summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAlexis King <lexi.lambda@gmail.com>2022-04-27 14:40:55 -0500
committerMarge Bot <ben+marge-bot@smart-cactus.org>2022-05-04 09:58:14 -0400
commit063d485ebfb366165140465b8901d1666e642cd6 (patch)
tree1d45ab62780ac37a07ab160ee53020bbc798883b
parent85bc73bd8fab17ad80f925b45e8b4b059278ba6c (diff)
downloadhaskell-063d485ebfb366165140465b8901d1666e642cd6.tar.gz
genprimopcode: Replace LaTeX documentation syntax with Haddock
The LaTeX documentation generator does not seem to have been used for quite some time, so the LaTeX-to-Haddock preprocessing step has become a pointless complication that makes documenting the contents of GHC.Prim needlessly difficult. This commit replaces the LaTeX syntax with the Haddock it would have been converted into, anyway, though with an additional distinction: it uses single quotes in places to instruct Haddock to generate hyperlinks to bindings. This improves the quality of the generated output.
-rw-r--r--compiler/GHC/Builtin/bytearray-ops.txt.pp12
-rw-r--r--compiler/GHC/Builtin/primops.txt.pp463
-rw-r--r--utils/genprimopcode/Main.hs206
-rw-r--r--utils/genprimopcode/gen_bytearray_ops.py3
4 files changed, 240 insertions, 444 deletions
diff --git a/compiler/GHC/Builtin/bytearray-ops.txt.pp b/compiler/GHC/Builtin/bytearray-ops.txt.pp
index 01652d7216..f68695d187 100644
--- a/compiler/GHC/Builtin/bytearray-ops.txt.pp
+++ b/compiler/GHC/Builtin/bytearray-ops.txt.pp
@@ -51,7 +51,7 @@ primop IndexByteArrayOp_Double "indexDoubleArray#" GenPrimOp
primop IndexByteArrayOp_StablePtr "indexStablePtrArray#" GenPrimOp
ByteArray# -> Int# -> StablePtr# a
- {Read a {\tt StablePtr#} value; offset in machine words.}
+ {Read a 'StablePtr#' value; offset in machine words.}
with can_fail = True
primop IndexByteArrayOp_Int8 "indexInt8Array#" GenPrimOp
@@ -136,7 +136,7 @@ primop IndexByteArrayOp_Word8AsDouble "indexWord8ArrayAsDouble#" GenPrimOp
primop IndexByteArrayOp_Word8AsStablePtr "indexWord8ArrayAsStablePtr#" GenPrimOp
ByteArray# -> Int# -> StablePtr# a
- {Read a {\tt StablePtr#} value; offset in bytes.}
+ {Read a 'StablePtr#' value; offset in bytes.}
with can_fail = True
primop IndexByteArrayOp_Word8AsInt16 "indexWord8ArrayAsInt16#" GenPrimOp
@@ -218,7 +218,7 @@ primop ReadByteArrayOp_Double "readDoubleArray#" GenPrimOp
primop ReadByteArrayOp_StablePtr "readStablePtrArray#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, StablePtr# a #)
- {Read a {\tt StablePtr#} value; offset in machine words.}
+ {Read a 'StablePtr#' value; offset in machine words.}
with has_side_effects = True
can_fail = True
@@ -319,7 +319,7 @@ primop ReadByteArrayOp_Word8AsDouble "readWord8ArrayAsDouble#" GenPrimOp
primop ReadByteArrayOp_Word8AsStablePtr "readWord8ArrayAsStablePtr#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s, StablePtr# a #)
- {Read a {\tt StablePtr#} value; offset in bytes.}
+ {Read a 'StablePtr#' value; offset in bytes.}
with has_side_effects = True
can_fail = True
@@ -408,7 +408,7 @@ primop WriteByteArrayOp_Double "writeDoubleArray#" GenPrimOp
primop WriteByteArrayOp_StablePtr "writeStablePtrArray#" GenPrimOp
MutableByteArray# s -> Int# -> StablePtr# a -> State# s -> State# s
- {Write a {\tt StablePtr#} value; offset in machine words.}
+ {Write a 'StablePtr#' value; offset in machine words.}
with has_side_effects = True
can_fail = True
@@ -509,7 +509,7 @@ primop WriteByteArrayOp_Word8AsDouble "writeWord8ArrayAsDouble#" GenPrimOp
primop WriteByteArrayOp_Word8AsStablePtr "writeWord8ArrayAsStablePtr#" GenPrimOp
MutableByteArray# s -> Int# -> StablePtr# a -> State# s -> State# s
- {Write a {\tt StablePtr#} value; offset in bytes.}
+ {Write a 'StablePtr#' value; offset in bytes.}
with has_side_effects = True
can_fail = True
diff --git a/compiler/GHC/Builtin/primops.txt.pp b/compiler/GHC/Builtin/primops.txt.pp
index 1e838880a4..964b8e6d8e 100644
--- a/compiler/GHC/Builtin/primops.txt.pp
+++ b/compiler/GHC/Builtin/primops.txt.pp
@@ -98,14 +98,14 @@
-- This file is divided into named sections, each containing or more
-- primop entries. Section headers have the format:
--
--- section "section-name" {description}
+-- section "section-name" {haddock-description}
--
-- This information is used solely when producing documentation; it is
--- otherwise ignored. The description is optional.
+-- otherwise ignored. The haddock-description is optional.
--
-- The format of each primop entry is as follows:
--
--- primop internal-name "name-in-program-text" category type {description} attributes
+-- primop internal-name "name-in-program-text" category type {haddock-description} attributes
-- The default attribute values which apply if you don't specify
-- other ones. Attribute values can be True, False, or arbitrary
@@ -181,10 +181,6 @@ defaults
-- prim` can be moved to a small library tailured to the features being
-- implemented and dependencies of those features.
--- Currently, documentation is produced using latex, so contents of
--- description fields should be legal latex. Descriptions can contain
--- matched pairs of embedded curly brackets.
-
-- Note [Levity and representation polymorphic primops]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- In the types of primops in this module,
@@ -221,17 +217,16 @@ defaults
-- nor `b` and `p`, nor `o` and `v`, etc.
section "The word size story."
- {Haskell98 specifies that signed integers (type {\tt Int})
- must contain at least 30 bits. GHC always implements {\tt
- Int} using the primitive type {\tt Int\#}, whose size equals
- the {\tt MachDeps.h} constant {\tt WORD\_SIZE\_IN\_BITS}.
- This is normally set based on the {\tt config.h} parameter
- {\tt SIZEOF\_HSWORD}, i.e., 32 bits on 32-bit machines, 64
+ {Haskell98 specifies that signed integers (type 'Int')
+ must contain at least 30 bits. GHC always implements
+ 'Int' using the primitive type 'Int#', whose size equals
+ the @MachDeps.h@ constant @WORD\_SIZE\_IN\_BITS@.
+ This is normally set based on the @config.h@ parameter
+ @SIZEOF\_HSWORD@, i.e., 32 bits on 32-bit machines, 64
bits on 64-bit machines.
- GHC also implements a primitive unsigned integer type {\tt
- Word\#} which always has the same number of bits as {\tt
- Int\#}.
+ GHC also implements a primitive unsigned integer type
+ 'Word#' which always has the same number of bits as 'Int#'.
In addition, GHC supports families of explicit-sized integers
and words at 8, 16, 32, and 64 bits, with the usual
@@ -239,11 +234,11 @@ section "The word size story."
conversions.
Finally, there are strongly deprecated primops for coercing
- between {\tt Addr\#}, the primitive type of machine
- addresses, and {\tt Int\#}. These are pretty bogus anyway,
+ between 'Addr#', the primitive type of machine
+ addresses, and 'Int#'. These are pretty bogus anyway,
but will work on existing 32-bit and 64-bit GHC targets; they
- are completely bogus when tag bits are used in {\tt Int\#},
- so are not available in this case. }
+ are completely bogus when tag bits are used in 'Int#',
+ so are not available in this case.}
------------------------------------------------------------------------
section "Char#"
@@ -725,7 +720,7 @@ primop IntMulMayOfloOp "mulIntMayOflo#"
If in doubt, return non-zero, but do make an effort to create the
correct answer for small args, since otherwise the performance of
- \texttt{(*) :: Integer -> Integer -> Integer} will be poor.
+ @(*) :: Integer -> Integer -> Integer@ will be poor.
}
with commutable = True
@@ -738,7 +733,7 @@ primop IntQuotOp "quotInt#" GenPrimOp
primop IntRemOp "remInt#" GenPrimOp
Int# -> Int# -> Int#
- {Satisfies \texttt{(quotInt\# x y) *\# y +\# (remInt\# x y) == x}. The
+ {Satisfies @('quotInt#' x y) '*#' y '+#' ('remInt#' x y) == x@. The
behavior is undefined if the second argument is zero.
}
with can_fail = True
@@ -765,25 +760,25 @@ primop IntNotOp "notI#" GenPrimOp Int# -> Int#
primop IntNegOp "negateInt#" GenPrimOp Int# -> Int#
{Unary negation.
- Since the negative {\tt Int#} range extends one further than the
- positive range, {\tt negateInt#} of the most negative number is an
- identity operation. This way, {\tt negateInt#} is always its own inverse.}
+ Since the negative 'Int#' range extends one further than the
+ positive range, 'negateInt#' of the most negative number is an
+ identity operation. This way, 'negateInt#' is always its own inverse.}
primop IntAddCOp "addIntC#" GenPrimOp Int# -> Int# -> (# Int#, Int# #)
{Add signed integers reporting overflow.
- First member of result is the sum truncated to an {\tt Int#};
- second member is zero if the true sum fits in an {\tt Int#},
+ First member of result is the sum truncated to an 'Int#';
+ second member is zero if the true sum fits in an 'Int#',
nonzero if overflow occurred (the sum is either too large
- or too small to fit in an {\tt Int#}).}
+ or too small to fit in an 'Int#').}
with code_size = 2
commutable = True
primop IntSubCOp "subIntC#" GenPrimOp Int# -> Int# -> (# Int#, Int# #)
{Subtract signed integers reporting overflow.
- First member of result is the difference truncated to an {\tt Int#};
- second member is zero if the true difference fits in an {\tt Int#},
+ First member of result is the difference truncated to an 'Int#';
+ second member is zero if the true difference fits in an 'Int#',
nonzero if overflow occurred (the difference is either too large
- or too small to fit in an {\tt Int#}).}
+ or too small to fit in an 'Int#').}
with code_size = 2
primop IntGtOp ">#" Compare Int# -> Int# -> Int#
@@ -815,22 +810,22 @@ primop IntToWordOp "int2Word#" GenPrimOp Int# -> Word#
with code_size = 0
primop IntToFloatOp "int2Float#" GenPrimOp Int# -> Float#
- {Convert an {\tt Int#} to the corresponding {\tt Float#} with the same
+ {Convert an 'Int#' to the corresponding 'Float#' with the same
integral value (up to truncation due to floating-point precision). e.g.
- {\tt int2Float# 1# == 1.0#}}
+ @'int2Float#' 1# == 1.0#@}
primop IntToDoubleOp "int2Double#" GenPrimOp Int# -> Double#
- {Convert an {\tt Int#} to the corresponding {\tt Double#} with the same
+ {Convert an 'Int#' to the corresponding 'Double#' with the same
integral value (up to truncation due to floating-point precision). e.g.
- {\tt int2Double# 1# == 1.0##}}
+ @'int2Double#' 1# == 1.0##@}
primop WordToFloatOp "word2Float#" GenPrimOp Word# -> Float#
- {Convert an {\tt Word#} to the corresponding {\tt Float#} with the same
+ {Convert an 'Word#' to the corresponding 'Float#' with the same
integral value (up to truncation due to floating-point precision). e.g.
- {\tt word2Float# 1## == 1.0#}}
+ @'word2Float#' 1## == 1.0#@}
primop WordToDoubleOp "word2Double#" GenPrimOp Word# -> Double#
- {Convert an {\tt Word#} to the corresponding {\tt Double#} with the same
+ {Convert an 'Word#' to the corresponding 'Double#' with the same
integral value (up to truncation due to floating-point precision). e.g.
- {\tt word2Double# 1## == 1.0##}}
+ @'word2Double#' 1## == 1.0##@}
primop IntSllOp "uncheckedIShiftL#" GenPrimOp Int# -> Int# -> Int#
{Shift left. Result undefined if shift amount is not
@@ -855,7 +850,7 @@ primop WordAddOp "plusWord#" GenPrimOp Word# -> Word# -> Word#
primop WordAddCOp "addWordC#" GenPrimOp Word# -> Word# -> (# Word#, Int# #)
{Add unsigned integers reporting overflow.
The first element of the pair is the result. The second element is
- the carry flag, which is nonzero on overflow. See also {\tt plusWord2#}.}
+ the carry flag, which is nonzero on overflow. See also 'plusWord2#'.}
with code_size = 2
commutable = True
@@ -868,7 +863,7 @@ primop WordSubCOp "subWordC#" GenPrimOp Word# -> Word# -> (# Word#, Int#
primop WordAdd2Op "plusWord2#" GenPrimOp Word# -> Word# -> (# Word#, Word# #)
{Add unsigned integers, with the high part (carry) in the first
component of the returned pair and the low part in the second
- component of the pair. See also {\tt addWordC#}.}
+ component of the pair. See also 'addWordC#'.}
with code_size = 2
commutable = True
@@ -1065,9 +1060,9 @@ primop DoubleNegOp "negateDouble#" GenPrimOp Double# -> Double#
primop DoubleFabsOp "fabsDouble#" GenPrimOp Double# -> Double#
primop DoubleToIntOp "double2Int#" GenPrimOp Double# -> Int#
- {Truncates a {\tt Double#} value to the nearest {\tt Int#}.
+ {Truncates a 'Double#' value to the nearest 'Int#'.
Results are undefined if the truncation if truncation yields
- a value outside the range of {\tt Int#}.}
+ a value outside the range of 'Int#'.}
primop DoubleToFloatOp "double2Float#" GenPrimOp Double# -> Float#
@@ -1176,7 +1171,7 @@ primop DoubleDecode_2IntOp "decodeDouble_2Int#" GenPrimOp
primop DoubleDecode_Int64Op "decodeDouble_Int64#" GenPrimOp
Double# -> (# Int64#, Int# #)
- {Decode {\tt Double\#} into mantissa and base-2 exponent.}
+ {Decode 'Double#' into mantissa and base-2 exponent.}
with out_of_line = True
------------------------------------------------------------------------
@@ -1219,9 +1214,9 @@ primop FloatNegOp "negateFloat#" GenPrimOp Float# -> Float#
primop FloatFabsOp "fabsFloat#" GenPrimOp Float# -> Float#
primop FloatToIntOp "float2Int#" GenPrimOp Float# -> Int#
- {Truncates a {\tt Float#} value to the nearest {\tt Int#}.
+ {Truncates a 'Float#' value to the nearest 'Int#'.
Results are undefined if the truncation if truncation yields
- a value outside the range of {\tt Int#}.}
+ a value outside the range of 'Int#'.}
primop FloatExpOp "expFloat#" GenPrimOp
Float# -> Float#
@@ -1322,12 +1317,12 @@ primop FloatToDoubleOp "float2Double#" GenPrimOp Float# -> Double#
primop FloatDecode_IntOp "decodeFloat_Int#" GenPrimOp
Float# -> (# Int#, Int# #)
{Convert to integers.
- First {\tt Int\#} in result is the mantissa; second is the exponent.}
+ First 'Int#' in result is the mantissa; second is the exponent.}
with out_of_line = True
------------------------------------------------------------------------
section "Arrays"
- {Operations on {\tt Array\#}.}
+ {Operations on 'Array#'.}
------------------------------------------------------------------------
primtype Array# a
@@ -1473,9 +1468,9 @@ primop CasArrayOp "casArray#" GenPrimOp
on a success the new value is returned, and on a failure the actual old
value (not the expected one) is returned. Implies a full memory barrier.
The use of a pointer equality on a boxed value makes this function harder
- to use correctly than {\tt casIntArray\#}. All of the difficulties
- of using {\tt reallyUnsafePtrEquality\#} correctly apply to
- {\tt casArray\#} as well.
+ to use correctly than 'casIntArray#'. All of the difficulties
+ of using 'reallyUnsafePtrEquality#' correctly apply to
+ 'casArray#' as well.
}
with
out_of_line = True
@@ -1486,10 +1481,10 @@ primop CasArrayOp "casArray#" GenPrimOp
------------------------------------------------------------------------
section "Small Arrays"
- {Operations on {\tt SmallArray\#}. A {\tt SmallArray\#} works
- just like an {\tt Array\#}, but with different space use and
+ {Operations on 'SmallArray#'. A 'SmallArray#' works
+ just like an 'Array#', but with different space use and
performance characteristics (that are often useful with small
- arrays). The {\tt SmallArray\#} and {\tt SmallMutableArray#}
+ arrays). The 'SmallArray#' and 'SmallMutableArray#'
lack a `card table'. The purpose of a card table is to avoid
having to scan every element of the array on each GC by
keeping track of which elements have changed since the last GC
@@ -1497,11 +1492,11 @@ section "Small Arrays"
of there being no card table is that the representation is
somewhat smaller and the writes are somewhat faster (because
the card table does not need to be updated). The disadvantage
- of course is that for a {\tt SmallMutableArray#} the whole
+ of course is that for a 'SmallMutableArray#' the whole
array has to be scanned on each GC. Thus it is best suited for
use cases where the mutable array is not long lived, e.g.
where a mutable array is initialised quickly and then frozen
- to become an immutable {\tt SmallArray\#}.
+ to become an immutable 'SmallArray#'.
}
------------------------------------------------------------------------
@@ -1523,7 +1518,7 @@ primop ShrinkSmallMutableArrayOp_Char "shrinkSmallMutableArray#" GenPrimOp
SmallMutableArray# s v -> Int# -> State# s -> State# s
{Shrink mutable array to new specified size, in
the specified state thread. The new size argument must be less than or
- equal to the current size as reported by {\tt getSizeofSmallMutableArray\#}.}
+ equal to the current size as reported by 'getSizeofSmallMutableArray#'.}
with out_of_line = True
has_side_effects = True
@@ -1655,7 +1650,7 @@ primop ThawSmallArrayOp "thawSmallArray#" GenPrimOp
primop CasSmallArrayOp "casSmallArray#" GenPrimOp
SmallMutableArray# s v -> Int# -> v -> v -> State# s -> (# State# s, Int#, v #)
{Unsafe, machine-level atomic compare and swap on an element within an array.
- See the documentation of {\tt casArray\#}.}
+ See the documentation of 'casArray#'.}
with
out_of_line = True
has_side_effects = True
@@ -1663,9 +1658,9 @@ primop CasSmallArrayOp "casSmallArray#" GenPrimOp
------------------------------------------------------------------------
section "Byte Arrays"
- {A {\tt ByteArray\#} is a region of
+ {A 'ByteArray#' is a region of
raw memory in the garbage-collected heap, which is not
- scanned for pointers.
+ scanned for pointers.
There are three sets of operations for accessing byte array contents:
index for reading from immutable byte arrays, and read/write
for mutable byte arrays. Each set contains operations for a
@@ -1683,29 +1678,29 @@ primtype ByteArray#
which is not scanned for pointers during garbage collection.
It is created by freezing a 'MutableByteArray#' with 'unsafeFreezeByteArray#'.
- Freezing is essentially a no-op, as MutableByteArray# and ByteArray# share the same heap structure under the hood.
+ Freezing is essentially a no-op, as 'MutableByteArray#' and 'ByteArray#' share the same heap structure under the hood.
The immutable and mutable variants are commonly used for scenarios requiring high-performance data structures,
- like Text, Primitive Vector, Unboxed Array, and ShortByteString.
-
+ like @Text@, @Primitive Vector@, @Unboxed Array@, and @ShortByteString@.
+
Another application of fundamental importance is 'Integer', which is backed by 'ByteArray#'.
-
+
The representation on the heap of a Byte Array is:
-
+
> +------------+-----------------+-----------------------+
> | | | |
> | HEADER | SIZE (in bytes) | PAYLOAD |
> | | | |
> +------------+-----------------+-----------------------+
-
+
To obtain a pointer to actual payload (e.g., for FFI purposes) use 'byteArrayContents#' or 'mutableByteArrayContents#'.
-
- Alternatively, enabling the UnliftedFFITypes extension
+
+ Alternatively, enabling the @UnliftedFFITypes@ extension
allows to mention 'ByteArray#' and 'MutableByteArray#' in FFI type signatures directly.
}
primtype MutableByteArray# s
-{ A mutable ByteAray#. It can be created in three ways:
+{ A mutable 'ByteAray#'. It can be created in three ways:
* 'newByteArray#': Create an unpinned array.
* 'newPinnedByteArray#': This will create a pinned array,
@@ -1742,13 +1737,13 @@ primop NewAlignedPinnedByteArrayOp_Char "newAlignedPinnedByteArray#" GenPrimOp
primop MutableByteArrayIsPinnedOp "isMutableByteArrayPinned#" GenPrimOp
MutableByteArray# s -> Int#
- {Determine whether a {\tt MutableByteArray\#} is guaranteed not to move
+ {Determine whether a 'MutableByteArray#' is guaranteed not to move
during GC.}
with out_of_line = True
primop ByteArrayIsPinnedOp "isByteArrayPinned#" GenPrimOp
ByteArray# -> Int#
- {Determine whether a {\tt ByteArray\#} is guaranteed not to move during GC.}
+ {Determine whether a 'ByteArray#' is guaranteed not to move during GC.}
with out_of_line = True
primop ByteArrayContents_Char "byteArrayContents#" GenPrimOp
@@ -1763,23 +1758,23 @@ primop ShrinkMutableByteArrayOp_Char "shrinkMutableByteArray#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> State# s
{Shrink mutable byte array to new specified size (in bytes), in
the specified state thread. The new size argument must be less than or
- equal to the current size as reported by {\tt getSizeofMutableByteArray\#}.}
+ equal to the current size as reported by 'getSizeofMutableByteArray#'.}
with out_of_line = True
has_side_effects = True
primop ResizeMutableByteArrayOp_Char "resizeMutableByteArray#" GenPrimOp
MutableByteArray# s -> Int# -> State# s -> (# State# s,MutableByteArray# s #)
{Resize (unpinned) mutable byte array to new specified size (in bytes).
- The returned {\tt MutableByteArray\#} is either the original
- {\tt MutableByteArray\#} resized in-place or, if not possible, a newly
- allocated (unpinned) {\tt MutableByteArray\#} (with the original content
+ The returned 'MutableByteArray#' is either the original
+ 'MutableByteArray#' resized in-place or, if not possible, a newly
+ allocated (unpinned) 'MutableByteArray#' (with the original content
copied over).
- To avoid undefined behaviour, the original {\tt MutableByteArray\#} shall
- not be accessed anymore after a {\tt resizeMutableByteArray\#} has been
+ To avoid undefined behaviour, the original 'MutableByteArray#' shall
+ not be accessed anymore after a 'resizeMutableByteArray#' has been
performed. Moreover, no reference to the old one should be kept in order
- to allow garbage collection of the original {\tt MutableByteArray\#} in
- case a new {\tt MutableByteArray\#} had to be allocated.}
+ to allow garbage collection of the original 'MutableByteArray#' in
+ case a new 'MutableByteArray#' had to be allocated.}
with out_of_line = True
has_side_effects = True
@@ -1808,12 +1803,12 @@ primop GetSizeofMutableByteArrayOp "getSizeofMutableByteArray#" GenPrimOp
primop CompareByteArraysOp "compareByteArrays#" GenPrimOp
ByteArray# -> Int# -> ByteArray# -> Int# -> Int# -> Int#
- {{\tt compareByteArrays# src1 src1_ofs src2 src2_ofs n} compares
- {\tt n} bytes starting at offset {\tt src1_ofs} in the first
- {\tt ByteArray#} {\tt src1} to the range of {\tt n} bytes
- (i.e. same length) starting at offset {\tt src2_ofs} of the second
- {\tt ByteArray#} {\tt src2}. Both arrays must fully contain the
- specified ranges, but this is not checked. Returns an {\tt Int#}
+ {@'compareByteArrays#' src1 src1_ofs src2 src2_ofs n@ compares
+ @n@ bytes starting at offset @src1_ofs@ in the first
+ 'ByteArray#' @src1@ to the range of @n@ bytes
+ (i.e. same length) starting at offset @src2_ofs@ of the second
+ 'ByteArray#' @src2@. Both arrays must fully contain the
+ specified ranges, but this is not checked. Returns an 'Int#'
less than, equal to, or greater than zero if the range is found,
respectively, to be byte-wise lexicographically less than, to
match, or be greater than the second range.}
@@ -1822,10 +1817,10 @@ primop CompareByteArraysOp "compareByteArrays#" GenPrimOp
primop CopyByteArrayOp "copyByteArray#" GenPrimOp
ByteArray# -> Int# -> MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
- {{\tt copyByteArray# src src_ofs dst dst_ofs n} copies the range
- starting at offset {\tt src_ofs} of length {\tt n} from the
- {\tt ByteArray#} {\tt src} to the {\tt MutableByteArray#} {\tt dst}
- starting at offset {\tt dst_ofs}. Both arrays must fully contain
+ {@'copyByteArray#' src src_ofs dst dst_ofs n@ copies the range
+ starting at offset @src_ofs@ of length @n@ from the
+ 'ByteArray#' @src@ to the 'MutableByteArray#' @dst@
+ starting at offset @dst_ofs@. Both arrays must fully contain
the specified ranges, but this is not checked. The two arrays must
not be the same array in different states, but this is not checked
either.}
@@ -1883,8 +1878,8 @@ primop CopyAddrToByteArrayOp "copyAddrToByteArray#" GenPrimOp
primop SetByteArrayOp "setByteArray#" GenPrimOp
MutableByteArray# s -> Int# -> Int# -> Int# -> State# s -> State# s
- {{\tt setByteArray# ba off len c} sets the byte range {\tt [off, off+len)} of
- the {\tt MutableByteArray#} to the byte {\tt c}.}
+ {@'setByteArray#' ba off len c@ sets the byte range @[off, off+len)@ of
+ the 'MutableByteArray#' to the byte @c@.}
with
has_side_effects = True
code_size = { primOpCodeSizeForeignCall + 4 }
@@ -2017,11 +2012,11 @@ pseudoop "nullAddr#" Addr#
primop AddrAddOp "plusAddr#" GenPrimOp Addr# -> Int# -> Addr#
primop AddrSubOp "minusAddr#" GenPrimOp Addr# -> Addr# -> Int#
- {Result is meaningless if two {\tt Addr\#}s are so far apart that their
- difference doesn't fit in an {\tt Int\#}.}
+ {Result is meaningless if two 'Addr#'s are so far apart that their
+ difference doesn't fit in an 'Int#'.}
primop AddrRemOp "remAddr#" GenPrimOp Addr# -> Int# -> Int#
- {Return the remainder when the {\tt Addr\#} arg, treated like an {\tt Int\#},
- is divided by the {\tt Int\#} arg.}
+ {Return the remainder when the 'Addr#' arg, treated like an 'Int#',
+ is divided by the 'Int#' arg.}
primop AddrToIntOp "addr2Int#" GenPrimOp Addr# -> Int#
{Coerce directly from address to int.}
with code_size = 0
@@ -2431,11 +2426,11 @@ section "Mutable variables"
------------------------------------------------------------------------
primtype MutVar# s a
- {A {\tt MutVar\#} behaves like a single-element mutable array.}
+ {A 'MutVar#' behaves like a single-element mutable array.}
primop NewMutVarOp "newMutVar#" GenPrimOp
v -> State# s -> (# State# s, MutVar# s v #)
- {Create {\tt MutVar\#} with specified initial value in specified state thread.}
+ {Create 'MutVar#' with specified initial value in specified state thread.}
with
out_of_line = True
has_side_effects = True
@@ -2456,14 +2451,14 @@ primop NewMutVarOp "newMutVar#" GenPrimOp
primop ReadMutVarOp "readMutVar#" GenPrimOp
MutVar# s v -> State# s -> (# State# s, v #)
- {Read contents of {\tt MutVar\#}. Result is not yet evaluated.}
+ {Read contents of 'MutVar#'. Result is not yet evaluated.}
with
-- See Note [Why MutVar# ops can't fail]
has_side_effects = True
primop WriteMutVarOp "writeMutVar#" GenPrimOp
MutVar# s v -> v -> State# s -> State# s
- {Write contents of {\tt MutVar\#}.}
+ {Write contents of 'MutVar#'.}
with
-- See Note [Why MutVar# ops can't fail]
has_side_effects = True
@@ -2483,11 +2478,11 @@ primop WriteMutVarOp "writeMutVar#" GenPrimOp
primop AtomicModifyMutVar2Op "atomicModifyMutVar2#" GenPrimOp
MutVar# s a -> (a -> c) -> State# s -> (# State# s, a, c #)
- { Modify the contents of a {\tt MutVar\#}, returning the previous
+ { Modify the contents of a 'MutVar#', returning the previous
contents and the result of applying the given function to the
previous contents. Note that this isn't strictly
speaking the correct type for this function; it should really be
- {\tt MutVar\# s a -> (a -> (a,b)) -> State\# s -> (\# State\# s, a, (a, b) \#)},
+ @'MutVar#' s a -> (a -> (a,b)) -> 'State#' s -> (# 'State#' s, a, (a, b) #)@,
but we don't know about pairs here. }
with
out_of_line = True
@@ -2496,7 +2491,7 @@ primop AtomicModifyMutVar2Op "atomicModifyMutVar2#" GenPrimOp
primop AtomicModifyMutVar_Op "atomicModifyMutVar_#" GenPrimOp
MutVar# s a -> (a -> a) -> State# s -> (# State# s, a, a #)
- { Modify the contents of a {\tt MutVar\#}, returning the previous
+ { Modify the contents of a 'MutVar#', returning the previous
contents and the result of applying the given function to the
previous contents. }
with
@@ -2508,18 +2503,18 @@ primop CasMutVarOp "casMutVar#" GenPrimOp
MutVar# s v -> v -> v -> State# s -> (# State# s, Int#, v #)
{ Compare-and-swap: perform a pointer equality test between
the first value passed to this function and the value
- stored inside the {\tt MutVar\#}. If the pointers are equal,
+ stored inside the 'MutVar#'. If the pointers are equal,
replace the stored value with the second value passed to this
function, otherwise do nothing.
- Returns the final value stored inside the {\tt MutVar\#}.
- The {\tt Int\#} indicates whether a swap took place,
- with {\tt 1\#} meaning that we didn't swap, and {\tt 0\#}
+ Returns the final value stored inside the 'MutVar#'.
+ The 'Int#' indicates whether a swap took place,
+ with @1#@ meaning that we didn't swap, and @0#@
that we did.
Implies a full memory barrier.
Because the comparison is done on the level of pointers,
all of the difficulties of using
- {\tt reallyUnsafePtrEquality\#} correctly apply to
- {\tt casMutVar\#} as well.
+ 'reallyUnsafePtrEquality#' correctly apply to
+ 'casMutVar#' as well.
}
with
out_of_line = True
@@ -2672,7 +2667,7 @@ primop CatchSTMOp "catchSTM#" GenPrimOp
primop NewTVarOp "newTVar#" GenPrimOp
v
-> State# s -> (# State# s, TVar# s v #)
- {Create a new {\tt TVar\#} holding a specified initial value.}
+ {Create a new 'TVar#' holding a specified initial value.}
with
out_of_line = True
has_side_effects = True
@@ -2680,8 +2675,8 @@ primop NewTVarOp "newTVar#" GenPrimOp
primop ReadTVarOp "readTVar#" GenPrimOp
TVar# s v
-> State# s -> (# State# s, v #)
- {Read contents of {\tt TVar\#} inside an STM transaction,
- i.e. within a call to {\tt atomically\#}.
+ {Read contents of 'TVar#' inside an STM transaction,
+ i.e. within a call to 'atomically#'.
Does not force evaluation of the result.}
with
out_of_line = True
@@ -2690,7 +2685,7 @@ primop ReadTVarOp "readTVar#" GenPrimOp
primop ReadTVarIOOp "readTVarIO#" GenPrimOp
TVar# s v
-> State# s -> (# State# s, v #)
- {Read contents of {\tt TVar\#} outside an STM transaction.
+ {Read contents of 'TVar#' outside an STM transaction.
Does not force evaluation of the result.}
with
out_of_line = True
@@ -2700,7 +2695,7 @@ primop WriteTVarOp "writeTVar#" GenPrimOp
TVar# s v
-> v
-> State# s -> State# s
- {Write contents of {\tt TVar\#}.}
+ {Write contents of 'TVar#'.}
with
out_of_line = True
has_side_effects = True
@@ -2708,24 +2703,24 @@ primop WriteTVarOp "writeTVar#" GenPrimOp
------------------------------------------------------------------------
section "Synchronized Mutable Variables"
- {Operations on {\tt MVar\#}s. }
+ {Operations on 'MVar#'s. }
------------------------------------------------------------------------
primtype MVar# s a
- { A shared mutable variable ({\it not} the same as a {\tt MutVar\#}!).
- (Note: in a non-concurrent implementation, {\tt (MVar\# a)} can be
- represented by {\tt (MutVar\# (Maybe a))}.) }
+ { A shared mutable variable (/not/ the same as a 'MutVar#'!).
+ (Note: in a non-concurrent implementation, @('MVar#' a)@ can be
+ represented by @('MutVar#' (Maybe a))@.) }
primop NewMVarOp "newMVar#" GenPrimOp
State# s -> (# State# s, MVar# s v #)
- {Create new {\tt MVar\#}; initially empty.}
+ {Create new 'MVar#'; initially empty.}
with
out_of_line = True
has_side_effects = True
primop TakeMVarOp "takeMVar#" GenPrimOp
MVar# s v -> State# s -> (# State# s, v #)
- {If {\tt MVar\#} is empty, block until it becomes full.
+ {If 'MVar#' is empty, block until it becomes full.
Then remove and return its contents, and set it empty.}
with
out_of_line = True
@@ -2733,15 +2728,15 @@ primop TakeMVarOp "takeMVar#" GenPrimOp
primop TryTakeMVarOp "tryTakeMVar#" GenPrimOp
MVar# s v -> State# s -> (# State# s, Int#, v #)
- {If {\tt MVar\#} is empty, immediately return with integer 0 and value undefined.
- Otherwise, return with integer 1 and contents of {\tt MVar\#}, and set {\tt MVar\#} empty.}
+ {If 'MVar#' is empty, immediately return with integer 0 and value undefined.
+ Otherwise, return with integer 1 and contents of 'MVar#', and set 'MVar#' empty.}
with
out_of_line = True
has_side_effects = True
primop PutMVarOp "putMVar#" GenPrimOp
MVar# s v -> v -> State# s -> State# s
- {If {\tt MVar\#} is full, block until it becomes empty.
+ {If 'MVar#' is full, block until it becomes empty.
Then store value arg as its new contents.}
with
out_of_line = True
@@ -2749,15 +2744,15 @@ primop PutMVarOp "putMVar#" GenPrimOp
primop TryPutMVarOp "tryPutMVar#" GenPrimOp
MVar# s v -> v -> State# s -> (# State# s, Int# #)
- {If {\tt MVar\#} is full, immediately return with integer 0.
- Otherwise, store value arg as {\tt MVar\#}'s new contents, and return with integer 1.}
+ {If 'MVar#' is full, immediately return with integer 0.
+ Otherwise, store value arg as 'MVar#''s new contents, and return with integer 1.}
with
out_of_line = True
has_side_effects = True
primop ReadMVarOp "readMVar#" GenPrimOp
MVar# s v -> State# s -> (# State# s, v #)
- {If {\tt MVar\#} is empty, block until it becomes full.
+ {If 'MVar#' is empty, block until it becomes full.
Then read its contents without modifying the MVar, without possibility
of intervention from other threads.}
with
@@ -2766,15 +2761,15 @@ primop ReadMVarOp "readMVar#" GenPrimOp
primop TryReadMVarOp "tryReadMVar#" GenPrimOp
MVar# s v -> State# s -> (# State# s, Int#, v #)
- {If {\tt MVar\#} is empty, immediately return with integer 0 and value undefined.
- Otherwise, return with integer 1 and contents of {\tt MVar\#}.}
+ {If 'MVar#' is empty, immediately return with integer 0 and value undefined.
+ Otherwise, return with integer 1 and contents of 'MVar#'.}
with
out_of_line = True
has_side_effects = True
primop IsEmptyMVarOp "isEmptyMVar#" GenPrimOp
MVar# s v -> State# s -> (# State# s, Int# #)
- {Return 1 if {\tt MVar\#} is empty; 0 otherwise.}
+ {Return 1 if 'MVar#' is empty; 0 otherwise.}
with
out_of_line = True
has_side_effects = True
@@ -2782,36 +2777,36 @@ primop IsEmptyMVarOp "isEmptyMVar#" GenPrimOp
------------------------------------------------------------------------
section "Synchronized I/O Ports"
- {Operations on {\tt IOPort\#}s. }
+ {Operations on 'IOPort#'s. }
------------------------------------------------------------------------
primtype IOPort# s a
- { A shared I/O port is almost the same as a {\tt MVar\#}!).
+ { A shared I/O port is almost the same as a 'MVar#'!).
The main difference is that IOPort has no deadlock detection or
deadlock breaking code that forcibly releases the lock. }
primop NewIOPortOp "newIOPort#" GenPrimOp
State# s -> (# State# s, IOPort# s v #)
- {Create new {\tt IOPort\#}; initially empty.}
+ {Create new 'IOPort#'; initially empty.}
with
out_of_line = True
has_side_effects = True
primop ReadIOPortOp "readIOPort#" GenPrimOp
IOPort# s v -> State# s -> (# State# s, v #)
- {If {\tt IOPort\#} is empty, block until it becomes full.
+ {If 'IOPort#' is empty, block until it becomes full.
Then remove and return its contents, and set it empty.
- Throws an {\tt IOPortException} if another thread is already
- waiting to read this {\tt IOPort\#}.}
+ Throws an 'IOPortException' if another thread is already
+ waiting to read this 'IOPort#'.}
with
out_of_line = True
has_side_effects = True
primop WriteIOPortOp "writeIOPort#" GenPrimOp
IOPort# s v -> v -> State# s -> (# State# s, Int# #)
- {If {\tt IOPort\#} is full, immediately return with integer 0,
- throwing an {\tt IOPortException}.
- Otherwise, store value arg as {\tt IOPort\#}'s new contents,
+ {If 'IOPort#' is full, immediately return with integer 0,
+ throwing an 'IOPortException'.
+ Otherwise, store value arg as 'IOPort#''s new contents,
and return with integer 1. }
with
out_of_line = True
@@ -2847,20 +2842,20 @@ section "Concurrency primitives"
------------------------------------------------------------------------
primtype State# s
- { {\tt State\#} is the primitive, unlifted type of states. It has
- one type parameter, thus {\tt State\# RealWorld}, or {\tt State\# s},
+ { 'State#' is the primitive, unlifted type of states. It has
+ one type parameter, thus @'State#' 'RealWorld'@, or @'State#' s@,
where s is a type variable. The only purpose of the type parameter
is to keep different state threads separate. It is represented by
nothing at all. }
primtype RealWorld
- { {\tt RealWorld} is deeply magical. It is {\it primitive}, but it is not
- {\it unlifted} (hence {\tt ptrArg}). We never manipulate values of type
- {\tt RealWorld}; it's only used in the type system, to parameterise {\tt State\#}. }
+ { 'RealWorld' is deeply magical. It is /primitive/, but it is not
+ /unlifted/ (hence @ptrArg@). We never manipulate values of type
+ 'RealWorld'; it's only used in the type system, to parameterise 'State#'. }
primtype ThreadId#
{(In a non-concurrent implementation, this can be a singleton
- type, whose (unique) value is returned by {\tt myThreadId\#}. The
+ type, whose (unique) value is returned by 'myThreadId#'. The
other operations can be omitted.)}
primop ForkOp "fork#" GenPrimOp
@@ -2935,11 +2930,11 @@ primtype Weak# b
primop MkWeakOp "mkWeak#" GenPrimOp
v -> w -> (State# RealWorld -> (# State# RealWorld, c #))
-> State# RealWorld -> (# State# RealWorld, Weak# w #)
- { {\tt mkWeak# k v finalizer s} creates a weak reference to value {\tt k},
- with an associated reference to some value {\tt v}. If {\tt k} is still
- alive then {\tt v} can be retrieved using {\tt deRefWeak#}. Note that
- the type of {\tt k} must be represented by a pointer (i.e. of kind {\tt
- TYPE 'LiftedRep} or {\tt TYPE 'UnliftedRep}). }
+ { @'mkWeak#' k v finalizer s@ creates a weak reference to value @k@,
+ with an associated reference to some value @v@. If @k@ is still
+ alive then @v@ can be retrieved using 'deRefWeak#'. Note that
+ the type of @k@ must be represented by a pointer (i.e. of kind
+ @'TYPE' ''LiftedRep' or @'TYPE' ''UnliftedRep'@). }
with
has_side_effects = True
out_of_line = True
@@ -2953,12 +2948,12 @@ primop MkWeakNoFinalizerOp "mkWeakNoFinalizer#" GenPrimOp
primop AddCFinalizerToWeakOp "addCFinalizerToWeak#" GenPrimOp
Addr# -> Addr# -> Int# -> Addr# -> Weak# w
-> State# RealWorld -> (# State# RealWorld, Int# #)
- { {\tt addCFinalizerToWeak# fptr ptr flag eptr w} attaches a C
- function pointer {\tt fptr} to a weak pointer {\tt w} as a finalizer. If
- {\tt flag} is zero, {\tt fptr} will be called with one argument,
- {\tt ptr}. Otherwise, it will be called with two arguments,
- {\tt eptr} and {\tt ptr}. {\tt addCFinalizerToWeak#} returns
- 1 on success, or 0 if {\tt w} is already dead. }
+ { @'addCFinalizerToWeak#' fptr ptr flag eptr w@ attaches a C
+ function pointer @fptr@ to a weak pointer @w@ as a finalizer. If
+ @flag@ is zero, @fptr@ will be called with one argument,
+ @ptr@. Otherwise, it will be called with two arguments,
+ @eptr@ and @ptr@. 'addCFinalizerToWeak#' returns
+ 1 on success, or 0 if @w@ is already dead. }
with
has_side_effects = True
out_of_line = True
@@ -2974,9 +2969,9 @@ primop FinalizeWeakOp "finalizeWeak#" GenPrimOp
(State# RealWorld -> (# State# RealWorld, b #) ) #)
{ Finalize a weak pointer. The return value is an unboxed tuple
containing the new state of the world and an "unboxed Maybe",
- represented by an {\tt Int#} and a (possibly invalid) finalization
- action. An {\tt Int#} of {\tt 1} indicates that the finalizer is valid. The
- return value {\tt b} from the finalizer should be ignored. }
+ represented by an 'Int#' and a (possibly invalid) finalization
+ action. An 'Int#' of @1@ indicates that the finalizer is valid. The
+ return value @b@ from the finalizer should be ignored. }
with
has_side_effects = True
out_of_line = True
@@ -3024,11 +3019,11 @@ primop StableNameToIntOp "stableNameToInt#" GenPrimOp
------------------------------------------------------------------------
section "Compact normal form"
- {Primitives for working with compact regions. The {\tt ghc\-compact}
- library and the {\tt compact} library demonstrate how to use these
+ {Primitives for working with compact regions. The @ghc-compact@
+ library and the @compact@ library demonstrate how to use these
primitives. The documentation below draws a distinction between
a CNF and a compact block. A CNF contains one or more compact
- blocks. The source file {\tt rts\/sm\/CNF.c}
+ blocks. The source file @rts\/sm\/CNF.c@
diagrams this relationship. When discussing a compact
block, an additional distinction is drawn between capacity and
utilized bytes. The capacity is the maximum number of bytes that
@@ -3082,7 +3077,7 @@ primop CompactGetFirstBlockOp "compactGetFirstBlock#" GenPrimOp
primop CompactGetNextBlockOp "compactGetNextBlock#" GenPrimOp
Compact# -> Addr# -> State# RealWorld -> (# State# RealWorld, Addr#, Word# #)
{ Given a CNF and the address of one its compact blocks, returns the
- next compact block and its utilized size, or {\tt nullAddr\#} if the
+ next compact block and its utilized size, or 'nullAddr#' if the
argument was the last compact block in the CNF. }
with
out_of_line = True
@@ -3090,12 +3085,12 @@ primop CompactGetNextBlockOp "compactGetNextBlock#" GenPrimOp
primop CompactAllocateBlockOp "compactAllocateBlock#" GenPrimOp
Word# -> Addr# -> State# RealWorld -> (# State# RealWorld, Addr# #)
{ Attempt to allocate a compact block with the capacity (in
- bytes) given by the first argument. The {\texttt Addr\#} is a pointer
- to previous compact block of the CNF or {\texttt nullAddr\#} to create a
+ bytes) given by the first argument. The 'Addr#' is a pointer
+ to previous compact block of the CNF or 'nullAddr#' to create a
new CNF with a single compact block.
The resulting block is not known to the GC until
- {\texttt compactFixupPointers\#} is called on it, and care must be taken
+ 'compactFixupPointers#' is called on it, and care must be taken
so that the address does not escape or memory will be leaked.
}
with
@@ -3118,10 +3113,10 @@ primop CompactFixupPointersOp "compactFixupPointers#" GenPrimOp
primop CompactAdd "compactAdd#" GenPrimOp
Compact# -> a -> State# RealWorld -> (# State# RealWorld, a #)
{ Recursively add a closure and its transitive closure to a
- {\texttt Compact\#} (a CNF), evaluating any unevaluated components
- at the same time. Note: {\texttt compactAdd\#} is not thread-safe, so
- only one thread may call {\texttt compactAdd\#} with a particular
- {\texttt Compact\#} at any given time. The primop does not
+ 'Compact#' (a CNF), evaluating any unevaluated components
+ at the same time. Note: 'compactAdd#' is not thread-safe, so
+ only one thread may call 'compactAdd#' with a particular
+ 'Compact#' at any given time. The primop does not
enforce any mutual exclusion; the caller is expected to
arrange this. }
with
@@ -3130,7 +3125,7 @@ primop CompactAdd "compactAdd#" GenPrimOp
primop CompactAddWithSharing "compactAddWithSharing#" GenPrimOp
Compact# -> a -> State# RealWorld -> (# State# RealWorld, a #)
- { Like {\texttt compactAdd\#}, but retains sharing and cycles
+ { Like 'compactAdd#', but retains sharing and cycles
during compaction. }
with
has_side_effects = True
@@ -3153,7 +3148,7 @@ section "Unsafe pointer equality"
-- See Note [Levity and representation polymorphic primops]
primop ReallyUnsafePtrEqualityOp "reallyUnsafePtrEquality#" GenPrimOp
v -> w -> Int#
- { Returns {\texttt 1\#} if the given pointers are equal and {\texttt 0\#} otherwise. }
+ { Returns @1#@ if the given pointers are equal and @0#@ otherwise. }
with
can_fail = True -- See Note [reallyUnsafePtrEquality# can_fail]
@@ -3280,8 +3275,8 @@ section "Controlling object lifetime"
-- See Note [Levity and representation polymorphic primops]
primop KeepAliveOp "keepAlive#" GenPrimOp
v -> State# RealWorld -> (State# RealWorld -> p) -> p
- { \tt{keepAlive# x s k} keeps the value \tt{x} alive during the execution
- of the computation \tt{k}. }
+ { @'keepAlive#' x s k@ keeps the value @x@ alive during the execution
+ of the computation @k@. }
with
strictness = { \ _arity -> mkClosedDmdSig [topDmd, topDmd, strictOnceApply1Dmd] topDiv }
@@ -3315,20 +3310,20 @@ primtype BCO
primop AddrToAnyOp "addrToAny#" GenPrimOp
Addr# -> (# a #)
- { Convert an {\tt Addr\#} to a followable Any type. }
+ { Convert an 'Addr#' to a followable Any type. }
with
code_size = 0
primop AnyToAddrOp "anyToAddr#" GenPrimOp
a -> State# RealWorld -> (# State# RealWorld, Addr# #)
{ Retrieve the address of any Haskell value. This is
- essentially an {\texttt unsafeCoerce\#}, but if implemented as such
+ essentially an 'unsafeCoerce#', but if implemented as such
the core lint pass complains and fails to compile.
As a primop, it is opaque to core/stg, and only appears
in cmm (where the copy propagation pass will get rid of it).
Note that "a" must be a value, not a thunk! It's too late
for strictness analysis to enforce this, so you're on your
- own to guarantee this. Also note that {\texttt Addr\#} is not a GC
+ own to guarantee this. Also note that 'Addr#' is not a GC
pointer - up to you to guarantee that it does not become
a dangling pointer immediately after you get it.}
with
@@ -3336,24 +3331,24 @@ primop AnyToAddrOp "anyToAddr#" GenPrimOp
primop MkApUpd0_Op "mkApUpd0#" GenPrimOp
BCO -> (# a #)
- { Wrap a BCO in a {\tt AP_UPD} thunk which will be updated with the value of
+ { Wrap a BCO in a @AP_UPD@ thunk which will be updated with the value of
the BCO when evaluated. }
with
out_of_line = True
primop NewBCOOp "newBCO#" GenPrimOp
ByteArray# -> ByteArray# -> Array# a -> Int# -> ByteArray# -> State# s -> (# State# s, BCO #)
- { {\tt newBCO\# instrs lits ptrs arity bitmap} creates a new bytecode object. The
+ { @'newBCO#' instrs lits ptrs arity bitmap@ creates a new bytecode object. The
resulting object encodes a function of the given arity with the instructions
- encoded in {\tt instrs}, and a static reference table usage bitmap given by
- {\tt bitmap}. }
+ encoded in @instrs@, and a static reference table usage bitmap given by
+ @bitmap@. }
with
has_side_effects = True
out_of_line = True
primop UnpackClosureOp "unpackClosure#" GenPrimOp
a -> (# Addr#, ByteArray#, Array# b #)
- { {\tt unpackClosure\# closure} copies the closure and pointers in the
+ { @'unpackClosure#' closure@ copies the closure and pointers in the
payload of the given closure into two new arrays, and returns a pointer to
the first word of the closure's info table, a non-pointer array for the raw
bytes of the closure, and a pointer array for the pointers in the payload. }
@@ -3362,7 +3357,7 @@ primop UnpackClosureOp "unpackClosure#" GenPrimOp
primop ClosureSizeOp "closureSize#" GenPrimOp
a -> Int#
- { {\tt closureSize\# closure} returns the size of the given closure in
+ { @'closureSize#' closure@ returns the size of the given closure in
machine words. }
with
out_of_line = True
@@ -3382,9 +3377,9 @@ primop GetCCSOfOp "getCCSOf#" GenPrimOp
primop GetCurrentCCSOp "getCurrentCCS#" GenPrimOp
a -> State# s -> (# State# s, Addr# #)
- { Returns the current {\tt CostCentreStack} (value is {\tt NULL} if
+ { Returns the current 'CostCentreStack' (value is @NULL@ if
not profiling). Takes a dummy argument which can be used to
- avoid the call to {\tt getCurrentCCS\#} being floated out by the
+ avoid the call to 'getCurrentCCS#' being floated out by the
simplifier, which would result in an uninformative stack
("CAF"). }
@@ -3401,8 +3396,8 @@ section "Info Table Origin"
------------------------------------------------------------------------
primop WhereFromOp "whereFrom#" GenPrimOp
a -> State# s -> (# State# s, Addr# #)
- { Returns the {\tt InfoProvEnt } for the info table of the given object
- (value is {\tt NULL} if the table does not exist or there is no information
+ { Returns the @InfoProvEnt @ for the info table of the given object
+ (value is @NULL@ if the table does not exist or there is no information
about the closure).}
with
out_of_line = True
@@ -3413,13 +3408,13 @@ section "Etc"
------------------------------------------------------------------------
primtype FUN m a b
- {The builtin function type, written in infix form as {\tt a # m -> b}.
- Values of this type are functions taking inputs of type {\tt a} and
- producing outputs of type {\tt b}. The multiplicity of the input is
- {\tt m}.
+ {The builtin function type, written in infix form as @a # m -> b@.
+ Values of this type are functions taking inputs of type @a@ and
+ producing outputs of type @b@. The multiplicity of the input is
+ @m@.
- Note that {\tt FUN m a b} permits representation polymorphism in both
- {\tt a} and {\tt b}, so that types like {\tt Int\# -> Int\#} can still be
+ Note that @'FUN' m a b@ permits representation polymorphism in both
+ @a@ and @b@, so that types like @'Int#' -> 'Int#'@ can still be
well-kinded.
}
@@ -3427,78 +3422,78 @@ pseudoop "realWorld#"
State# RealWorld
{ The token used in the implementation of the IO monad as a state monad.
It does not pass any information at runtime.
- See also {\tt GHC.Magic.runRW\#}. }
+ See also 'GHC.Magic.runRW#'. }
pseudoop "void#"
(# #)
{ This is an alias for the unboxed unit tuple constructor.
- In earlier versions of GHC, {\tt void\#} was a value
- of the primitive type {\tt Void\#}, which is now defined to be {\tt (\# \#)}.
+ In earlier versions of GHC, 'void#' was a value
+ of the primitive type 'Void#', which is now defined to be @(# #)@.
}
with deprecated_msg = { Use an unboxed unit tuple instead }
primtype Proxy# a
- { The type constructor {\tt Proxy#} is used to bear witness to some
+ { The type constructor 'Proxy#' is used to bear witness to some
type variable. It's used when you want to pass around proxy values
- for doing things like modelling type applications. A {\tt Proxy#}
+ for doing things like modelling type applications. A 'Proxy#'
is not only unboxed, it also has a polymorphic kind, and has no
runtime representation, being totally free. }
pseudoop "proxy#"
Proxy# a
- { Witness for an unboxed {\tt Proxy#} value, which has no runtime
+ { Witness for an unboxed 'Proxy#' value, which has no runtime
representation. }
pseudoop "seq"
a -> b -> b
- { The value of {\tt seq a b} is bottom if {\tt a} is bottom, and
- otherwise equal to {\tt b}. In other words, it evaluates the first
- argument {\tt a} to weak head normal form (WHNF). {\tt seq} is usually
+ { The value of @'seq' a b@ is bottom if @a@ is bottom, and
+ otherwise equal to @b@. In other words, it evaluates the first
+ argument @a@ to weak head normal form (WHNF). 'seq' is usually
introduced to improve performance by avoiding unneeded laziness.
- A note on evaluation order: the expression {\tt seq a b} does
- {\it not} guarantee that {\tt a} will be evaluated before {\tt b}.
- The only guarantee given by {\tt seq} is that the both {\tt a}
- and {\tt b} will be evaluated before {\tt seq} returns a value.
- In particular, this means that {\tt b} may be evaluated before
- {\tt a}. If you need to guarantee a specific order of evaluation,
- you must use the function {\tt pseq} from the "parallel" package. }
+ A note on evaluation order: the expression @'seq' a b@ does
+ /not/ guarantee that @a@ will be evaluated before @b@.
+ The only guarantee given by 'seq' is that the both @a@
+ and @b@ will be evaluated before 'seq' returns a value.
+ In particular, this means that @b@ may be evaluated before
+ @a@. If you need to guarantee a specific order of evaluation,
+ you must use the function 'pseq' from the "parallel" package. }
with fixity = infixr 0
-- This fixity is only the one picked up by Haddock. If you
-- change this, do update 'ghcPrimIface' in 'GHC.Iface.Load'.
pseudoop "unsafeCoerce#"
a -> b
- { The function {\tt unsafeCoerce\#} allows you to side-step the typechecker entirely. That
+ { The function 'unsafeCoerce#' allows you to side-step the typechecker entirely. That
is, it allows you to coerce any type into any other type. If you use this function,
you had better get it right, otherwise segmentation faults await. It is generally
used when you want to write a program that you know is well-typed, but where Haskell's
type system is not expressive enough to prove that it is well typed.
- The following uses of {\tt unsafeCoerce\#} are supposed to work (i.e. not lead to
+ The following uses of 'unsafeCoerce#' are supposed to work (i.e. not lead to
spurious compile-time or run-time crashes):
- * Casting any lifted type to {\tt Any}
+ * Casting any lifted type to 'Any'
- * Casting {\tt Any} back to the real type
+ * Casting 'Any' back to the real type
* Casting an unboxed type to another unboxed type of the same size.
(Casting between floating-point and integral types does not work.
- See the {\tt GHC.Float} module for functions to do work.)
+ See the "GHC.Float" module for functions to do work.)
* Casting between two types that have the same runtime representation. One case is when
the two types differ only in "phantom" type parameters, for example
- {\tt Ptr Int} to {\tt Ptr Float}, or {\tt [Int]} to {\tt [Float]} when the list is
- known to be empty. Also, a {\tt newtype} of a type {\tt T} has the same representation
- at runtime as {\tt T}.
-
- Other uses of {\tt unsafeCoerce\#} are undefined. In particular, you should not use
- {\tt unsafeCoerce\#} to cast a T to an algebraic data type D, unless T is also
- an algebraic data type. For example, do not cast {\tt Int->Int} to {\tt Bool}, even if
- you later cast that {\tt Bool} back to {\tt Int->Int} before applying it. The reasons
+ @'Ptr' 'Int'@ to @'Ptr' 'Float'@, or @['Int']@ to @['Float']@ when the list is
+ known to be empty. Also, a @newtype@ of a type @T@ has the same representation
+ at runtime as @T@.
+
+ Other uses of 'unsafeCoerce#' are undefined. In particular, you should not use
+ 'unsafeCoerce#' to cast a T to an algebraic data type D, unless T is also
+ an algebraic data type. For example, do not cast @'Int'->'Int'@ to 'Bool', even if
+ you later cast that 'Bool' back to @'Int'->'Int'@ before applying it. The reasons
have to do with GHC's internal representation details (for the cognoscenti, data values
can be entered but function closures cannot). If you want a safe type to cast things
- to, use {\tt Any}, which is not an algebraic data type.
+ to, use 'Any', which is not an algebraic data type.
}
with can_fail = True
@@ -3515,7 +3510,7 @@ primop TraceEventOp "traceEvent#" GenPrimOp
Addr# -> State# s -> State# s
{ Emits an event via the RTS tracing framework. The contents
of the event is the zero-terminated byte string passed as the first
- argument. The event will be emitted either to the {\tt .eventlog} file,
+ argument. The event will be emitted either to the @.eventlog@ file,
or to stderr, depending on the runtime RTS flags. }
with
has_side_effects = True
@@ -3526,7 +3521,7 @@ primop TraceEventBinaryOp "traceBinaryEvent#" GenPrimOp
{ Emits an event via the RTS tracing framework. The contents
of the event is the binary object passed as the first argument with
the given length passed as the second argument. The event will be
- emitted to the {\tt .eventlog} file. }
+ emitted to the @.eventlog@ file. }
with
has_side_effects = True
out_of_line = True
@@ -3535,7 +3530,7 @@ primop TraceMarkerOp "traceMarker#" GenPrimOp
Addr# -> State# s -> State# s
{ Emits a marker event via the RTS tracing framework. The contents
of the event is the zero-terminated byte string passed as the first
- argument. The event will be emitted either to the {\tt .eventlog} file,
+ argument. The event will be emitted either to the @.eventlog@ file,
or to stderr, depending on the runtime RTS flags. }
with
has_side_effects = True
@@ -3549,9 +3544,9 @@ primop SetThreadAllocationCounter "setThreadAllocationCounter#" GenPrimOp
out_of_line = True
primtype StackSnapshot#
- { Haskell representation of a {\tt StgStack*} that was created (cloned)
- with a function in {\tt GHC.Stack.CloneStack}. Please check the
- documentation in this module for more detailed explanations. }
+ { Haskell representation of a @StgStack*@ that was created (cloned)
+ with a function in "GHC.Stack.CloneStack". Please check the
+ documentation in that module for more detailed explanations. }
------------------------------------------------------------------------
section "Safe coercions"
@@ -3559,7 +3554,7 @@ section "Safe coercions"
pseudoop "coerce"
Coercible a b => a -> b
- { The function {\tt coerce} allows you to safely convert between values of
+ { The function 'coerce' allows you to safely convert between values of
types that have the same representation with no run-time overhead. In the
simplest case you can use it instead of a newtype constructor, to go from
the newtype's concrete type to the abstract type. But it also works in
@@ -3567,9 +3562,9 @@ pseudoop "coerce"
concrete types.
This function is representation-polymorphic, but the
- {\tt RuntimeRep} type argument is marked as {\tt Inferred}, meaning
+ 'RuntimeRep' type argument is marked as 'Inferred', meaning
that it is not available for visible type application. This means
- the typechecker will accept {\tt coerce @Int @Age 42}.
+ the typechecker will accept @'coerce' @'Int' @Age 42@.
}
------------------------------------------------------------------------
@@ -3674,7 +3669,7 @@ primop VecQuotOp "quot#" GenPrimOp
primop VecRemOp "rem#" GenPrimOp
VECTOR -> VECTOR -> VECTOR
- { Satisfies \texttt{(quot\# x y) times\# y plus\# (rem\# x y) == x}. }
+ { Satisfies @('quot#' x y) 'times#' y 'plus#' ('rem#' x y) == x@. }
with can_fail = True
llvm_only = True
vector = INT_VECTOR_TYPES
@@ -3815,10 +3810,10 @@ section "Prefetch"
architectures or vendor hardware. The manual can be found at
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html .
- The {\tt prefetch*} family of operations has the order of operations
- determined by passing around the {\tt State#} token.
+ The @prefetch*@ family of operations has the order of operations
+ determined by passing around the 'State#' token.
- To get a "pure" version of these operations, use {\tt inlinePerformIO} which is quite safe in this context.
+ To get a "pure" version of these operations, use 'inlinePerformIO' which is quite safe in this context.
It is important to note that while the prefetch operations will never change the
answer to a pure computation, They CAN change the memory locations resident
diff --git a/utils/genprimopcode/Main.hs b/utils/genprimopcode/Main.hs
index 2bd12e117b..bf1ed76f9e 100644
--- a/utils/genprimopcode/Main.hs
+++ b/utils/genprimopcode/Main.hs
@@ -188,9 +188,6 @@ main = getArgs >>= \args ->
"--make-haskell-source"
-> putStr (gen_hs_source p_o_specs)
- "--make-latex-doc"
- -> putStr (gen_latex_doc p_o_specs)
-
"--wired-in-docs"
-> putStr (gen_wired_in_docs p_o_specs)
@@ -301,8 +298,8 @@ gen_hs_source (Info defaults entries) =
hdr (PrimVecTypeSpec { ty = TyApp (VecTyCon n _) _ }) = wrapOp n ++ ","
hdr (PrimVecTypeSpec {}) = error $ "Illegal type spec"
- sec s = "\n-- * " ++ escape (title s) ++ "\n"
- ++ (unlines $ map ("-- " ++ ) $ lines $ unlatex $ escape $ "|" ++ desc s)
+ sec s = "\n-- * " ++ title s ++ "\n"
+ ++ (unlines $ map ("-- " ++ ) $ lines $ "|" ++ desc s)
ent (Section {}) = []
@@ -314,7 +311,7 @@ gen_hs_source (Info defaults entries) =
spec o = ([ "" ] ++) . concat $
-- Doc comments
- [ case unlatex (escape (desc o)) ++ extra (opts o) of
+ [ case desc o ++ extra (opts o) of
"" -> []
cmmt -> map ("-- " ++) $ lines $ "|" ++ cmmt
@@ -365,24 +362,6 @@ gen_hs_source (Info defaults entries) =
prim_data t = [ "data " ++ pprTy t ]
- escape = concatMap (\c -> if c `elem` special then '\\':c:[] else c:[])
- where special = "/'`\"@<"
-
-unlatex :: String -> String
-unlatex s = case s of
- '\\':'t':'e':'x':'t':'t':'t':'{':cs -> markup "@" "@" cs
- '{':'\\':'t':'e':'x':'t':'t':'t':' ':cs -> markup "@" "@" cs
- '{':'\\':'t':'t':cs -> markup "@" "@" cs
- '{':'\\':'i':'t':cs -> markup "/" "/" cs
- '{':'\\':'e':'m':cs -> markup "/" "/" cs
- c : cs -> c : unlatex cs
- "" -> ""
- where markup b e xs = b ++ mk (dropWhile isSpace xs)
- where mk "" = e
- mk ('\n':cs) = ' ' : mk cs
- mk ('}':cs) = e ++ unlatex cs
- mk (c:cs) = c : mk cs
-
-- | Extract a string representation of the name
getName :: Entry -> Maybe String
getName PrimOpSpec{ name = n } = Just n
@@ -438,183 +417,6 @@ asInfix :: String -> String
asInfix nm | isAlpha (head nm) = "`" ++ nm ++ "`"
| otherwise = nm
-gen_latex_doc :: Info -> String
-gen_latex_doc (Info defaults entries)
- = "\\primopdefaults{"
- ++ mk_options defaults
- ++ "}\n"
- ++ (concat (map mk_entry entries))
- where mk_entry (PrimOpSpec {cons=constr,name=n,ty=t,cat=c,desc=d,opts=o}) =
- "\\primopdesc{"
- ++ latex_encode constr ++ "}{"
- ++ latex_encode n ++ "}{"
- ++ latex_encode (zencode n) ++ "}{"
- ++ latex_encode (show c) ++ "}{"
- ++ latex_encode (mk_source_ty t) ++ "}{"
- ++ latex_encode (mk_core_ty t) ++ "}{"
- ++ d ++ "}{"
- ++ mk_options o
- ++ "}\n"
- mk_entry (PrimVecOpSpec {}) =
- ""
- mk_entry (Section {title=ti,desc=d}) =
- "\\primopsection{"
- ++ latex_encode ti ++ "}{"
- ++ d ++ "}\n"
- mk_entry (PrimTypeSpec {ty=t,desc=d,opts=o}) =
- "\\primtypespec{"
- ++ latex_encode (mk_source_ty t) ++ "}{"
- ++ latex_encode (mk_core_ty t) ++ "}{"
- ++ d ++ "}{"
- ++ mk_options o
- ++ "}\n"
- mk_entry (PrimVecTypeSpec {}) =
- ""
- mk_entry (PseudoOpSpec {name=n,ty=t,desc=d,opts=o}) =
- "\\pseudoopspec{"
- ++ latex_encode (zencode n) ++ "}{"
- ++ latex_encode (mk_source_ty t) ++ "}{"
- ++ latex_encode (mk_core_ty t) ++ "}{"
- ++ d ++ "}{"
- ++ mk_options o
- ++ "}\n"
- mk_source_ty typ = pty typ
- where pty (TyF t1 t2) = pbty t1 ++ " -> " ++ pty t2
- pty (TyC t1 t2) = pbty t1 ++ " => " ++ pty t2
- pty t = pbty t
- pbty (TyApp tc ts) = show tc ++ (concat (map (' ':) (map paty ts)))
- pbty (TyUTup ts) = "(# " ++ (concat (intersperse "," (map pty ts))) ++ " #)"
- pbty t = paty t
- paty (TyVar tv) = tv
- paty t = "(" ++ pty t ++ ")"
-
- mk_core_ty typ = foralls ++ (pty typ)
- where pty (TyF t1 t2) = pbty t1 ++ " -> " ++ pty t2
- pty (TyC t1 t2) = pbty t1 ++ " => " ++ pty t2
- pty t = pbty t
- pbty (TyApp tc ts) = (zencode (show tc)) ++ (concat (map (' ':) (map paty ts)))
- pbty (TyUTup ts) = (zencode (utuplenm (length ts))) ++ (concat ((map (' ':) (map paty ts))))
- pbty t = paty t
- paty (TyVar tv) = zencode tv
- paty (TyApp tc []) = zencode (show tc)
- paty t = "(" ++ pty t ++ ")"
- utuplenm 1 = "(# #)"
- utuplenm n = "(#" ++ (replicate (n-1) ',') ++ "#)"
- foralls = if tvars == [] then "" else "%forall " ++ (tbinds tvars)
- tvars = tvars_of typ
- tbinds [] = ". "
- tbinds ("o":tbs) = "(o::TYPE q) " ++ (tbinds tbs)
- tbinds ("p":tbs) = "(p::TYPE r) " ++ (tbinds tbs)
- tbinds ("v":tbs) = "(v::TYPE (BoxedRep l)) " ++ (tbinds tbs)
- tbinds ("w":tbs) = "(w::TYPE (BoxedRep k)) " ++ (tbinds tbs)
- tbinds (tv:tbs) = tv ++ " " ++ (tbinds tbs)
- tvars_of (TyF t1 t2) = tvars_of t1 `union` tvars_of t2
- tvars_of (TyC t1 t2) = tvars_of t1 `union` tvars_of t2
- tvars_of (TyApp _ ts) = foldl union [] (map tvars_of ts)
- tvars_of (TyUTup ts) = foldr union [] (map tvars_of ts)
- tvars_of (TyVar tv) = [tv]
-
- mk_options o =
- "\\primoptions{"
- ++ mk_has_side_effects o ++ "}{"
- ++ mk_out_of_line o ++ "}{"
- ++ mk_commutable o ++ "}{"
- ++ mk_needs_wrapper o ++ "}{"
- ++ mk_can_fail o ++ "}{"
- ++ mk_fixity o ++ "}{"
- ++ latex_encode (mk_strictness o) ++ "}{"
- ++ "}"
-
- mk_has_side_effects o = mk_bool_opt o "has_side_effects" "Has side effects." "Has no side effects."
- mk_out_of_line o = mk_bool_opt o "out_of_line" "Implemented out of line." "Implemented in line."
- mk_commutable o = mk_bool_opt o "commutable" "Commutable." "Not commutable."
- mk_needs_wrapper o = mk_bool_opt o "needs_wrapper" "Needs wrapper." "Needs no wrapper."
- mk_can_fail o = mk_bool_opt o "can_fail" "Can fail." "Cannot fail."
-
- mk_bool_opt o opt_name if_true if_false =
- case lookup_attrib opt_name o of
- Just (OptionTrue _) -> if_true
- Just (OptionFalse _) -> if_false
- Just (OptionString _ _) -> error "String value for boolean option"
- Just (OptionInteger _ _) -> error "Integer value for boolean option"
- Just (OptionFixity _) -> error "Fixity value for boolean option"
- Just (OptionVector _) -> error "vector template for boolean option"
- Nothing -> ""
-
- mk_strictness o =
- case lookup_attrib "strictness" o of
- Just (OptionString _ s) -> s -- for now
- Just _ -> error "Wrong value for strictness"
- Nothing -> ""
-
- mk_fixity o = case lookup_attrib "fixity" o of
- Just (OptionFixity (Just (Fixity _ i d)))
- -> pprFixityDir d ++ " " ++ show i
- _ -> ""
-
- zencode xs =
- case maybe_tuple xs of
- Just n -> n -- Tuples go to Z2T etc
- Nothing -> concat (map encode_ch xs)
- where
- maybe_tuple "(# #)" = Just("Z1H")
- maybe_tuple ('(' : '#' : cs) = case count_commas (0::Int) cs of
- (n, '#' : ')' : _) -> Just ('Z' : shows (n+1) "H")
- _ -> Nothing
- maybe_tuple "()" = Just("Z0T")
- maybe_tuple ('(' : cs) = case count_commas (0::Int) cs of
- (n, ')' : _) -> Just ('Z' : shows (n+1) "T")
- _ -> Nothing
- maybe_tuple _ = Nothing
-
- count_commas :: Int -> String -> (Int, String)
- count_commas n (',' : cs) = count_commas (n+1) cs
- count_commas n cs = (n,cs)
-
- unencodedChar :: Char -> Bool -- True for chars that don't need encoding
- unencodedChar 'Z' = False
- unencodedChar 'z' = False
- unencodedChar c = isAlphaNum c
-
- encode_ch :: Char -> String
- encode_ch c | unencodedChar c = [c] -- Common case first
-
- -- Constructors
- encode_ch '(' = "ZL" -- Needed for things like (,), and (->)
- encode_ch ')' = "ZR" -- For symmetry with (
- encode_ch '[' = "ZM"
- encode_ch ']' = "ZN"
- encode_ch ':' = "ZC"
- encode_ch 'Z' = "ZZ"
-
- -- Variables
- encode_ch 'z' = "zz"
- encode_ch '&' = "za"
- encode_ch '|' = "zb"
- encode_ch '^' = "zc"
- encode_ch '$' = "zd"
- encode_ch '=' = "ze"
- encode_ch '>' = "zg"
- encode_ch '#' = "zh"
- encode_ch '.' = "zi"
- encode_ch '<' = "zl"
- encode_ch '-' = "zm"
- encode_ch '!' = "zn"
- encode_ch '+' = "zp"
- encode_ch '\'' = "zq"
- encode_ch '\\' = "zr"
- encode_ch '/' = "zs"
- encode_ch '*' = "zt"
- encode_ch '_' = "zu"
- encode_ch '%' = "zv"
- encode_ch c = 'z' : shows (ord c) "U"
-
- latex_encode [] = []
- latex_encode (c:cs) | c `elem` "#$%&_^{}" = "\\" ++ c:(latex_encode cs)
- latex_encode ('~':cs) = "\\verb!~!" ++ (latex_encode cs)
- latex_encode ('\\':cs) = "$\\backslash$" ++ (latex_encode cs)
- latex_encode (c:cs) = c:(latex_encode cs)
-
gen_wrappers :: Info -> String
gen_wrappers (Info _ entries)
= "{-# LANGUAGE MagicHash, NoImplicitPrelude, UnboxedTuples #-}\n"
@@ -818,7 +620,7 @@ gen_wired_in_docs (Info _ entries)
= "primOpDocs =\n [ " ++ intercalate "\n , " (catMaybes $ map mkDoc $ concatMap desugarVectorSpec entries) ++ "\n ]\n"
where
mkDoc po | Just poName <- getName po
- , not $ null $ desc po = Just $ show (poName, unlatex $ desc po)
+ , not $ null $ desc po = Just $ show (poName, desc po)
| otherwise = Nothing
------------------------------------------------------------------
diff --git a/utils/genprimopcode/gen_bytearray_ops.py b/utils/genprimopcode/gen_bytearray_ops.py
index a7212740b6..e4cb2ab015 100644
--- a/utils/genprimopcode/gen_bytearray_ops.py
+++ b/utils/genprimopcode/gen_bytearray_ops.py
@@ -25,7 +25,7 @@ element_types = [
ElementType("Addr", "Addr#", "machine address", MACH_WORD),
ElementType("Float", "Float#", "single-precision floating-point value", 4),
ElementType("Double", "Double#", "double-precision floating-point value", 8),
- ElementType("StablePtr", "StablePtr# a", "{\\tt StablePtr#} value", MACH_WORD),
+ ElementType("StablePtr", "StablePtr# a", "'StablePtr#' value", MACH_WORD),
]
# TODO: Eventually when the sized integer primops use proper unboxed types we
@@ -141,4 +141,3 @@ for t in element_types:
with has_side_effects = True
can_fail = True
''', **t._asdict())
-