diff options
author | simonpj@microsoft.com <unknown> | 2007-02-09 17:36:45 +0000 |
---|---|---|
committer | simonpj@microsoft.com <unknown> | 2007-02-09 17:36:45 +0000 |
commit | cac2aca1e1874e936f3ef15ca2a81a32c7863750 (patch) | |
tree | c119a5ee110e4ff444a19d3f93e9c94c66fd3c61 /compiler/specialise | |
parent | e9f23b4cc3df781f2fc84b48716a7779ecc8ab06 (diff) | |
download | haskell-cac2aca1e1874e936f3ef15ca2a81a32c7863750.tar.gz |
Major improvement to SpecConstr
This patch improves the SpecConstr pass, by
a) making it work with join points
b) making it generate specialisations transitively
As part of it, SpecConstr now carries a substitution with it, which
runs over the whole program as it goes. This turned out to be
a big win; simplified the implementation quite a bit.
I have *disabled* the specialisation on lambdas; it's pretty fragile,
and sometimes generates more and more specialisations. Something to
come back to, perhaps.
I rejigged the flag-handling a bit. Now the specification of passes
in DynFlags is a bit nicer; see
- optLevelFlags top-level data structure
- runWhen function
- CoreDoPasses constructor
There are now command-line flags
-fspec-constr
-fliberate-case
-fspec-threshold=N
which do the obvious thing. -O2 switches on both spec-constr and liberate-case.
You can use -fno-liberate-case, -fno-spec-constr after -O2 to switch them off again.
The spec-threshold applies to both these transformations; default value 200 for now.
Diffstat (limited to 'compiler/specialise')
-rw-r--r-- | compiler/specialise/SpecConstr.lhs | 646 |
1 files changed, 412 insertions, 234 deletions
diff --git a/compiler/specialise/SpecConstr.lhs b/compiler/specialise/SpecConstr.lhs index b5ae45f013..f483001210 100644 --- a/compiler/specialise/SpecConstr.lhs +++ b/compiler/specialise/SpecConstr.lhs @@ -11,8 +11,10 @@ module SpecConstr( #include "HsVersions.h" import CoreSyn +import CoreSubst +import CoreUtils +import CoreUnfold ( couldBeSmallEnoughToInline ) import CoreLint ( showPass, endPass ) -import CoreUtils ( exprType, mkPiTypes ) import CoreFVs ( exprsFreeVars ) import CoreTidy ( tidyRules ) import PprCore ( pprRules ) @@ -20,7 +22,6 @@ import WwLib ( mkWorkerArgs ) import DataCon ( dataConRepArity, dataConUnivTyVars ) import Type ( Type, tyConAppArgs ) import Coercion ( coercionKind ) -import Rules ( matchN ) import Id ( Id, idName, idType, isDataConWorkId_maybe, mkUserLocal, mkSysLocal, idUnfolding, isLocalId ) import Var ( Var ) @@ -30,10 +31,10 @@ import Name ( nameOccName, nameSrcLoc ) import Rules ( addIdSpecialisations, mkLocalRule, rulesOfBinds ) import OccName ( mkSpecOcc ) import ErrUtils ( dumpIfSet_dyn ) -import DynFlags ( DynFlags, DynFlag(..) ) +import DynFlags ( DynFlags(..), DynFlag(..) ) import BasicTypes ( Activation(..) ) -import Maybes ( orElse, catMaybes, isJust ) -import Util ( zipWithEqual, lengthAtLeast, notNull ) +import Maybes ( orElse, catMaybes ) +import Util import List ( nubBy, partition ) import UniqSupply import Outputable @@ -425,7 +426,7 @@ specConstrProgram dflags us binds = do showPass dflags "SpecConstr" - let (binds', _) = initUs us (go emptyScEnv binds) + let (binds', _) = initUs us (go (initScEnv dflags) binds) endPass dflags "SpecConstr" Opt_D_dump_spec binds' @@ -448,13 +449,19 @@ specConstrProgram dflags us binds %************************************************************************ \begin{code} -data ScEnv = SCE { scope :: InScopeEnv, - -- Binds all non-top-level variables in scope +data ScEnv = SCE { sc_size :: Int, -- Size threshold - cons :: ConstrEnv + sc_subst :: Subst, -- Current subsitution + + sc_how_bound :: HowBoundEnv, + -- Binds interesting non-top-level variables + -- Look up in here *after* applying the substitution + + sc_cons :: ConstrEnv + -- Look up in here *after* applying the substitution } -type InScopeEnv = VarEnv HowBound +type HowBoundEnv = VarEnv HowBound type ConstrEnv = IdEnv ConValue data ConValue = CV AltCon [CoreArg] @@ -465,7 +472,11 @@ data ConValue = CV AltCon [CoreArg] instance Outputable ConValue where ppr (CV con args) = ppr con <+> interpp'SP args -emptyScEnv = SCE { scope = emptyVarEnv, cons = emptyVarEnv } +initScEnv dflags + = SCE { sc_size = specThreshold dflags, + sc_subst = emptySubst, + sc_how_bound = emptyVarEnv, + sc_cons = emptyVarEnv } data HowBound = RecFun -- These are the recursive functions for which -- we seek interesting call patterns @@ -473,63 +484,83 @@ data HowBound = RecFun -- These are the recursive functions for which | RecArg -- These are those functions' arguments, or their sub-components; -- we gather occurrence information for these - | Other -- We track all others so we know what's in scope - -- This is used in spec_one to check what needs to be - -- passed as a parameter and what is in scope at the - -- function definition site - instance Outputable HowBound where ppr RecFun = text "RecFun" ppr RecArg = text "RecArg" - ppr Other = text "Other" -lookupScopeEnv env v = lookupVarEnv (scope env) v +lookupHowBound :: ScEnv -> Id -> Maybe HowBound +lookupHowBound env id = lookupVarEnv (sc_how_bound env) id + +scSubstId :: ScEnv -> Id -> CoreExpr +scSubstId env v = lookupIdSubst (sc_subst env) v + +scSubstTy :: ScEnv -> Type -> Type +scSubstTy env ty = substTy (sc_subst env) ty + +zapScSubst :: ScEnv -> ScEnv +zapScSubst env = env { sc_subst = zapSubstEnv (sc_subst env) } +extendScInScope :: ScEnv -> [Var] -> ScEnv + -- Bring the quantified variables into scope +extendScInScope env qvars = env { sc_subst = extendInScopeList (sc_subst env) qvars } -extendBndrsWith :: HowBound -> ScEnv -> [Var] -> ScEnv +extendScSubst :: ScEnv -> [(Var,CoreArg)] -> ScEnv + -- Extend the substitution +extendScSubst env prs = env { sc_subst = extendSubstList (sc_subst env) prs } + +extendHowBound :: ScEnv -> [Var] -> HowBound -> ScEnv +extendHowBound env bndrs how_bound + = env { sc_how_bound = extendVarEnvList (sc_how_bound env) + [(bndr,how_bound) | bndr <- bndrs] } + +extendBndrsWith :: HowBound -> ScEnv -> [Var] -> (ScEnv, [Var]) extendBndrsWith how_bound env bndrs - = env { scope = scope env `extendVarEnvList` - [(bndr,how_bound) | bndr <- bndrs] } - -extendBndrs env bndrs = extendBndrsWith Other env bndrs -extendBndr env bndr = env { scope = extendVarEnv (scope env) bndr Other } - - -- When we encounter - -- case scrut of b - -- C x y -> ... - -- we want to bind b, and perhaps scrut too, to (C x y) -extendCaseBndrs :: ScEnv -> Id -> CoreExpr -> AltCon -> [Var] -> ScEnv -extendCaseBndrs env case_bndr scrut con alt_bndrs - = case con of - DEFAULT -> env1 - LitAlt lit -> extendCons env1 scrut case_bndr (CV con []) - DataAlt dc -> extendCons env1 scrut case_bndr (CV con vanilla_args) - where - vanilla_args = map Type (tyConAppArgs (idType case_bndr)) ++ - varsToCoreExprs alt_bndrs + = (env { sc_subst = subst', sc_how_bound = hb_env' }, bndrs') where - env1 = extendBndrsWith (get_how scrut) env (case_bndr:alt_bndrs) - - -- Record RecArg for the components iff the scrutinee is RecArg - -- I think the only reason for this is to keep the usage envt small - -- so is it worth it at all? - -- [This comment looks plain wrong to me, so I'm ignoring it - -- "Also forget if the scrutinee is a RecArg, because we're - -- now in the branch of a case, and we don't want to - -- record a non-scrutinee use of v if we have - -- case v of { (a,b) -> ...(f v)... }" ] - get_how (Var v) = lookupVarEnv (scope env) v `orElse` Other - get_how (Cast e _) = get_how e - get_how (Note _ e) = get_how e - get_how other = Other - -extendCons :: ScEnv -> CoreExpr -> Id -> ConValue -> ScEnv -extendCons env scrut case_bndr val - = case scrut of - Var v -> env { cons = extendVarEnv cons1 v val } - other -> env { cons = cons1 } + (subst', bndrs') = substBndrs (sc_subst env) bndrs + hb_env' = sc_how_bound env `extendVarEnvList` + [(bndr,how_bound) | bndr <- bndrs'] + +extendBndrWith :: HowBound -> ScEnv -> Var -> (ScEnv, Var) +extendBndrWith how_bound env bndr + = (env { sc_subst = subst', sc_how_bound = hb_env' }, bndr') where - cons1 = extendVarEnv (cons env) case_bndr val + (subst', bndr') = substBndr (sc_subst env) bndr + hb_env' = extendVarEnv (sc_how_bound env) bndr' how_bound + +extendRecBndrs :: ScEnv -> [Var] -> (ScEnv, [Var]) +extendRecBndrs env bndrs = (env { sc_subst = subst' }, bndrs') + where + (subst', bndrs') = substRecBndrs (sc_subst env) bndrs + +extendBndr :: ScEnv -> Var -> (ScEnv, Var) +extendBndr env bndr = (env { sc_subst = subst' }, bndr') + where + (subst', bndr') = substBndr (sc_subst env) bndr + +extendConEnv :: ScEnv -> Id -> Maybe ConValue -> ScEnv +extendConEnv env id Nothing = env +extendConEnv env id (Just cv) = env { sc_cons = extendVarEnv (sc_cons env) id cv } + +extendCaseBndrs :: ScEnv -> CoreExpr -> Id -> AltCon -> [Var] -> ScEnv +-- When we encounter +-- case scrut of b +-- C x y -> ... +-- we want to bind b, and perhaps scrut too, to (C x y) +-- NB: Extends only the sc_cons part of the envt +extendCaseBndrs env scrut case_bndr con alt_bndrs + = case scrut of + Var v -> extendConEnv env1 v cval + other -> env1 + where + env1 = extendConEnv env case_bndr cval + cval = case con of + DEFAULT -> Nothing + LitAlt lit -> Just (CV con []) + DataAlt dc -> Just (CV con vanilla_args) + where + vanilla_args = map Type (tyConAppArgs (idType case_bndr)) ++ + varsToCoreExprs alt_bndrs \end{code} @@ -542,7 +573,7 @@ extendCons env scrut case_bndr val \begin{code} data ScUsage = SCU { - calls :: !(IdEnv [Call]), -- Calls + calls :: CallEnv, -- Calls -- The functions are a subset of the -- RecFuns in the ScEnv @@ -550,13 +581,17 @@ data ScUsage } -- The variables are a subset of the -- RecArg in the ScEnv +type CallEnv = IdEnv [Call] type Call = (ConstrEnv, [CoreArg]) -- The arguments of the call, together with the -- env giving the constructor bindings at the call site nullUsage = SCU { calls = emptyVarEnv, occs = emptyVarEnv } -combineUsage u1 u2 = SCU { calls = plusVarEnv_C (++) (calls u1) (calls u2), +combineCalls :: CallEnv -> CallEnv -> CallEnv +combineCalls = plusVarEnv_C (++) + +combineUsage u1 u2 = SCU { calls = combineCalls (calls u1) (calls u2), occs = plusVarEnv_C combineOcc (occs u1) (occs u2) } combineUsages [] = nullUsage @@ -618,6 +653,17 @@ combineOcc _ _ = BothOcc combineOccs :: [ArgOcc] -> [ArgOcc] -> [ArgOcc] combineOccs xs ys = zipWithEqual "combineOccs" combineOcc xs ys +setScrutOcc :: ScEnv -> ScUsage -> CoreExpr -> ArgOcc -> ScUsage +-- *Overwrite* the occurrence info for the scrutinee, if the scrutinee +-- is a variable, and an interesting variable +setScrutOcc env usg (Cast e _) occ = setScrutOcc env usg e occ +setScrutOcc env usg (Note _ e) occ = setScrutOcc env usg e occ +setScrutOcc env usg (Var v) occ + | Just RecArg <- lookupHowBound env v = usg { occs = extendVarEnv (occs usg) v occ } + | otherwise = usg +setScrutOcc env usg other occ -- Catch-all + = usg + conArgOccs :: ArgOcc -> AltCon -> [ArgOcc] -- Find usage of components of data con; returns [UnkOcc...] if unknown -- See Note [ScrutOcc] for the extra UnkOccs in the vanilla datacon case @@ -629,7 +675,6 @@ conArgOccs (ScrutOcc fm) (DataAlt dc) conArgOccs other con = repeat UnkOcc \end{code} - %************************************************************************ %* * \subsection{The main recursive function} @@ -644,113 +689,192 @@ scExpr :: ScEnv -> CoreExpr -> UniqSM (ScUsage, CoreExpr) -- The unique supply is needed when we invent -- a new name for the specialised function and its args -scExpr env e@(Type t) = returnUs (nullUsage, e) -scExpr env e@(Lit l) = returnUs (nullUsage, e) -scExpr env e@(Var v) = returnUs (varUsage env v UnkOcc, e) -scExpr env (Note n e) = scExpr env e `thenUs` \ (usg,e') -> - returnUs (usg, Note n e') -scExpr env (Cast e co)= scExpr env e `thenUs` \ (usg,e') -> - returnUs (usg, Cast e' co) -scExpr env (Lam b e) = scExpr (extendBndr env b) e `thenUs` \ (usg,e') -> - returnUs (usg, Lam b e') - -scExpr env (Case scrut b ty alts) - = do { (alt_usgs, alt_occs, alts') <- mapAndUnzip3Us sc_alt alts - ; let (alt_usg, b_occ) = lookupOcc (combineUsages alt_usgs) b - scrut_occ = foldr combineOcc b_occ alt_occs - -- The combined usage of the scrutinee is given - -- by scrut_occ, which is passed to scScrut, which - -- in turn treats a bare-variable scrutinee specially - ; (scrut_usg, scrut') <- scScrut env scrut scrut_occ - ; return (alt_usg `combineUsage` scrut_usg, - Case scrut' b ty alts') } +scExpr env e = scExpr' env e + + +scExpr' env (Var v) = case scSubstId env v of + Var v' -> returnUs (varUsage env v UnkOcc, Var v') + e' -> scExpr (zapScSubst env) e' + +scExpr' env e@(Type t) = returnUs (nullUsage, Type (scSubstTy env t)) +scExpr' env e@(Lit l) = returnUs (nullUsage, e) +scExpr' env (Note n e) = do { (usg,e') <- scExpr env e + ; return (usg, Note n e') } +scExpr' env (Cast e co) = do { (usg, e') <- scExpr env e + ; return (usg, Cast e' (scSubstTy env co)) } +scExpr' env (Lam b e) = do { let (env', b') = extendBndr env b + ; (usg, e') <- scExpr env' e + ; return (usg, Lam b' e') } + +scExpr' env (Case scrut b ty alts) + = do { (scrut_usg, scrut') <- scExpr env scrut + ; case isConApp (sc_cons env) scrut' of + Nothing -> sc_vanilla scrut_usg scrut' + Just cval -> sc_con_app cval scrut' + } where - sc_alt (con,bs,rhs) - = do { let env1 = extendCaseBndrs env b scrut con bs - ; (usg,rhs') <- scExpr env1 rhs + sc_con_app cval@(CV con args) scrut' -- Known constructor; simplify + = do { let (_, bs, rhs) = findAlt con alts + alt_env' = extendScSubst env ((b,scrut') : bs `zip` trimConArgs con args) + ; scExpr alt_env' rhs } + + + sc_vanilla scrut_usg scrut' -- Normal case + = do { let (alt_env,b') = extendBndrWith RecArg env b + -- Record RecArg for the components + + ; (alt_usgs, alt_occs, alts') + <- mapAndUnzip3Us (sc_alt alt_env scrut' b') alts + + ; let (alt_usg, b_occ) = lookupOcc (combineUsages alt_usgs) b + scrut_occ = foldr combineOcc b_occ alt_occs + scrut_usg' = setScrutOcc env scrut_usg scrut' scrut_occ + -- The combined usage of the scrutinee is given + -- by scrut_occ, which is passed to scScrut, which + -- in turn treats a bare-variable scrutinee specially + + ; return (alt_usg `combineUsage` scrut_usg', + Case scrut' b' (scSubstTy env ty) alts') } + + sc_alt env scrut' b' (con,bs,rhs) + = do { let (env1, bs') = extendBndrsWith RecArg env bs + env2 = extendCaseBndrs env1 scrut' b' con bs' + ; (usg,rhs') <- scExpr env2 rhs ; let (usg', arg_occs) = lookupOccs usg bs scrut_occ = case con of DataAlt dc -> ScrutOcc (unitUFM dc arg_occs) other -> ScrutOcc emptyUFM - ; return (usg', scrut_occ, (con,bs,rhs')) } - -scExpr env (Let bind body) - = scBind env bind `thenUs` \ (env', bind_usg, bind') -> - scExpr env' body `thenUs` \ (body_usg, body') -> - returnUs (bind_usg `combineUsage` body_usg, Let bind' body') - -scExpr env e@(App _ _) + ; return (usg', scrut_occ, (con,bs',rhs')) } + +scExpr' env (Let (NonRec bndr rhs) body) + = do { (rhs_usg, rhs_info@(_, args', rhs_body', _)) <- scRecRhs env (bndr,rhs) + ; if null args' || isEmptyVarEnv (calls rhs_usg) then do + do { -- Vanilla case + let rhs' = mkLams args' rhs_body' + (body_env, bndr') = extendBndr env bndr + body_env2 = extendConEnv body_env bndr' (isConApp (sc_cons env) rhs') + -- Record if the RHS is a constructor + ; (body_usg, body') <- scExpr body_env2 body + ; return (body_usg `combineUsage` rhs_usg, Let (NonRec bndr' rhs') body') } + else + do { -- Join-point case + let (body_env, bndr') = extendBndrWith RecFun env bndr + -- If the RHS of this 'let' contains calls + -- to recursive functions that we're trying + -- to specialise, then treat this let too + -- as one to specialise + ; (body_usg, body') <- scExpr body_env body + + ; (spec_usg, _, specs) <- specialise env (calls body_usg) ([], rhs_info) + + ; return (body_usg { calls = calls body_usg `delVarEnv` bndr' } + `combineUsage` rhs_usg `combineUsage` spec_usg, + mkLets [NonRec b r | (b,r) <- addRules rhs_info specs] body') + } } + +scExpr' env (Let (Rec prs) body) + = do { (env', bind_usg, bind') <- scBind env (Rec prs) + ; (body_usg, body') <- scExpr env' body + ; return (bind_usg `combineUsage` body_usg, Let bind' body') } + +scExpr' env e@(App _ _) = do { let (fn, args) = collectArgs e - ; (fn_usg, fn') <- scScrut env fn (ScrutOcc emptyUFM) + ; (fn_usg, fn') <- scExpr env fn -- Process the function too. It's almost always a variable, -- but not always. In particular, if this pass follows float-in, -- which it may, we can get -- (let f = ...f... in f) arg1 arg2 - -- We use scScrut to record the fact that the function is called - -- Perhpas we should check that it has at least one value arg, + -- Also the substitution may replace a variable by a non-variable + + ; let fn_usg' = setScrutOcc env fn_usg fn' (ScrutOcc emptyUFM) + -- We use setScrutOcc to record the fact that the function is called + -- Perhaps we should check that it has at least one value arg, -- but currently we don't bother ; (arg_usgs, args') <- mapAndUnzipUs (scExpr env) args - ; let call_usg = case fn of - Var f | Just RecFun <- lookupScopeEnv env f + ; let call_usg = case fn' of + Var f | Just RecFun <- lookupHowBound env f , not (null args) -- Not a proper call! - -> SCU { calls = unitVarEnv f [(cons env, args)], + -> SCU { calls = unitVarEnv f [(sc_cons env, args')], occs = emptyVarEnv } other -> nullUsage - ; return (combineUsages arg_usgs `combineUsage` fn_usg + ; return (combineUsages arg_usgs `combineUsage` fn_usg' `combineUsage` call_usg, mkApps fn' args') } ---------------------- -scScrut :: ScEnv -> CoreExpr -> ArgOcc -> UniqSM (ScUsage, CoreExpr) --- Used for the scrutinee of a case, --- or the function of an application. --- Remember to look through casts -scScrut env e@(Var v) occ = returnUs (varUsage env v occ, e) -scScrut env (Cast e co) occ = do { (usg, e') <- scScrut env e occ - ; returnUs (usg, Cast e' co) } -scScrut env e occ = scExpr env e - - ----------------------- scBind :: ScEnv -> CoreBind -> UniqSM (ScEnv, ScUsage, CoreBind) scBind env (Rec prs) - = do { let bndrs = map fst prs - rhs_env = extendBndrsWith RecFun env bndrs - - ; (rhs_usgs, prs_w_occs) <- mapAndUnzipUs (scRecRhs rhs_env) prs - ; let rhs_usg = combineUsages rhs_usgs - rhs_calls = calls rhs_usg - - ; prs_s <- mapUs (specialise env rhs_calls) prs_w_occs - ; return (extendBndrs env bndrs, - -- For the body of the letrec, just - -- extend the env with Other to record - -- that it's in scope; no funny RecFun business - rhs_usg { calls = calls rhs_usg `delVarEnvList` bndrs }, - Rec (concat prs_s)) } + | not (all (couldBeSmallEnoughToInline (sc_size env)) rhss) + -- No specialisation + = do { let (rhs_env,bndrs') = extendRecBndrs env bndrs + ; (rhs_usgs, rhss') <- mapAndUnzipUs (scExpr rhs_env) rhss + ; return (rhs_env, combineUsages rhs_usgs, Rec (bndrs' `zip` rhss')) } + | otherwise -- Do specialisation + = do { let (rhs_env1,bndrs') = extendRecBndrs env bndrs + rhs_env2 = extendHowBound rhs_env1 bndrs RecFun + + ; (rhs_usgs, rhs_infos) <- mapAndUnzipUs (scRecRhs rhs_env2) (bndrs' `zip` rhss) + ; let rhs_usg = combineUsages rhs_usgs + + ; (spec_usg, specs) <- spec_loop rhs_env2 (calls rhs_usg) + (repeat [] `zip` rhs_infos) + + ; let all_usg = rhs_usg `combineUsage` spec_usg + + ; return (rhs_env1, -- For the body of the letrec, delete the RecFun business + all_usg { calls = calls rhs_usg `delVarEnvList` bndrs' }, + Rec (concat (zipWith addRules rhs_infos specs))) } + where + (bndrs,rhss) = unzip prs + + spec_loop :: ScEnv + -> CallEnv + -> [([CallPat], RhsInfo)] -- One per binder + -> UniqSM (ScUsage, [[SpecInfo]]) -- One list per binder + spec_loop env all_calls rhs_stuff + = do { (spec_usg_s, new_pats_s, specs) <- mapAndUnzip3Us (specialise env all_calls) rhs_stuff + ; let spec_usg = combineUsages spec_usg_s + ; if all null new_pats_s then + return (spec_usg, specs) else do + { (spec_usg1, specs1) <- spec_loop env (calls spec_usg) + (zipWith add_pats new_pats_s rhs_stuff) + ; return (spec_usg `combineUsage` spec_usg1, zipWith (++) specs specs1) } } + + add_pats :: [CallPat] -> ([CallPat], RhsInfo) -> ([CallPat], RhsInfo) + add_pats new_pats (done_pats, rhs_info) = (done_pats ++ new_pats, rhs_info) scBind env (NonRec bndr rhs) = do { (usg, rhs') <- scExpr env rhs - ; return (extendBndr env bndr, usg, NonRec bndr rhs') } + ; let (env', bndr') = extendBndr env bndr + ; return (env', usg, NonRec bndr' rhs') } ---------------------- -scRecRhs :: ScEnv -> (Id,CoreExpr) - -> UniqSM (ScUsage, (Id, CoreExpr, [ArgOcc])) --- The returned [ArgOcc] says how the visible, --- lambda-bound binders of the RHS are used --- (including the TyVar binders) +scRecRhs :: ScEnv -> (Id,CoreExpr) -> UniqSM (ScUsage, RhsInfo) scRecRhs env (bndr,rhs) = do { let (arg_bndrs,body) = collectBinders rhs - body_env = extendBndrsWith RecArg env arg_bndrs + (body_env, arg_bndrs') = extendBndrsWith RecArg env arg_bndrs ; (body_usg, body') <- scExpr body_env body - ; let (rhs_usg, arg_occs) = lookupOccs body_usg arg_bndrs - ; return (rhs_usg, (bndr, mkLams arg_bndrs body', arg_occs)) } + ; let (rhs_usg, arg_occs) = lookupOccs body_usg arg_bndrs' + ; return (rhs_usg, (bndr, arg_bndrs', body', arg_occs)) } + + -- The arg_occs says how the visible, + -- lambda-bound binders of the RHS are used + -- (including the TyVar binders) + -- Two pats are the same if they match both ways + +---------------------- +addRules :: RhsInfo -> [SpecInfo] -> [(Id,CoreExpr)] +addRules (fn, args, body, _) specs + = [(id,rhs) | (_,id,rhs) <- specs] ++ + [(fn `addIdSpecialisations` rules, mkLams args body)] + where + rules = [r | (r,_,_) <- specs] ---------------------- varUsage env v use - | Just RecArg <- lookupScopeEnv env v = SCU { calls = emptyVarEnv, + | Just RecArg <- lookupHowBound env v = SCU { calls = emptyVarEnv, occs = unitVarEnv v use } | otherwise = nullUsage \end{code} @@ -758,83 +882,54 @@ varUsage env v use %************************************************************************ %* * -\subsection{The specialiser} + The specialiser itself %* * %************************************************************************ \begin{code} +type RhsInfo = (Id, [Var], CoreExpr, [ArgOcc]) + -- Info about the *original* RHS of a binding we are specialising + -- Original binding f = \xs.body + -- Plus info about usage of arguments + +type SpecInfo = (CoreRule, Var, CoreExpr) + -- One specialisation: Rule plus definition + + specialise :: ScEnv - -> IdEnv [Call] -- Info on usage - -> (Id, CoreExpr, [ArgOcc]) -- Original binding, plus info on how the rhs's - -- lambda-binders are used (includes TyVar bndrs) - -> UniqSM [(Id,CoreExpr)] -- Original binding (decorated with rules) - -- plus specialised bindings + -> CallEnv -- Info on calls + -> ([CallPat], RhsInfo) -- Original RHS plus patterns dealt with + -> UniqSM (ScUsage, [CallPat], [SpecInfo]) -- Specialised calls -- Note: the rhs here is the optimised version of the original rhs -- So when we make a specialised copy of the RHS, we're starting -- from an RHS whose nested functions have been optimised already. -specialise env calls (fn, rhs, arg_occs) - | notNull arg_occs, -- Only specialise functions - Just all_calls <- lookupVarEnv calls fn - = do { mb_pats <- mapM (callToPats (scope env) arg_occs) all_calls - - ; let good_pats :: [([Var], [CoreArg])] - good_pats = catMaybes mb_pats - in_scope = mkInScopeSet $ unionVarSets $ - [ exprsFreeVars pats - | (vs,pats) <- good_pats ] - -- This in-scope set is used when matching to see if - -- we have identical patterns. We want to treat the - -- forall'd variables of each pattern as "in scope", - -- because each in turn serves as the match target for - -- a matchN call. So don't remove the 'vs' from the free vars! - uniq_pats = nubBy (same_pat in_scope) good_pats +specialise env bind_calls (done_pats, (fn, arg_bndrs, body, arg_occs)) + | notNull arg_bndrs, -- Only specialise functions + Just all_calls <- lookupVarEnv bind_calls fn + = do { pats <- callsToPats env done_pats arg_occs all_calls -- ; pprTrace "specialise" (vcat [ppr fn <+> ppr arg_occs, -- text "calls" <+> ppr all_calls, --- text "good pats" <+> ppr good_pats, --- text "uniq pats" <+> ppr uniq_pats]) $ +-- text "good pats" <+> ppr pats]) $ -- return () - ; (rules, spec_prs) <- mapAndUnzipUs (spec_one fn rhs) - (uniq_pats `zip` [1..]) + ; (spec_usgs, specs) <- mapAndUnzipUs (spec_one env fn arg_bndrs body) + (pats `zip` [length done_pats..]) - ; return ((fn `addIdSpecialisations` rules, rhs) : spec_prs) } - - | otherwise - = return [(fn,rhs)] -- The boring case - where - -- Two pats are the same if they match both ways - same_pat in_scope (vs1,as1)(vs2,as2) - = isJust (matchN in_scope vs1 as1 as2) - && isJust (matchN in_scope vs2 as2 as1) - -callToPats :: InScopeEnv -> [ArgOcc] -> Call - -> UniqSM (Maybe ([Var], [CoreExpr])) - -- The VarSet is the variables to quantify over in the rule - -- The [CoreExpr] are the argument patterns for the rule -callToPats in_scope bndr_occs (con_env, args) - | length args < length bndr_occs -- Check saturated - = return Nothing + ; return (combineUsages spec_usgs, pats, specs) } | otherwise - = do { prs <- argsToPats in_scope con_env (args `zip` bndr_occs) - ; let (good_pats, pats) = unzip prs - pat_fvs = varSetElems (exprsFreeVars pats) - qvars = filter (not . (`elemVarEnv` in_scope)) pat_fvs - -- Quantify over variables that are not in sccpe - -- See Note [Shadowing] at the top - - ; -- pprTrace "callToPats" (ppr args $$ ppr prs $$ ppr bndr_occs) $ - if or good_pats - then return (Just (qvars, pats)) - else return Nothing } + = return (nullUsage, [], []) -- The boring case + --------------------- -spec_one :: Id -- Function - -> CoreExpr -- Rhs of the original function +spec_one :: ScEnv + -> Id -- Function + -> [Var] -- Lambda-binders of RHS; should match patterns + -> CoreExpr -- Body of the original function -> (([Var], [CoreArg]), Int) - -> UniqSM (CoreRule, (Id,CoreExpr)) -- Rule and binding + -> UniqSM (ScUsage, SpecInfo) -- Rule and binding -- spec_one creates a specialised copy of the function, together -- with a rule for using it. I'm very proud of how short this @@ -848,7 +943,8 @@ spec_one :: Id -- Function [c::*, v::(b,c) are presumably bound by the (...) part] ==> f_spec = /\ b c \ v::(b,c) hw::[(a,(b,c))] -> - (...entire RHS of f...) (b,c) ((:) (a,(b,c)) (x,v) hw) + (...entire body of f...) [b -> (b,c), + y -> ((:) (a,(b,c)) (x,v) hw)] RULE: forall b::* c::*, -- Note, *not* forall a, x v::(b,c), @@ -857,31 +953,32 @@ spec_one :: Id -- Function f (b,c) ((:) (a,(b,c)) (x,v) hw) = f_spec b c v hw -} -spec_one fn rhs ((vars_to_bind, pats), rule_number) - = getUniqueUs `thenUs` \ spec_uniq -> - let - fn_name = idName fn - fn_loc = nameSrcLoc fn_name - spec_occ = mkSpecOcc (nameOccName fn_name) - - -- Put the type variables first; the type of a term - -- variable may mention a type variable - (tvs, ids) = partition isTyVar vars_to_bind - bndrs = tvs ++ ids - spec_body = mkApps rhs pats - body_ty = exprType spec_body +spec_one env fn arg_bndrs body ((qvars, pats), rule_number) + = do { -- Specialise the body + let spec_env = extendScSubst (extendScInScope env qvars) + (arg_bndrs `zip` pats) + ; (spec_usg, spec_body) <- scExpr spec_env body + +-- ; pprTrace "spec_one" (ppr fn <+> vcat [text "pats" <+> ppr pats, +-- text "calls" <+> (ppr (calls spec_usg))]) +-- (return ()) + + -- And build the results + ; spec_uniq <- getUniqueUs + ; let (spec_lam_args, spec_call_args) = mkWorkerArgs qvars body_ty + -- Usual w/w hack to avoid generating + -- a spec_rhs of unlifted type and no args - (spec_lam_args, spec_call_args) = mkWorkerArgs bndrs body_ty - -- Usual w/w hack to avoid generating - -- a spec_rhs of unlifted type and no args - - rule_name = mkFastString ("SC:" ++ showSDoc (ppr fn <> int rule_number)) - spec_rhs = mkLams spec_lam_args spec_body - spec_id = mkUserLocal spec_occ spec_uniq (mkPiTypes spec_lam_args body_ty) fn_loc - rule_rhs = mkVarApps (Var spec_id) spec_call_args - rule = mkLocalRule rule_name specConstrActivation fn_name bndrs pats rule_rhs - in - returnUs (rule, (spec_id, spec_rhs)) + fn_name = idName fn + fn_loc = nameSrcLoc fn_name + spec_occ = mkSpecOcc (nameOccName fn_name) + rule_name = mkFastString ("SC:" ++ showSDoc (ppr fn <> int rule_number)) + spec_rhs = mkLams spec_lam_args spec_body + spec_id = mkUserLocal spec_occ spec_uniq (mkPiTypes spec_lam_args body_ty) fn_loc + body_ty = exprType spec_body + rule_rhs = mkVarApps (Var spec_id) spec_call_args + rule = mkLocalRule rule_name specConstrActivation fn_name qvars pats rule_rhs + ; return (spec_usg, (rule, spec_id, spec_rhs)) } -- In which phase should the specialise-constructor rules be active? -- Originally I made them always-active, but Manuel found that @@ -906,13 +1003,56 @@ they are constructor applications. \begin{code} +type CallPat = ([Var], [CoreExpr]) -- Quantified variables and arguments + + +callsToPats :: ScEnv -> [CallPat] -> [ArgOcc] -> [Call] -> UniqSM [CallPat] + -- Result has no duplicate patterns, + -- nor ones mentioned in done_pats +callsToPats env done_pats bndr_occs calls + = do { mb_pats <- mapM (callToPats env bndr_occs) calls + + ; let good_pats :: [([Var], [CoreArg])] + good_pats = catMaybes mb_pats + is_done p = any (samePat p) done_pats + + ; return (filterOut is_done (nubBy samePat good_pats)) } + +callToPats :: ScEnv -> [ArgOcc] -> Call -> UniqSM (Maybe CallPat) + -- The [Var] is the variables to quantify over in the rule + -- Type variables come first, since they may scope + -- over the following term variables + -- The [CoreExpr] are the argument patterns for the rule +callToPats env bndr_occs (con_env, args) + | length args < length bndr_occs -- Check saturated + = return Nothing + | otherwise + = do { let in_scope = substInScope (sc_subst env) + ; prs <- argsToPats in_scope con_env (args `zip` bndr_occs) + ; let (good_pats, pats) = unzip prs + pat_fvs = varSetElems (exprsFreeVars pats) + qvars = filterOut (`elemInScopeSet` in_scope) pat_fvs + -- Quantify over variables that are not in sccpe + -- at the call site + -- See Note [Shadowing] at the top + + (tvs, ids) = partition isTyVar qvars + qvars' = tvs ++ ids + -- Put the type variables first; the type of a term + -- variable may mention a type variable + + ; -- pprTrace "callToPats" (ppr args $$ ppr prs $$ ppr bndr_occs) $ + if or good_pats + then return (Just (qvars', pats)) + else return Nothing } + -- argToPat takes an actual argument, and returns an abstracted -- version, consisting of just the "constructor skeleton" of the -- argument, with non-constructor sub-expression replaced by new -- placeholder variables. For example: -- C a (D (f x) (g y)) ==> C p1 (D p2 p3) -argToPat :: InScopeEnv -- What's in scope at the fn defn site +argToPat :: InScopeSet -- What's in scope at the fn defn site -> ConstrEnv -- ConstrEnv at the call site -> CoreArg -- A call arg (or component thereof) -> ArgOcc @@ -953,6 +1093,8 @@ argToPat in_scope con_env (Cast arg co) arg_occ else wildCardPat (snd (coercionKind co)) } +{- Disabling lambda specialisation for now + It's fragile, and the spec_loop can be infinite argToPat in_scope con_env arg arg_occ | is_value_lam arg = return (True, arg) @@ -961,11 +1103,12 @@ argToPat in_scope con_env arg arg_occ | isId v = True -- it is inside a type lambda | otherwise = is_value_lam e is_value_lam other = False +-} -- Check for a constructor application -- NB: this *precedes* the Var case, so that we catch nullary constrs argToPat in_scope con_env arg arg_occ - | Just (CV dc args) <- is_con_app_maybe con_env arg + | Just (CV dc args) <- isConApp con_env arg , case arg_occ of ScrutOcc _ -> True -- Used only by case scrutinee BothOcc -> case arg of -- Used elsewhere @@ -981,23 +1124,22 @@ argToPat in_scope con_env arg arg_occ -- (a) it's used in an interesting way in the body -- (b) we know what its value is argToPat in_scope con_env (Var v) arg_occ - | not (isLocalId v) || v `elemVarEnv` in_scope, + | not (isLocalId v) || v `elemInScopeSet` in_scope, case arg_occ of { UnkOcc -> False; other -> True }, -- (a) isValueUnfolding (idUnfolding v) -- (b) = return (True, Var v) -{- I'm really not sure what this comment means - And by not wild-carding we tend to get forall'd - variables that are in soope, which in turn can - expose the weakness in let-matching - See Note [Matching lets] in Rules +-- I'm really not sure what this comment means +-- And by not wild-carding we tend to get forall'd +-- variables that are in soope, which in turn can +-- expose the weakness in let-matching +-- See Note [Matching lets] in Rules -- Check for a variable bound inside the function. -- Don't make a wild-card, because we may usefully share -- e.g. f a = let x = ... in f (x,x) -- NB: this case follows the lambda and con-app cases!! argToPat in_scope con_env (Var v) arg_occ = return (False, Var v) --} -- The default case: make a wild-card argToPat in_scope con_env arg arg_occ @@ -1008,7 +1150,7 @@ wildCardPat ty = do { uniq <- getUniqueUs ; let id = mkSysLocal FSLIT("sc") uniq ty ; return (False, Var id) } -argsToPats :: InScopeEnv -> ConstrEnv +argsToPats :: InScopeSet -> ConstrEnv -> [(CoreArg, ArgOcc)] -> UniqSM [(Bool, CoreArg)] argsToPats in_scope con_env args @@ -1019,34 +1161,70 @@ argsToPats in_scope con_env args \begin{code} -is_con_app_maybe :: ConstrEnv -> CoreExpr -> Maybe ConValue -is_con_app_maybe env (Lit lit) +isConApp :: ConstrEnv -> CoreExpr -> Maybe ConValue +isConApp env (Lit lit) = Just (CV (LitAlt lit) []) -is_con_app_maybe env expr -- Maybe it's a constructor application +isConApp env expr -- Maybe it's a constructor application | (Var fun, args) <- collectArgs expr, Just con <- isDataConWorkId_maybe fun, args `lengthAtLeast` dataConRepArity con -- Might be > because the arity excludes type args = Just (CV (DataAlt con) args) -is_con_app_maybe env (Var v) +isConApp env (Var v) | Just stuff <- lookupVarEnv env v = Just stuff -- You might think we could look in the idUnfolding here -- but that doesn't take account of which branch of a -- case we are in, which is the whole point - | isCheapUnfolding unf - = is_con_app_maybe env (unfoldingTemplate unf) + | not (isLocalId v) && isCheapUnfolding unf + = isConApp env (unfoldingTemplate unf) where unf = idUnfolding v -- However we do want to consult the unfolding -- as well, for let-bound constructors! -is_con_app_maybe env expr = Nothing +isConApp env expr = Nothing mk_con_app :: AltCon -> [CoreArg] -> CoreExpr mk_con_app (LitAlt lit) [] = Lit lit mk_con_app (DataAlt con) args = mkConApp con args mk_con_app other args = panic "SpecConstr.mk_con_app" + +samePat :: CallPat -> CallPat -> Bool +samePat (vs1, as1) (vs2, as2) + = all2 same as1 as2 + where + same (Var v1) (Var v2) + | v1 `elem` vs1 = v2 `elem` vs2 + | v2 `elem` vs2 = False + | otherwise = v1 == v2 + + same (Lit l1) (Lit l2) = l1==l2 + same (App f1 a1) (App f2 a2) = same f1 f2 && same a1 a2 + + same (Type t1) (Type t2) = True -- Note [Ignore type differences] + same (Note _ e1) e2 = same e1 e2 -- Ignore casts and notes + same (Cast e1 _) e2 = same e1 e2 + same e1 (Note _ e2) = same e1 e2 + same e1 (Cast e2 _) = same e1 e2 + + same e1 e2 = WARN( bad e1 || bad e2, ppr e1 $$ ppr e2) + False -- Let, lambda, case should not occur +#ifdef DEBUG + bad (Case {}) = True + bad (Let {}) = True + bad (Lam {}) = True + bad other = False +#endif \end{code} + +Note [Ignore type differences] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +We do not want to generate specialisations where the call patterns +differ only in their type arguments! Not only is it utterly useless, +but it also means that (with polymorphic recursion) we can generate +an infinite number of specialisations. Example is Data.Sequence.adjustTree, +I think. + |