summaryrefslogtreecommitdiff
path: root/compiler/deSugar
diff options
context:
space:
mode:
authorSebastian Graf <sgraf1337@gmail.com>2019-09-18 16:15:36 +0000
committerSebastian Graf <sgraf1337@gmail.com>2019-09-21 14:56:58 +0100
commita7867c7949b9dad95216ad5f2946be2cafcb860c (patch)
treee003843a4bde0cfe143e583970b9646a1c58c283 /compiler/deSugar
parentded96fb3ad540e0145483574b4a09bdcbe964c88 (diff)
downloadhaskell-a7867c7949b9dad95216ad5f2946be2cafcb860c.tar.gz
Get rid of PmFakewip/pmcheck-nofake
The pattern match oracle can now cope with the abundance of information that ViewPatterns, NPlusKPats, overloaded lists, etc. provide. No need to have PmFake anymore! Also got rid of a spurious call to `allCompleteMatches`, which we used to call *for every constructor* match. Naturally this blows up quadratically for programs like `ManyAlternatives`. ------------------------- Metric Decrease: ManyAlternatives Metric Increase: T11822 -------------------------
Diffstat (limited to 'compiler/deSugar')
-rw-r--r--compiler/deSugar/Check.hs277
1 files changed, 48 insertions, 229 deletions
diff --git a/compiler/deSugar/Check.hs b/compiler/deSugar/Check.hs
index be2fb76bf0..dbb83ab0f5 100644
--- a/compiler/deSugar/Check.hs
+++ b/compiler/deSugar/Check.hs
@@ -33,7 +33,6 @@ import BasicTypes (Origin, isGenerated)
import CoreSyn (CoreExpr, Expr(Var))
import CoreUtils (exprType)
import FastString (unpackFS)
-import Unify( tcMatchTy )
import DynFlags
import GHC.Hs
import TcHsSyn
@@ -42,18 +41,15 @@ import ConLike
import Name
import FamInst
import TysWiredIn
-import TyCon
import SrcLoc
import Util
import Outputable
import DataCon
-import PatSyn
-import HscTypes (CompleteMatch(..))
import BasicTypes (Boxity(..))
import Var (EvVar)
import Coercion
import TcEvidence
-import {-# SOURCE #-} DsExpr (dsExpr, dsLExpr)
+import {-# SOURCE #-} DsExpr (dsExpr, dsLExpr, dsSyntaxExpr)
import MatchLit (dsLit, dsOverLit)
import IOEnv
import DsMonad
@@ -105,16 +101,12 @@ data PmPat where
, pm_grd_expr :: CoreExpr } -> PmPat
-- (PmGrd pat expr) matches expr against pat, binding the variables in pat
- -- | A fake guard pattern (True <- _) used to represent cases we cannot handle.
- PmFake :: PmPat
-
-- | Should not be user-facing.
instance Outputable PmPat where
ppr (PmCon alt _arg_tys _con_tvs con_args)
= cparen (notNull con_args) (hsep [ppr alt, hsep (map ppr con_args)])
ppr (PmVar vid) = ppr vid
ppr (PmGrd pv ge) = hsep (map ppr pv) <+> text "<-" <+> ppr ge
- ppr PmFake = text "<PmFake>"
-- data T a where
-- MkT :: forall p q. (Eq p, Ord q) => p -> q -> T [p]
@@ -435,12 +427,6 @@ truePattern :: PmPat
truePattern = nullaryConPattern (RealDataCon trueDataCon)
{-# INLINE truePattern #-}
--- | Generate a `canFail` pattern vector of a specific type
-mkCanFailPmPat :: Type -> DsM PatVec
-mkCanFailPmPat ty = do
- var <- mkPmVar ty
- return [var, PmFake]
-
vanillaConPattern :: ConLike -> [Type] -> PatVec -> PmPat
-- ADT constructor pattern => no existentials, no local constraints
vanillaConPattern con arg_tys args =
@@ -518,19 +504,20 @@ translatePat fam_insts pat = case pat of
pure [xp,g]
-- (n + k) ===> x (True <- x >= k) (n <- x-k)
- NPlusKPat ty (dL->L _ _n) _k1 _k2 _ge _minus -> mkCanFailPmPat ty
+ NPlusKPat pat_ty (dL->L _ n) k1 k2 ge minus -> do
+ (xp, xe) <- mkPmId2Forms pat_ty
+ let ke1 = HsOverLit noExtField (unLoc k1)
+ ke2 = HsOverLit noExtField k2
+ g1 <- mkGuardSyntaxExpr [truePattern] ge [unLoc xe, ke1]
+ g2 <- mkGuardSyntaxExpr [PmVar n] minus [ke2]
+ return [xp, g1, g2]
-- (fun -> pat) ===> x (pat <- fun x)
ViewPat arg_ty lexpr lpat -> do
ps <- translatePat fam_insts (unLoc lpat)
- -- See Note [Guards and Approximation]
- res <- allM cantFailPattern ps
- case res of
- True -> do
- (xp,xe) <- mkPmId2Forms arg_ty
- g <- mkGuard ps (HsApp noExtField lexpr xe)
- return [xp, g]
- False -> mkCanFailPmPat arg_ty
+ (xp,xe) <- mkPmId2Forms arg_ty
+ g <- mkGuard ps (HsApp noExtField lexpr xe)
+ return [xp, g]
-- list
ListPat (ListPatTc ty Nothing) ps -> do
@@ -538,14 +525,20 @@ translatePat fam_insts pat = case pat of
return (foldr (mkListPatVec ty) [nilPattern ty] pv)
-- overloaded list
- ListPat (ListPatTc _elem_ty (Just (pat_ty, _to_list))) lpats -> do
+ ListPat (ListPatTc elem_ty (Just (pat_ty, to_list))) lpats -> do
dflags <- getDynFlags
- if xopt LangExt.RebindableSyntax dflags
- then mkCanFailPmPat pat_ty
- else case splitListTyConApp_maybe pat_ty of
- Just e_ty -> translatePat fam_insts
- (ListPat (ListPatTc e_ty Nothing) lpats)
- Nothing -> mkCanFailPmPat pat_ty
+ case splitListTyConApp_maybe pat_ty of
+ Just e_ty
+ | not (xopt LangExt.RebindableSyntax dflags)
+ -- Just translate it as a regular ListPat
+ -> translatePat fam_insts (ListPat (ListPatTc e_ty Nothing) lpats)
+ _ -> do
+ ps <- translatePatVec fam_insts (map unLoc lpats)
+ (xp, xe) <- mkPmId2Forms pat_ty
+ let pats = foldr (mkListPatVec elem_ty) [nilPattern elem_ty] ps
+ g <- mkGuardSyntaxExpr pats to_list [unLoc xe]
+ return [xp,g]
+
-- (a) In the presence of RebindableSyntax, we don't know anything about
-- `toList`, we should treat `ListPat` as any other view pattern.
--
@@ -568,16 +561,11 @@ translatePat fam_insts pat = case pat of
, pat_arg_tys = arg_tys
, pat_tvs = ex_tvs
, pat_args = ps } -> do
- let ty = conLikeResTy con arg_tys
- groups <- allCompleteMatches ty
- case groups of
- [] -> mkCanFailPmPat ty
- _ -> do
- args <- translateConPatVec fam_insts arg_tys ex_tvs con ps
- return [PmCon { pm_con_con = PmAltConLike con
- , pm_con_arg_tys = arg_tys
- , pm_con_tvs = ex_tvs
- , pm_con_args = args }]
+ args <- translateConPatVec fam_insts arg_tys ex_tvs con ps
+ return [PmCon { pm_con_con = PmAltConLike con
+ , pm_con_arg_tys = arg_tys
+ , pm_con_tvs = ex_tvs
+ , pm_con_args = args }]
NPat ty (dL->L _ olit) mb_neg _ -> do
-- See Note [Literal short cut] in MatchLit.hs
@@ -713,14 +701,6 @@ translateGuards :: FamInstEnvs -> [GuardStmt GhcTc] -> DsM PatVec
translateGuards fam_insts guards =
concat <$> mapM (translateGuard fam_insts) guards
--- | Check whether a pattern can fail to match
-cantFailPattern :: PmPat -> DsM Bool
-cantFailPattern PmVar {} = pure True
-cantFailPattern PmCon { pm_con_con = c, pm_con_arg_tys = tys, pm_con_args = ps}
- = (&&) <$> singleMatchConstructor c tys <*> allM cantFailPattern ps
-cantFailPattern (PmGrd pv _e) = allM cantFailPattern pv
-cantFailPattern _ = pure False
-
-- | Translate a guard statement to Pattern
translateGuard :: FamInstEnvs -> GuardStmt GhcTc -> DsM PatVec
translateGuard fam_insts guard = case guard of
@@ -756,90 +736,19 @@ translateBoolGuard e
{- Note [Guards and Approximation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Even if the algorithm is really expressive, the term oracle we use is not.
-Hence, several features are not translated *properly* but we approximate.
-The list includes:
-
-1. View Patterns
-----------------
-A view pattern @(f -> p)@ should be translated to @x (p <- f x)@. The term
-oracle does not handle function applications so we know that the generated
-constraints will not be handled at the end. Hence, we distinguish between two
-cases:
- a) Pattern @p@ cannot fail. Then this is just a binding and we do the *right
- thing*.
- b) Pattern @p@ can fail. This means that when checking the guard, we will
- generate several cases, with no useful information. E.g.:
-
- h (f -> [a,b]) = ...
- h x ([a,b] <- f x) = ...
-
- uncovered set = { [x |> { False ~ (f x ~ []) }]
- , [x |> { False ~ (f x ~ (t1:[])) }]
- , [x |> { False ~ (f x ~ (t1:t2:t3:t4)) }] }
-
- So we have two problems:
- 1) Since we do not print the constraints in the general case (they may
- be too many), the warning will look like this:
-
- Pattern match(es) are non-exhaustive
- In an equation for `h':
- Patterns not matched:
- _
- _
- _
- Which is not short and not more useful than a single underscore.
- 2) The size of the uncovered set increases a lot, without gaining more
- expressivity in our warnings.
-
- Hence, in this case, we replace the guard @([a,b] <- f x)@ with a *dummy*
- @PmFake@: @True <- _@. That is, we record that there is a possibility
- of failure but we minimize it to a True/False. This generates a single
- warning and much smaller uncovered sets.
-
-2. Overloaded Lists
--------------------
-An overloaded list @[...]@ should be translated to @x ([...] <- toList x)@. The
-problem is exactly like above, as its solution. For future reference, the code
-below is the *right thing to do*:
-
- ListPat (ListPatTc elem_ty (Just (pat_ty, _to_list))) lpats
- otherwise -> do
- (xp, xe) <- mkPmId2Forms pat_ty
- ps <- translatePatVec (map unLoc lpats)
- let pats = foldr (mkListPatVec elem_ty) [nilPattern elem_ty] ps
- g = mkGuard pats (HsApp (noLoc to_list) xe)
- return [xp,g]
-
-3. Overloaded Literals
-----------------------
-The case with literals is a bit different. a literal @l@ should be translated
-to @x (True <- x == from l)@. Since we want to have better warnings for
-overloaded literals as it is a very common feature, we treat them differently.
-They are mainly covered in Note [Undecidable Equality for PmAltCons] in PmTypes.
-
-4. N+K Patterns & Pattern Synonyms
-----------------------------------
-An n+k pattern (n+k) should be translated to @x (True <- x >= k) (n <- x-k)@.
-Since the only pattern of the three that causes failure is guard @(n <- x-k)@,
-and has two possible outcomes. Hence, there is no benefit in using a dummy and
-we implement the proper thing. Pattern synonyms are simply not implemented yet.
-Hence, to be conservative, we generate a dummy pattern, assuming that the
-pattern can fail.
-
-5. Actual Guards
-----------------
-During translation, boolean guards and pattern guards are translated properly.
-Let bindings though are omitted by function @translateLet@. Since they are lazy
-bindings, we do not actually want to generate a (strict) equality (like we do
-in the pattern bind case). Hence, we safely drop them.
-
-Additionally, top-level guard translation (performed by @translateGuards@)
-replaces guards that cannot be reasoned about (like the ones we described in
-1-4) with a single @PmFake@ to record the possibility of failure to match.
-
-6. Combinatorial explosion
---------------------------
+Precise pattern match exchaustiveness checking is necessarily exponential in
+the size of some input programs. We implement a couple approximation and safe
+guards to prevent exponential blow-up:
+
+ * Guards usually provide little information gain while quickly leading to
+ exponential blow-up. See Note [Combinatorial explosion in guards].
+ * Similar to the situation with guards, refining a variable to a pattern
+ synonym application provides little value while easily leading to
+ exponential blow-up due to lack of generativity compared to DataCons.
+ See Note [Limit the number of refinements].
+
+Note [Combinatorial explosion in guards]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Function with many clauses and deeply nested guards like in #11195 tend to
overwhelm the checker because they lead to exponential splitting behavior.
See the comments on #11195 on refinement trees. Every guard refines the
@@ -937,7 +846,6 @@ pmPatType (PmVar { pm_var_id = x }) = idType x
pmPatType (PmGrd { pm_grd_pv = pv })
= ASSERT(patVecArity pv == 1) (pmPatType p)
where Just p = find ((==1) . patternArity) pv
-pmPatType PmFake = pmPatType truePattern
{-
Note [Extensions to GADTs Meet Their Match]
@@ -963,6 +871,11 @@ the paper. This Note serves as a reference for these new features.
mkGuard :: PatVec -> HsExpr GhcTc -> DsM PmPat
mkGuard pv e = PmGrd pv <$> dsExpr e
+mkGuardSyntaxExpr :: PatVec -> SyntaxExpr GhcTc -> [HsExpr GhcTc] -> DsM PmPat
+mkGuardSyntaxExpr pv f args = do
+ core_args <- traverse dsExpr args
+ PmGrd pv <$> dsSyntaxExpr f core_args
+
-- | Generate a variable pattern of a given type
mkPmVar :: Type -> DsM PmPat
mkPmVar ty = PmVar <$> mkPmId ty
@@ -979,80 +892,6 @@ mkPmId2Forms ty = do
x <- mkPmId ty
return (PmVar x, noLoc (HsVar noExtField (noLoc x)))
--- | Check whether a 'PmAltCon' has the /single match/ property, i.e. whether
--- it is the only possible match in the given context. See also
--- 'allCompleteMatches' and Note [Single match constructors].
-singleMatchConstructor :: PmAltCon -> [Type] -> DsM Bool
-singleMatchConstructor PmAltLit{} _ = pure False
-singleMatchConstructor (PmAltConLike cl) tys =
- any isSingleton <$> allCompleteMatches (conLikeResTy cl tys)
-
-{-
-Note [Single match constructors]
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-When translating pattern guards for consumption by the checker, we desugar
-every pattern guard that might fail ('cantFailPattern') to 'PmFake'
-(True <- _). Which patterns can't fail? Exactly those that only match on
-'singleMatchConstructor's.
-
-Here are a few examples:
- * @f a | (a, b) <- foo a = 42@: Product constructors are generally
- single match. This extends to single constructors of GADTs like 'Refl'.
- * If @f | Id <- id () = 42@, where @pattern Id = ()@ and 'Id' is part of a
- singleton `COMPLETE` set, then 'Id' has the single match property.
-
-In effect, we can just enumerate 'allCompleteMatches' and check if the conlike
-occurs as a singleton set.
-There's the chance that 'Id' is part of multiple `COMPLETE` sets. That's
-irrelevant; If the user specified a singleton set, it is single-match.
-
-Note that this doesn't really take into account incoming type constraints;
-It might be obvious from type context that a particular GADT constructor has
-the single-match property. We currently don't (can't) check this in the
-translation step. See #15753 for why this yields surprising results.
--}
-
--- | For a given type, finds all the COMPLETE sets of conlikes that inhabit it.
---
--- Note that for a data family instance, this must be the *representation* type.
--- e.g. data instance T (a,b) = T1 a b
--- leads to
--- data TPair a b = T1 a b -- The "representation" type
--- It is TPair a b, not T (a, b), that is given to allCompleteMatches
---
--- These come from two places.
--- 1. From data constructors defined with the result type constructor.
--- 2. From `COMPLETE` pragmas which have the same type as the result
--- type constructor. Note that we only use `COMPLETE` pragmas
--- *all* of whose pattern types match. See #14135
-allCompleteMatches :: Type -> DsM [[ConLike]]
-allCompleteMatches ty = case splitTyConApp_maybe ty of
- Nothing -> pure [] -- NB: We don't know any COMPLETE set, as opposed to [[]]
- Just (tc, tc_args) -> do
- -- Look into the representation type of a data family instance, too.
- env <- dsGetFamInstEnvs
- let (tc', _tc_args', _co) = tcLookupDataFamInst env tc tc_args
- let mb_rdcs = map RealDataCon <$> tyConDataCons_maybe tc'
- let maybe_to_list = maybe [] (:[])
- let rdcs = maybe_to_list mb_rdcs
- -- NB: tc, because COMPLETE sets are associated with the parent data family
- -- TyCon
- pragmas <- dsGetCompleteMatches tc
- let fams = mapM dsLookupConLike . completeMatchConLikes
- pscs <- mapM fams pragmas
- let candidates = rdcs ++ pscs
- -- Check that all the pattern synonym return types in a `COMPLETE`
- -- pragma subsume the type we're matching.
- -- See Note [Filtering out non-matching COMPLETE sets]
- pure (filter (isValidCompleteMatch ty) candidates)
- where
- isValidCompleteMatch :: Type -> [ConLike] -> Bool
- isValidCompleteMatch ty = all p
- where
- p (RealDataCon _) = True
- p (PatSynCon ps) = isJust (tcMatchTy (projResTy (patSynSig ps)) ty)
- projResTy (_, _, _, _, _, res_ty) = res_ty
-
{-
Note [Filtering out non-matching COMPLETE sets]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -1141,7 +980,6 @@ patVecArity = sum . map patternArity
-- | Compute the arity of a pattern
patternArity :: PmPat -> PmArity
patternArity (PmGrd {}) = 0
-patternArity PmFake = 0
patternArity _other_pat = 1
{-
@@ -1204,7 +1042,7 @@ pmcheckGuards [] _ delta = return (usimple delta)
pmcheckGuards (gv:gvs) n delta = do
(PartialResult cs unc ds) <- pmcheckI gv [] [] n delta
let (n', unc')
- -- See 6. in Note [Guards and Approximation]
+ -- See Note [Combinatorial explosion in guards]
| Just n' <- tryMultiplyDeltas (length unc) n = (n', unc)
| otherwise = (n, [delta])
(PartialResult css uncs dss) <- runMany (pmcheckGuardsI gvs n') unc'
@@ -1228,16 +1066,6 @@ pmcheck [] guards [] n delta
| otherwise = pmcheckGuardsI guards n delta
-- Guard
-pmcheck (PmFake : ps) guards vva n delta =
- -- short-circuit if the guard pattern is useless.
- -- we just have two possible outcomes: fail here or match and recurse
- -- none of the two contains any useful information about the failure
- -- though. So just have these two cases but do not do all the boilerplate
- -- TODO: I don't think this should mkCons delta, rather than just replace the
- -- presultUncovered by [delta] completely. Note that the uncovered set
- -- returned from the recursive call can only be a refinement of the
- -- original delta.
- forces . mkCons delta <$> pmcheckI ps guards vva n delta
pmcheck (p@PmGrd { pm_grd_pv = pv, pm_grd_expr = e } : ps) guards vva n delta = do
tracePm "PmGrd: pmPatType" (vcat [ppr p, ppr (pmPatType p)])
x <- mkPmId (exprType e)
@@ -1290,11 +1118,6 @@ pmcheck (_:_) _ [] _ _ = panic "pmcheck: cons-nil"
-- ----------------------------------------------------------------------------
-- * Utilities for main checking
-updateUncovered :: (Uncovered -> Uncovered) -> (PartialResult -> PartialResult)
-updateUncovered f p@(PartialResult { presultUncovered = old })
- = p { presultUncovered = f old }
-
-
-- | Initialise with default values for covering and divergent information and
-- a singleton uncovered set.
usimple :: Delta -> PartialResult
@@ -1308,10 +1131,6 @@ usimple delta = mempty { presultUncovered = [delta] }
mkUnion :: PartialResult -> PartialResult -> PartialResult
mkUnion = mappend
--- | Add a model to the uncovered set.
-mkCons :: Delta -> PartialResult -> PartialResult
-mkCons model = updateUncovered (model:)
-
-- | Set the divergent set to not empty
forces :: PartialResult -> PartialResult
forces pres = pres { presultDivergent = Diverged }