summaryrefslogtreecommitdiff
path: root/compiler/prelude
diff options
context:
space:
mode:
authorPaolo Capriotti <p.capriotti@gmail.com>2012-07-04 11:47:55 +0100
committerPaolo Capriotti <p.capriotti@gmail.com>2012-07-24 17:51:16 +0100
commit6a43840c9d9e0bcbfac64ee7f5fbd22a5701af5a (patch)
tree0d485e97cc7d4b198fe9d92e207ad7989fce9d2e /compiler/prelude
parentc9733e263906eaf13b3cc585e76f42e8bddbde4c (diff)
downloadhaskell-6a43840c9d9e0bcbfac64ee7f5fbd22a5701af5a.tar.gz
Refactor PrelRules and add more rules (#7014)
Ported various rules for numeric types from GHC.Base. Added new rules for bitwise operations, shifts and word comparisons.
Diffstat (limited to 'compiler/prelude')
-rw-r--r--compiler/prelude/PrelRules.lhs580
1 files changed, 334 insertions, 246 deletions
diff --git a/compiler/prelude/PrelRules.lhs b/compiler/prelude/PrelRules.lhs
index 2fccc0b7be..bc4fdac5fe 100644
--- a/compiler/prelude/PrelRules.lhs
+++ b/compiler/prelude/PrelRules.lhs
@@ -12,6 +12,7 @@ ToDo:
(i1 + i2) only if it results in a valid Float.
\begin{code}
+{-# LANGUAGE Rank2Types #-}
{-# OPTIONS -optc-DNON_POSIX_SOURCE #-}
module PrelRules ( primOpRules, builtinRules ) where
@@ -45,6 +46,7 @@ import Constants
import BasicTypes
import Util
+import Control.Monad
import Data.Bits as Bits
import Data.Int ( Int64 )
import Data.Word ( Word, Word64 )
@@ -53,7 +55,7 @@ import Data.Word ( Word, Word64 )
Note [Constant folding]
~~~~~~~~~~~~~~~~~~~~~~~
-primOpRules generates the rewrite rules for each primop
+primOpRules generates a rewrite rule for each primop
These rules do what is often called "constant folding"
E.g. the rules for +# might say
4 +# 5 = 9
@@ -64,127 +66,155 @@ more like
(Lit x) +# (Lit y) = Lit (x+#y)
where the (+#) on the rhs is done at compile time
-That is why these rules are built in here. Other rules
-which don't need to be built in are in GHC.Base. For
-example:
- x +# 0 = x
+That is why these rules are built in here.
\begin{code}
-primOpRules :: PrimOp -> Name -> [CoreRule]
-primOpRules op op_name = primop_rule op
- where
- -- A useful shorthand
- one_lit = oneLit op_name
- two_lits = twoLits op_name
- relop cmp = two_lits (cmpOp (\ord -> ord `cmp` EQ))
- -- Cunning. cmpOp compares the values to give an Ordering.
- -- It applies its argument to that ordering value to turn
- -- the ordering into a boolean value. (`cmp` EQ) is just the job.
-
+primOpRules :: Name -> PrimOp -> [CoreRule]
-- ToDo: something for integer-shift ops?
-- NotOp
+primOpRules nm TagToEnumOp = mkPrimOpRule nm 2 [ tagToEnumRule ]
+primOpRules nm DataToTagOp = mkPrimOpRule nm 2 [ dataToTagRule ]
+
+-- Int operations
+primOpRules nm IntAddOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 (+))
+ , identity zeroi ]
+primOpRules nm IntSubOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 (-))
+ , rightIdentity zeroi
+ , equalArgs >> return (Lit zeroi) ]
+primOpRules nm IntMulOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 (*))
+ , zeroElem zeroi
+ , identity onei ]
+primOpRules nm IntQuotOp = mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (intOp2 quot)
+ , leftZero zeroi
+ , rightIdentity onei
+ , equalArgs >> return (Lit onei) ]
+primOpRules nm IntRemOp = mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (intOp2 rem)
+ , leftZero zeroi
+ , do l <- getLiteral 1
+ guard (l == onei)
+ return (Lit zeroi)
+ , equalArgs >> return (Lit zeroi)
+ , equalArgs >> return (Lit zeroi) ]
+primOpRules nm IntNegOp = mkPrimOpRule nm 1 [ unaryLit negOp ]
+primOpRules nm ISllOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 Bits.shiftL)
+ , rightIdentity zeroi ]
+primOpRules nm ISraOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 Bits.shiftR)
+ , rightIdentity zeroi ]
+primOpRules nm ISrlOp = mkPrimOpRule nm 2 [ binaryLit (intOp2 shiftRightLogical)
+ , rightIdentity zeroi ]
+
+-- Word operations
+primOpRules nm WordAddOp = mkPrimOpRule nm 2 [ binaryLit (wordOp2 (+))
+ , identity zerow ]
+primOpRules nm WordSubOp = mkPrimOpRule nm 2 [ binaryLit (wordOp2 (-))
+ , rightIdentity zerow
+ , equalArgs >> return (Lit zerow) ]
+primOpRules nm WordMulOp = mkPrimOpRule nm 2 [ binaryLit (wordOp2 (*))
+ , identity onew ]
+primOpRules nm WordQuotOp = mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (wordOp2 quot)
+ , rightIdentity onew ]
+primOpRules nm WordRemOp = mkPrimOpRule nm 2 [ nonZeroLit 1 >> binaryLit (wordOp2 rem)
+ , rightIdentity onew ]
+primOpRules nm AndOp = mkPrimOpRule nm 2 [ binaryLit (wordOp2 (.&.))
+ , zeroElem zerow ]
+primOpRules nm OrOp = mkPrimOpRule nm 2 [ binaryLit (wordOp2 (.|.))
+ , identity zerow ]
+primOpRules nm XorOp = mkPrimOpRule nm 2 [ binaryLit (wordOp2 xor)
+ , identity zerow
+ , equalArgs >> return (Lit zerow) ]
+primOpRules nm SllOp = mkPrimOpRule nm 2 [ binaryLit (wordShiftOp2 Bits.shiftL)
+ , rightIdentity zeroi ]
+primOpRules nm SrlOp = mkPrimOpRule nm 2 [ binaryLit (wordShiftOp2 shiftRightLogical)
+ , rightIdentity zeroi ]
+
+-- coercions
+primOpRules nm Word2IntOp = mkPrimOpRule nm 1 [ liftLit word2IntLit ]
+primOpRules nm Int2WordOp = mkPrimOpRule nm 1 [ liftLit int2WordLit ]
+primOpRules nm Narrow8IntOp = mkPrimOpRule nm 1 [ liftLit narrow8IntLit ]
+primOpRules nm Narrow16IntOp = mkPrimOpRule nm 1 [ liftLit narrow16IntLit ]
+primOpRules nm Narrow32IntOp = mkPrimOpRule nm 1 [ liftLit narrow32IntLit ]
+primOpRules nm Narrow8WordOp = mkPrimOpRule nm 1 [ liftLit narrow8WordLit ]
+primOpRules nm Narrow16WordOp = mkPrimOpRule nm 1 [ liftLit narrow16WordLit ]
+primOpRules nm Narrow32WordOp = mkPrimOpRule nm 1 [ liftLit narrow32WordLit ]
+primOpRules nm OrdOp = mkPrimOpRule nm 1 [ liftLit char2IntLit ]
+primOpRules nm ChrOp = mkPrimOpRule nm 1 [ do { [Lit lit] <- getArgs
+ ; guard (litFitsInChar lit)
+ ; liftLit int2CharLit } ]
+primOpRules nm Float2IntOp = mkPrimOpRule nm 1 [ liftLit float2IntLit ]
+primOpRules nm Int2FloatOp = mkPrimOpRule nm 1 [ liftLit int2FloatLit ]
+primOpRules nm Double2IntOp = mkPrimOpRule nm 1 [ liftLit double2IntLit ]
+primOpRules nm Int2DoubleOp = mkPrimOpRule nm 1 [ liftLit int2DoubleLit ]
+-- SUP: Not sure what the standard says about precision in the following 2 cases
+primOpRules nm Float2DoubleOp = mkPrimOpRule nm 1 [ liftLit float2DoubleLit ]
+primOpRules nm Double2FloatOp = mkPrimOpRule nm 1 [ liftLit double2FloatLit ]
+
+-- Float
+primOpRules nm FloatAddOp = mkPrimOpRule nm 2 [ binaryLit (floatOp2 (+))
+ , identity zerof ]
+primOpRules nm FloatSubOp = mkPrimOpRule nm 2 [ binaryLit (floatOp2 (-))
+ , rightIdentity zerof ]
+primOpRules nm FloatMulOp = mkPrimOpRule nm 2 [ binaryLit (floatOp2 (*))
+ , identity onef ]
+ -- zeroElem zerof doesn't hold because of NaN
+primOpRules nm FloatDivOp = mkPrimOpRule nm 2 [ guardFloatDiv >> binaryLit (floatOp2 (/))
+ , rightIdentity onef ]
+primOpRules nm FloatNegOp = mkPrimOpRule nm 1 [ unaryLit negOp ]
+
+-- Double
+primOpRules nm DoubleAddOp = mkPrimOpRule nm 2 [ binaryLit (doubleOp2 (+))
+ , identity zerod ]
+primOpRules nm DoubleSubOp = mkPrimOpRule nm 2 [ binaryLit (doubleOp2 (-))
+ , rightIdentity zerod ]
+primOpRules nm DoubleMulOp = mkPrimOpRule nm 2 [ binaryLit (doubleOp2 (*))
+ , identity oned ]
+ -- zeroElem zerod doesn't hold because of NaN
+primOpRules nm DoubleDivOp = mkPrimOpRule nm 2 [ guardDoubleDiv >> binaryLit (doubleOp2 (/))
+ , rightIdentity oned ]
+primOpRules nm DoubleNegOp = mkPrimOpRule nm 1 [ unaryLit negOp ]
+
+-- Relational operators
+primOpRules nm IntEqOp = mkRelOpRule nm (==) ++ litEq nm True
+primOpRules nm IntNeOp = mkRelOpRule nm (/=) ++ litEq nm False
+primOpRules nm CharEqOp = mkRelOpRule nm (==) ++ litEq nm True
+primOpRules nm CharNeOp = mkRelOpRule nm (/=) ++ litEq nm False
+
+primOpRules nm IntGtOp = mkRelOpRule nm (>) ++ boundsCmp nm Gt
+primOpRules nm IntGeOp = mkRelOpRule nm (>=) ++ boundsCmp nm Ge
+primOpRules nm IntLeOp = mkRelOpRule nm (<=) ++ boundsCmp nm Le
+primOpRules nm IntLtOp = mkRelOpRule nm (<) ++ boundsCmp nm Lt
+
+primOpRules nm CharGtOp = mkRelOpRule nm (>) ++ boundsCmp nm Gt
+primOpRules nm CharGeOp = mkRelOpRule nm (>=) ++ boundsCmp nm Ge
+primOpRules nm CharLeOp = mkRelOpRule nm (<=) ++ boundsCmp nm Le
+primOpRules nm CharLtOp = mkRelOpRule nm (<) ++ boundsCmp nm Lt
+
+primOpRules nm FloatGtOp = mkRelOpRule nm (>)
+primOpRules nm FloatGeOp = mkRelOpRule nm (>=)
+primOpRules nm FloatLeOp = mkRelOpRule nm (<=)
+primOpRules nm FloatLtOp = mkRelOpRule nm (<)
+primOpRules nm FloatEqOp = mkRelOpRule nm (==)
+primOpRules nm FloatNeOp = mkRelOpRule nm (/=)
+
+primOpRules nm DoubleGtOp = mkRelOpRule nm (>)
+primOpRules nm DoubleGeOp = mkRelOpRule nm (>=)
+primOpRules nm DoubleLeOp = mkRelOpRule nm (<=)
+primOpRules nm DoubleLtOp = mkRelOpRule nm (<)
+primOpRules nm DoubleEqOp = mkRelOpRule nm (==)
+primOpRules nm DoubleNeOp = mkRelOpRule nm (/=)
+
+primOpRules nm WordGtOp = mkRelOpRule nm (>) ++ boundsCmp nm Gt
+primOpRules nm WordGeOp = mkRelOpRule nm (>=) ++ boundsCmp nm Ge
+primOpRules nm WordLeOp = mkRelOpRule nm (<=) ++ boundsCmp nm Le
+primOpRules nm WordLtOp = mkRelOpRule nm (<) ++ boundsCmp nm Lt
+primOpRules nm WordEqOp = mkRelOpRule nm (==)
+primOpRules nm WordNeOp = mkRelOpRule nm (/=)
+
+primOpRules nm SeqOp = mkPrimOpRule nm 4 [ seqRule ]
+primOpRules nm SparkOp = mkPrimOpRule nm 4 [ sparkRule ]
+
+primOpRules _ _ = []
- primop_rule TagToEnumOp = mkBasicRule op_name 2 tagToEnumRule
- primop_rule DataToTagOp = mkBasicRule op_name 2 dataToTagRule
-
- -- Int operations
- primop_rule IntAddOp = two_lits (intOp2 (+))
- primop_rule IntSubOp = two_lits (intOp2 (-))
- primop_rule IntMulOp = two_lits (intOp2 (*))
- primop_rule IntQuotOp = two_lits (intOp2Z quot)
- primop_rule IntRemOp = two_lits (intOp2Z rem)
- primop_rule IntNegOp = one_lit negOp
- primop_rule ISllOp = two_lits (intShiftOp2 Bits.shiftL)
- primop_rule ISraOp = two_lits (intShiftOp2 Bits.shiftR)
- primop_rule ISrlOp = two_lits (intShiftOp2 shiftRightLogical)
-
- -- Word operations
- primop_rule WordAddOp = two_lits (wordOp2 (+))
- primop_rule WordSubOp = two_lits (wordOp2 (-))
- primop_rule WordMulOp = two_lits (wordOp2 (*))
- primop_rule WordQuotOp = two_lits (wordOp2Z quot)
- primop_rule WordRemOp = two_lits (wordOp2Z rem)
- primop_rule AndOp = two_lits (wordBitOp2 (.&.))
- primop_rule OrOp = two_lits (wordBitOp2 (.|.))
- primop_rule XorOp = two_lits (wordBitOp2 xor)
- primop_rule SllOp = two_lits (wordShiftOp2 Bits.shiftL)
- primop_rule SrlOp = two_lits (wordShiftOp2 shiftRightLogical)
-
- -- coercions
- primop_rule Word2IntOp = one_lit (litCoerce word2IntLit)
- primop_rule Int2WordOp = one_lit (litCoerce int2WordLit)
- primop_rule Narrow8IntOp = one_lit (litCoerce narrow8IntLit)
- primop_rule Narrow16IntOp = one_lit (litCoerce narrow16IntLit)
- primop_rule Narrow32IntOp = one_lit (litCoerce narrow32IntLit)
- primop_rule Narrow8WordOp = one_lit (litCoerce narrow8WordLit)
- primop_rule Narrow16WordOp = one_lit (litCoerce narrow16WordLit)
- primop_rule Narrow32WordOp = one_lit (litCoerce narrow32WordLit)
- primop_rule OrdOp = one_lit (litCoerce char2IntLit)
- primop_rule ChrOp = one_lit (predLitCoerce litFitsInChar int2CharLit)
- primop_rule Float2IntOp = one_lit (litCoerce float2IntLit)
- primop_rule Int2FloatOp = one_lit (litCoerce int2FloatLit)
- primop_rule Double2IntOp = one_lit (litCoerce double2IntLit)
- primop_rule Int2DoubleOp = one_lit (litCoerce int2DoubleLit)
- -- SUP: Not sure what the standard says about precision in the following 2 cases
- primop_rule Float2DoubleOp = one_lit (litCoerce float2DoubleLit)
- primop_rule Double2FloatOp = one_lit (litCoerce double2FloatLit)
-
- -- Float
- primop_rule FloatAddOp = two_lits (floatOp2 (+))
- primop_rule FloatSubOp = two_lits (floatOp2 (-))
- primop_rule FloatMulOp = two_lits (floatOp2 (*))
- primop_rule FloatDivOp = two_lits (floatOp2Z (/))
- primop_rule FloatNegOp = one_lit negOp
-
- -- Double
- primop_rule DoubleAddOp = two_lits (doubleOp2 (+))
- primop_rule DoubleSubOp = two_lits (doubleOp2 (-))
- primop_rule DoubleMulOp = two_lits (doubleOp2 (*))
- primop_rule DoubleDivOp = two_lits (doubleOp2Z (/))
- primop_rule DoubleNegOp = one_lit negOp
-
- -- Relational operators
- primop_rule IntEqOp = relop (==) ++ litEq op_name True
- primop_rule IntNeOp = relop (/=) ++ litEq op_name False
- primop_rule CharEqOp = relop (==) ++ litEq op_name True
- primop_rule CharNeOp = relop (/=) ++ litEq op_name False
-
- primop_rule IntGtOp = relop (>) ++ boundsCmp op_name Gt
- primop_rule IntGeOp = relop (>=) ++ boundsCmp op_name Ge
- primop_rule IntLeOp = relop (<=) ++ boundsCmp op_name Le
- primop_rule IntLtOp = relop (<) ++ boundsCmp op_name Lt
-
- primop_rule CharGtOp = relop (>) ++ boundsCmp op_name Gt
- primop_rule CharGeOp = relop (>=) ++ boundsCmp op_name Ge
- primop_rule CharLeOp = relop (<=) ++ boundsCmp op_name Le
- primop_rule CharLtOp = relop (<) ++ boundsCmp op_name Lt
-
- primop_rule FloatGtOp = relop (>)
- primop_rule FloatGeOp = relop (>=)
- primop_rule FloatLeOp = relop (<=)
- primop_rule FloatLtOp = relop (<)
- primop_rule FloatEqOp = relop (==)
- primop_rule FloatNeOp = relop (/=)
-
- primop_rule DoubleGtOp = relop (>)
- primop_rule DoubleGeOp = relop (>=)
- primop_rule DoubleLeOp = relop (<=)
- primop_rule DoubleLtOp = relop (<)
- primop_rule DoubleEqOp = relop (==)
- primop_rule DoubleNeOp = relop (/=)
-
- primop_rule WordGtOp = relop (>) ++ boundsCmp op_name Gt
- primop_rule WordGeOp = relop (>=) ++ boundsCmp op_name Ge
- primop_rule WordLeOp = relop (<=) ++ boundsCmp op_name Le
- primop_rule WordLtOp = relop (<) ++ boundsCmp op_name Lt
- primop_rule WordEqOp = relop (==)
- primop_rule WordNeOp = relop (/=)
-
- primop_rule SeqOp = mkBasicRule op_name 4 seqRule
- primop_rule SparkOp = mkBasicRule op_name 4 sparkRule
-
- primop_rule _ = []
\end{code}
%************************************************************************
@@ -193,36 +223,49 @@ primOpRules op op_name = primop_rule op
%* *
%************************************************************************
-ToDo: the reason these all return Nothing is because there used to be
-the possibility of an argument being a litlit. Litlits are now gone,
-so this could be cleaned up.
-
\begin{code}
---------------------------
-litCoerce :: (Literal -> Literal) -> Literal -> Maybe CoreExpr
-litCoerce fn lit = Just (Lit (fn lit))
-predLitCoerce :: (Literal -> Bool) -> (Literal -> Literal) -> Literal -> Maybe CoreExpr
-predLitCoerce p fn lit
- | p lit = Just (Lit (fn lit))
- | otherwise = Nothing
-
---------------------------
-cmpOp :: (Ordering -> Bool) -> Literal -> Literal -> Maybe CoreExpr
-cmpOp cmp l1 l2
- = go l1 l2
+-- useful shorthands
+mkPrimOpRule :: Name -> Int -> [RuleM CoreExpr] -> [CoreRule]
+mkPrimOpRule nm arity rules = mkBasicRule nm arity (msum rules)
+
+mkRelOpRule :: Name -> (forall a . Ord a => a -> a -> Bool) -> [CoreRule]
+mkRelOpRule nm cmp
+ = mkPrimOpRule nm 2 [ binaryLit (cmpOp cmp)
+ , equalArgs >>
+ -- x `cmp` x does not depend on x, so
+ -- compute it for the arbitrary value 'True'
+ -- and use that result
+ return (if cmp True True
+ then trueVal
+ else falseVal) ]
+
+-- common constants
+zeroi, onei, zerow, onew, zerof, onef, zerod, oned :: Literal
+zeroi = mkMachInt 0
+onei = mkMachInt 1
+zerow = mkMachWord 0
+onew = mkMachWord 1
+zerof = mkMachFloat 0.0
+onef = mkMachFloat 1.0
+zerod = mkMachDouble 0.0
+oned = mkMachDouble 1.0
+
+cmpOp :: (forall a . Ord a => a -> a -> Bool)
+ -> Literal -> Literal -> Maybe CoreExpr
+cmpOp cmp = go
where
- done res | cmp res = Just trueVal
- | otherwise = Just falseVal
+ done True = Just trueVal
+ done False = Just falseVal
-- These compares are at different types
- go (MachChar i1) (MachChar i2) = done (i1 `compare` i2)
- go (MachInt i1) (MachInt i2) = done (i1 `compare` i2)
- go (MachInt64 i1) (MachInt64 i2) = done (i1 `compare` i2)
- go (MachWord i1) (MachWord i2) = done (i1 `compare` i2)
- go (MachWord64 i1) (MachWord64 i2) = done (i1 `compare` i2)
- go (MachFloat i1) (MachFloat i2) = done (i1 `compare` i2)
- go (MachDouble i1) (MachDouble i2) = done (i1 `compare` i2)
+ go (MachChar i1) (MachChar i2) = done (i1 `cmp` i2)
+ go (MachInt i1) (MachInt i2) = done (i1 `cmp` i2)
+ go (MachInt64 i1) (MachInt64 i2) = done (i1 `cmp` i2)
+ go (MachWord i1) (MachWord i2) = done (i1 `cmp` i2)
+ go (MachWord64 i1) (MachWord64 i2) = done (i1 `cmp` i2)
+ go (MachFloat i1) (MachFloat i2) = done (i1 `cmp` i2)
+ go (MachDouble i1) (MachDouble i2) = done (i1 `cmp` i2)
go _ _ = Nothing
--------------------------
@@ -236,21 +279,12 @@ negOp (MachInt i) = intResult (-i)
negOp _ = Nothing
--------------------------
-intOp2 :: (Integer->Integer->Integer) -> Literal -> Literal -> Maybe CoreExpr
-intOp2 op (MachInt i1) (MachInt i2) = intResult (i1 `op` i2)
+intOp2 :: (Integral a, Integral b)
+ => (a -> b -> Integer)
+ -> Literal -> Literal -> Maybe CoreExpr
+intOp2 op (MachInt i1) (MachInt i2) = intResult (fromInteger i1 `op` fromInteger i2)
intOp2 _ _ _ = Nothing -- Could find LitLit
-intOp2Z :: (Integer->Integer->Integer) -> Literal -> Literal -> Maybe CoreExpr
--- Like intOp2, but Nothing if i2=0
-intOp2Z op (MachInt i1) (MachInt i2)
- | i2 /= 0 = intResult (i1 `op` i2)
-intOp2Z _ _ _ = Nothing -- LitLit or zero dividend
-
-intShiftOp2 :: (Integer->Int->Integer) -> Literal -> Literal -> Maybe CoreExpr
--- Shifts take an Int; hence second arg of op is Int
-intShiftOp2 op (MachInt i1) (MachInt i2) = intResult (i1 `op` fromInteger i2)
-intShiftOp2 _ _ _ = Nothing
-
shiftRightLogical :: Integer -> Int -> Integer
-- Shift right, putting zeros in rather than sign-propagating as Bits.shiftR would do
-- Do this by converting to Word and back. Obviously this won't work for big
@@ -259,22 +293,12 @@ shiftRightLogical x n = fromIntegral (fromInteger x `shiftR` n :: Word)
--------------------------
-wordOp2 :: (Integer->Integer->Integer) -> Literal -> Literal -> Maybe CoreExpr
-wordOp2 op (MachWord w1) (MachWord w2)
- = wordResult (w1 `op` w2)
+wordOp2 :: (Integral a, Integral b)
+ => (a -> b -> Integer)
+ -> Literal -> Literal -> Maybe CoreExpr
+wordOp2 op (MachWord w1) (MachWord w2) = wordResult (fromInteger w1 `op` fromInteger w2)
wordOp2 _ _ _ = Nothing -- Could find LitLit
-wordOp2Z :: (Integer->Integer->Integer) -> Literal -> Literal -> Maybe CoreExpr
-wordOp2Z op (MachWord w1) (MachWord w2)
- | w2 /= 0 = wordResult (w1 `op` w2)
-wordOp2Z _ _ _ = Nothing -- LitLit or zero dividend
-
-wordBitOp2 :: (Integer->Integer->Integer) -> Literal -> Literal
- -> Maybe CoreExpr
-wordBitOp2 op (MachWord w1) (MachWord w2)
- = wordResult (w1 `op` w2)
-wordBitOp2 _ _ _ = Nothing -- Could find LitLit
-
wordShiftOp2 :: (Integer->Int->Integer) -> Literal -> Literal -> Maybe CoreExpr
-- Shifts take an Int; hence second arg of op is Int
wordShiftOp2 op (MachWord x) (MachInt n)
@@ -289,14 +313,6 @@ floatOp2 op (MachFloat f1) (MachFloat f2)
= Just (mkFloatVal (f1 `op` f2))
floatOp2 _ _ _ = Nothing
-floatOp2Z :: (Rational -> Rational -> Rational) -> Literal -> Literal
- -> Maybe (Expr CoreBndr)
-floatOp2Z op (MachFloat f1) (MachFloat f2)
- | (f1 /= 0 || f2 > 0) -- see Note [negative zero]
- && f2 /= 0 -- avoid NaN and Infinity/-Infinity
- = Just (mkFloatVal (f1 `op` f2))
-floatOp2Z _ _ _ = Nothing
-
--------------------------
doubleOp2 :: (Rational -> Rational -> Rational) -> Literal -> Literal
-> Maybe (Expr CoreBndr)
@@ -304,19 +320,6 @@ doubleOp2 op (MachDouble f1) (MachDouble f2)
= Just (mkDoubleVal (f1 `op` f2))
doubleOp2 _ _ _ = Nothing
-doubleOp2Z :: (Rational -> Rational -> Rational) -> Literal -> Literal
- -> Maybe (Expr CoreBndr)
-doubleOp2Z op (MachDouble f1) (MachDouble f2)
- | (f1 /= 0 || f2 > 0) -- see Note [negative zero]
- && f2 /= 0 -- avoid NaN and Infinity/-Infinity
- = Just (mkDoubleVal (f1 `op` f2))
- -- Note [negative zero] Avoid (0 / -d), otherwise 0/(-1) reduces to
- -- zero, but we might want to preserve the negative zero here which
- -- is representable in Float/Double but not in (normalised)
- -- Rational. (#3676) Perhaps we should generate (0 :% (-1)) instead?
-doubleOp2Z _ _ _ = Nothing
-
-
--------------------------
-- This stuff turns
-- n ==# 3#
@@ -431,41 +434,125 @@ wordResult result
%************************************************************************
\begin{code}
-mkBasicRule :: Name -> Int
- -> (IdUnfoldingFun -> [CoreExpr] -> Maybe CoreExpr)
- -> [CoreRule]
+mkBasicRule :: Name -> Int -> RuleM CoreExpr -> [CoreRule]
-- Gives the Rule the same name as the primop itself
-mkBasicRule op_name n_args rule_fn
+mkBasicRule op_name n_args rm
= [BuiltinRule { ru_name = occNameFS (nameOccName op_name),
ru_fn = op_name,
- ru_nargs = n_args, ru_try = \_ -> rule_fn }]
-
-oneLit :: Name -> (Literal -> Maybe CoreExpr)
- -> [CoreRule]
-oneLit op_name test
- = mkBasicRule op_name 1 rule_fn
- where
- rule_fn _ [Lit l1] = test (convFloating l1)
- rule_fn _ _ = Nothing
-
-twoLits :: Name -> (Literal -> Literal -> Maybe CoreExpr)
- -> [CoreRule]
-twoLits op_name test
- = mkBasicRule op_name 2 rule_fn
- where
- rule_fn _ [Lit l1, Lit l2] = test (convFloating l1) (convFloating l2)
- rule_fn _ _ = Nothing
+ ru_nargs = n_args,
+ ru_try = \_ -> runRuleM rm }]
+
+newtype RuleM r = RuleM
+ { runRuleM :: IdUnfoldingFun -> [CoreExpr] -> Maybe r }
+
+instance Monad RuleM where
+ return x = RuleM $ \_ _ -> Just x
+ RuleM f >>= g = RuleM $ \iu e -> case f iu e of
+ Nothing -> Nothing
+ Just r -> runRuleM (g r) iu e
+ fail _ = mzero
+
+instance MonadPlus RuleM where
+ mzero = RuleM $ \_ _ -> Nothing
+ mplus (RuleM f1) (RuleM f2) = RuleM $ \iu args ->
+ f1 iu args `mplus` f2 iu args
+
+liftMaybe :: Maybe a -> RuleM a
+liftMaybe Nothing = mzero
+liftMaybe (Just x) = return x
+
+liftLit :: (Literal -> Literal) -> RuleM CoreExpr
+liftLit f = do
+ [Lit lit] <- getArgs
+ return $ Lit (f lit)
+
+getArgs :: RuleM [CoreExpr]
+getArgs = RuleM $ \_ args -> Just args
+
+getIdUnfoldingFun :: RuleM IdUnfoldingFun
+getIdUnfoldingFun = RuleM $ \iu _ -> Just iu
+
+-- return the n-th argument of this rule, if it is a literal
+-- argument indices start from 0
+getLiteral :: Int -> RuleM Literal
+getLiteral n = RuleM $ \_ exprs -> case drop n exprs of
+ (Lit l:_) -> Just l
+ _ -> Nothing
+
+unaryLit :: (Literal -> Maybe CoreExpr) -> RuleM CoreExpr
+unaryLit op = do
+ [Lit l] <- getArgs
+ liftMaybe $ op (convFloating l)
+
+binaryLit :: (Literal -> Literal -> Maybe CoreExpr) -> RuleM CoreExpr
+binaryLit op = do
+ [Lit l1, Lit l2] <- getArgs
+ liftMaybe $ convFloating l1 `op` convFloating l2
+
+leftIdentity :: Literal -> RuleM CoreExpr
+leftIdentity id_lit = do
+ [Lit l1, e2] <- getArgs
+ guard $ l1 == id_lit
+ return e2
+
+rightIdentity :: Literal -> RuleM CoreExpr
+rightIdentity id_lit = do
+ [e1, Lit l2] <- getArgs
+ guard $ l2 == id_lit
+ return e1
+
+identity :: Literal -> RuleM CoreExpr
+identity lit = leftIdentity lit `mplus` rightIdentity lit
+
+leftZero :: Literal -> RuleM CoreExpr
+leftZero zero = do
+ [Lit l1, _] <- getArgs
+ guard $ l1 == zero
+ return $ Lit zero
+
+rightZero :: Literal -> RuleM CoreExpr
+rightZero zero = do
+ [_, Lit l2] <- getArgs
+ guard $ l2 == zero
+ return $ Lit zero
+
+zeroElem :: Literal -> RuleM CoreExpr
+zeroElem lit = leftZero lit `mplus` rightZero lit
+
+equalArgs :: RuleM ()
+equalArgs = do
+ [e1, e2] <- getArgs
+ guard $ e1 `cheapEqExpr` e2
+
+nonZeroLit :: Int -> RuleM ()
+nonZeroLit n = getLiteral n >>= guard . not . isZeroLit
-- When excess precision is not requested, cut down the precision of the
-- Rational value to that of Float/Double. We confuse host architecture
-- and target architecture here, but it's convenient (and wrong :-).
convFloating :: Literal -> Literal
convFloating (MachFloat f) | not opt_SimplExcessPrecision =
- MachFloat (toRational ((fromRational f) :: Float ))
+ MachFloat (toRational (fromRational f :: Float ))
convFloating (MachDouble d) | not opt_SimplExcessPrecision =
- MachDouble (toRational ((fromRational d) :: Double))
+ MachDouble (toRational (fromRational d :: Double))
convFloating l = l
+guardFloatDiv :: RuleM ()
+guardFloatDiv = do
+ [Lit (MachFloat f1), Lit (MachFloat f2)] <- getArgs
+ guard $ (f1 /=0 || f2 > 0) -- see Note [negative zero]
+ && f2 /= 0 -- avoid NaN and Infinity/-Infinity
+
+guardDoubleDiv :: RuleM ()
+guardDoubleDiv = do
+ [Lit (MachDouble d1), Lit (MachDouble d2)] <- getArgs
+ guard $ (d1 /=0 || d2 > 0) -- see Note [negative zero]
+ && d2 /= 0 -- avoid NaN and Infinity/-Infinity
+-- Note [negative zero] Avoid (0 / -d), otherwise 0/(-1) reduces to
+-- zero, but we might want to preserve the negative zero here which
+-- is representable in Float/Double but not in (normalised)
+-- Rational. (#3676) Perhaps we should generate (0 :% (-1)) instead?
+
trueVal, falseVal :: Expr CoreBndr
trueVal = Var trueDataConId
falseVal = Var falseDataConId
@@ -514,24 +601,22 @@ rewrite rule rewrites a bad instance of tagToEnum# to an error call,
and emits a warning.
\begin{code}
-tagToEnumRule :: IdUnfoldingFun -> [Expr CoreBndr] -> Maybe (Expr CoreBndr)
+tagToEnumRule :: RuleM CoreExpr
-- If data T a = A | B | C
-- then tag2Enum# (T ty) 2# --> B ty
-tagToEnumRule _ [Type ty, Lit (MachInt i)]
- | Just (tycon, tc_args) <- splitTyConApp_maybe ty
- , isEnumerationTyCon tycon
- = case filter correct_tag (tyConDataCons_maybe tycon `orElse` []) of
- [] -> Nothing -- Abstract type
- (dc:rest) -> ASSERT( null rest )
- Just (mkTyApps (Var (dataConWorkId dc)) tc_args)
- | otherwise -- See Note [tagToEnum#]
- = WARN( True, ptext (sLit "tagToEnum# on non-enumeration type") <+> ppr ty )
- Just (mkRuntimeErrorApp rUNTIME_ERROR_ID ty "tagToEnum# on non-enumeration type")
- where
- correct_tag dc = (dataConTag dc - fIRST_TAG) == tag
- tag = fromInteger i
-
-tagToEnumRule _ _ = Nothing
+tagToEnumRule = do
+ [Type ty, Lit (MachInt i)] <- getArgs
+ case splitTyConApp_maybe ty of
+ Just (tycon, tc_args) | isEnumerationTyCon tycon -> do
+ let tag = fromInteger i
+ correct_tag dc = (dataConTag dc - fIRST_TAG) == tag
+ (dc:rest) <- return $ filter correct_tag (tyConDataCons_maybe tycon `orElse` [])
+ ASSERT (null rest) return ()
+ return $ mkTyApps (Var (dataConWorkId dc)) tc_args
+
+ -- See Note [tagToEnum#]
+ _ -> WARN( True, ptext (sLit "tagToEnum# on non-enumeration type") <+> ppr ty )
+ return $ mkRuntimeErrorApp rUNTIME_ERROR_ID ty "tagToEnum# on non-enumeration type"
\end{code}
@@ -541,18 +626,20 @@ For dataToTag#, we can reduce if either
(b) the argument is a variable whose unfolding is a known constructor
\begin{code}
-dataToTagRule :: IdUnfoldingFun -> [Expr CoreBndr] -> Maybe (Arg CoreBndr)
-dataToTagRule _ [Type ty1, Var tag_to_enum `App` Type ty2 `App` tag]
- | tag_to_enum `hasKey` tagToEnumKey
- , ty1 `eqType` ty2
- = Just tag -- dataToTag (tagToEnum x) ==> x
-
-dataToTagRule id_unf [_, val_arg]
- | Just (dc,_,_) <- exprIsConApp_maybe id_unf val_arg
- = ASSERT( not (isNewTyCon (dataConTyCon dc)) )
- Just (mkIntVal (toInteger (dataConTag dc - fIRST_TAG)))
-
-dataToTagRule _ _ = Nothing
+dataToTagRule :: RuleM CoreExpr
+dataToTagRule = a `mplus` b
+ where
+ a = do
+ [Type ty1, Var tag_to_enum `App` Type ty2 `App` tag] <- getArgs
+ guard $ tag_to_enum `hasKey` tagToEnumKey
+ guard $ ty1 `eqType` ty2
+ return tag -- dataToTag (tagToEnum x) ==> x
+ b = do
+ [_, val_arg] <- getArgs
+ id_unf <- getIdUnfoldingFun
+ (dc,_,_) <- liftMaybe $ exprIsConApp_maybe id_unf val_arg
+ ASSERT( not (isNewTyCon (dataConTyCon dc)) ) return ()
+ return $ mkIntVal (toInteger (dataConTag dc - fIRST_TAG))
\end{code}
%************************************************************************
@@ -563,14 +650,15 @@ dataToTagRule _ _ = Nothing
\begin{code}
-- seq# :: forall a s . a -> State# s -> (# State# s, a #)
-seqRule :: IdUnfoldingFun -> [CoreExpr] -> Maybe CoreExpr
-seqRule _ [ty_a, Type ty_s, a, s] | exprIsHNF a
- = Just (mkConApp (tupleCon UnboxedTuple 2)
- [Type (mkStatePrimTy ty_s), ty_a, s, a])
-seqRule _ _ = Nothing
+seqRule :: RuleM CoreExpr
+seqRule = do
+ [ty_a, Type ty_s, a, s] <- getArgs
+ guard $ exprIsHNF a
+ return $ mkConApp (tupleCon UnboxedTuple 2)
+ [Type (mkStatePrimTy ty_s), ty_a, s, a]
-- spark# :: forall a s . a -> State# s -> (# State# s, a #)
-sparkRule :: IdUnfoldingFun -> [CoreExpr] -> Maybe CoreExpr
+sparkRule :: RuleM CoreExpr
sparkRule = seqRule -- reduce on HNF, just the same
-- XXX perhaps we shouldn't do this, because a spark eliminated by
-- this rule won't be counted as a dud at runtime?