()
;;;                     (if condition
;;;                       (begin body
;;;                              (iterate))
;;;                       #nil))))
;;;   (iterate))
;;;
;;; As letrec is not directly accessible from elisp, while is
;;; implemented here instead of with a macro.

(defspecial while (loc args)
  (pmatch args
    ((,condition . ,body)
     (let* ((itersym (gensym))
            (compiled-body (map compile-expr body))
            (iter-call (make-application loc
                                         (make-lexical-ref loc
                                                           'iterate
                                                           itersym)
                                         (list)))
            (full-body (make-sequence loc
                                      `(,@compiled-body ,iter-call)))
            (lambda-body (make-conditional loc
                                           (compile-expr condition)
                                           full-body
                                           (nil-value loc)))
            (iter-thunk (make-lambda loc
                                     '()
                                     (make-lambda-case #f
                                                       '()
                                                       #f
                                                       #f
                                                       #f
                                                       '()
                                                       '()
                                                       lambda-body
                                                       #f))))
       (make-letrec loc
                    #f
                    '(iterate)
                    (list itersym)
                    (list iter-thunk)
                    iter-call)))))

(defspecial function (loc args)
  (pmatch args
    (((lambda ,args . ,body))
     (compile-lambda loc args body))
    ((,sym) (guard (symbol? sym))
     (reference-variable loc sym function-slot))))

(defspecial defmacro (loc args)
  (pmatch args
    ((,name ,args . ,body)
     (if (not (symbol? name))
         (report-error loc "expected symbol as macro name" name)
         (let* ((tree-il
                 (make-sequence
                  loc
                  (list
                   (set-variable!
                    loc
                    name
                    function-slot
                    (make-application
                     loc
                     (make-module-ref loc '(guile) 'cons #t)
                     (list (make-const loc 'macro)
                           (compile-lambda loc args body))))
                   (make-const loc name)))))
           (compile (ensuring-globals loc bindings-data tree-il)
                    #:from 'tree-il
                    #:to 'value)
           tree-il)))))

(defspecial defun (loc args)
  (pmatch args
    ((,name ,args . ,body)
     (if (not (symbol? name))
         (report-error loc "expected symbol as function name" name)
         (make-sequence loc
                        (list (set-variable! loc
                                             name
                                             function-slot
                                             (compile-lambda loc
                                                             args
                                                             body))
                              (make-const loc name)))))))

(defspecial #{`}# (loc args)
  (pmatch args
    ((,val)
     (process-backquote loc val))))

(defspecial quote (loc args)
  (pmatch args
    ((,val)
     (make-const loc val))))

;;; Compile a compound expression to Tree-IL.

(define (compile-pair loc expr)
  (let ((operator (car expr))
        (arguments (cdr expr)))
    (cond
     ((find-operator operator 'special-operator)
      => (lambda (special-operator-function)
           (special-operator-function loc arguments)))
     ((find-operator operator 'macro)
      => (lambda (macro-function)
           (compile-expr (apply macro-function arguments))))
     (else
      (make-application loc
                        (if (symbol? operator)
                            (reference-variable loc
                                                operator
                                                function-slot)
                            (compile-expr operator))
                        (map compile-expr arguments))))))

;;; Compile a symbol expression. This is a variable reference or maybe
;;; some special value like nil.

(define (compile-symbol loc sym)
  (case sym
    ((nil) (nil-value loc))
    ((t) (t-value loc))
    (else (reference-variable loc sym value-slot))))

;;; Compile a single expression to TreeIL.

(define (compile-expr expr)
  (let ((loc (location expr)))
    (cond
     ((symbol? expr)
      (compile-symbol loc expr))
     ((pair? expr)
      (compile-pair loc expr))
     (else (make-const loc expr)))))

;;; Process the compiler options. FIXME: Why is '(()) passed as options
;;; by the REPL?

(define (valid-symbol-list-arg? value)
  (or (eq? value 'all)
      (and (list? value) (and-map symbol? value))))

(define (process-options! opt)
  (if (and (not (null? opt))
           (not (equal? opt '(()))))
      (if (null? (cdr opt))
          (report-error #f "Invalid compiler options" opt)
          (let ((key (car opt))
                (value (cadr opt)))
            (case key
              ((#:warnings)             ; ignore
               #f)
              ((#:always-lexical)
               (if (valid-symbol-list-arg? value)
                   (fluid-set! always-lexical value)
                   (report-error #f
                                 "Invalid value for #:always-lexical"
                                 value)))
              (else (report-error #f
                                  "Invalid compiler option"
                                  key)))))))

;;; Entry point for compilation to TreeIL. This creates the bindings
;;; data structure, and after compiling the main expression we need to
;;; make sure all globals for symbols used during the compilation are
;;; created using the generate-ensure-global function.

(define (compile-tree-il expr env opts)
  (values
   (with-fluids ((bindings-data (make-bindings))
                 (disable-void-check '())
                 (always-lexical '()))
     (process-options! opts)
     (let ((compiled (compile-expr expr)))
      (ensuring-globals (location expr) bindings-data compiled)))
   env
   env))