summaryrefslogtreecommitdiff
path: root/compiler/utils/Bag.hs
diff options
context:
space:
mode:
authorAustin Seipp <austin@well-typed.com>2014-12-03 12:44:03 -0600
committerAustin Seipp <austin@well-typed.com>2014-12-03 12:44:03 -0600
commit0c48e172836d6a1e281aed63e42d60063700e6d8 (patch)
tree89fe135e31e86dc579aba5652738f14c256a284d /compiler/utils/Bag.hs
parentb04296d3a3a256067787241a7727877e35e5af03 (diff)
downloadhaskell-0c48e172836d6a1e281aed63e42d60063700e6d8.tar.gz
compiler: de-lhs utils/
Signed-off-by: Austin Seipp <austin@well-typed.com>
Diffstat (limited to 'compiler/utils/Bag.hs')
-rw-r--r--compiler/utils/Bag.hs266
1 files changed, 266 insertions, 0 deletions
diff --git a/compiler/utils/Bag.hs b/compiler/utils/Bag.hs
new file mode 100644
index 0000000000..95feaed9f8
--- /dev/null
+++ b/compiler/utils/Bag.hs
@@ -0,0 +1,266 @@
+{-
+(c) The University of Glasgow 2006
+(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
+
+
+Bag: an unordered collection with duplicates
+-}
+
+{-# LANGUAGE DeriveDataTypeable, ScopedTypeVariables #-}
+
+module Bag (
+ Bag, -- abstract type
+
+ emptyBag, unitBag, unionBags, unionManyBags,
+ mapBag,
+ elemBag, lengthBag,
+ filterBag, partitionBag, partitionBagWith,
+ concatBag, foldBag, foldrBag, foldlBag,
+ isEmptyBag, isSingletonBag, consBag, snocBag, anyBag,
+ listToBag, bagToList,
+ foldrBagM, foldlBagM, mapBagM, mapBagM_,
+ flatMapBagM, flatMapBagPairM,
+ mapAndUnzipBagM, mapAccumBagLM
+ ) where
+
+import Outputable
+import Util
+
+import MonadUtils
+import Data.Data
+import Data.List ( partition )
+
+infixr 3 `consBag`
+infixl 3 `snocBag`
+
+data Bag a
+ = EmptyBag
+ | UnitBag a
+ | TwoBags (Bag a) (Bag a) -- INVARIANT: neither branch is empty
+ | ListBag [a] -- INVARIANT: the list is non-empty
+ deriving Typeable
+
+emptyBag :: Bag a
+emptyBag = EmptyBag
+
+unitBag :: a -> Bag a
+unitBag = UnitBag
+
+lengthBag :: Bag a -> Int
+lengthBag EmptyBag = 0
+lengthBag (UnitBag {}) = 1
+lengthBag (TwoBags b1 b2) = lengthBag b1 + lengthBag b2
+lengthBag (ListBag xs) = length xs
+
+elemBag :: Eq a => a -> Bag a -> Bool
+elemBag _ EmptyBag = False
+elemBag x (UnitBag y) = x == y
+elemBag x (TwoBags b1 b2) = x `elemBag` b1 || x `elemBag` b2
+elemBag x (ListBag ys) = any (x ==) ys
+
+unionManyBags :: [Bag a] -> Bag a
+unionManyBags xs = foldr unionBags EmptyBag xs
+
+-- This one is a bit stricter! The bag will get completely evaluated.
+
+unionBags :: Bag a -> Bag a -> Bag a
+unionBags EmptyBag b = b
+unionBags b EmptyBag = b
+unionBags b1 b2 = TwoBags b1 b2
+
+consBag :: a -> Bag a -> Bag a
+snocBag :: Bag a -> a -> Bag a
+
+consBag elt bag = (unitBag elt) `unionBags` bag
+snocBag bag elt = bag `unionBags` (unitBag elt)
+
+isEmptyBag :: Bag a -> Bool
+isEmptyBag EmptyBag = True
+isEmptyBag _ = False -- NB invariants
+
+isSingletonBag :: Bag a -> Bool
+isSingletonBag EmptyBag = False
+isSingletonBag (UnitBag _) = True
+isSingletonBag (TwoBags _ _) = False -- Neither is empty
+isSingletonBag (ListBag xs) = isSingleton xs
+
+filterBag :: (a -> Bool) -> Bag a -> Bag a
+filterBag _ EmptyBag = EmptyBag
+filterBag pred b@(UnitBag val) = if pred val then b else EmptyBag
+filterBag pred (TwoBags b1 b2) = sat1 `unionBags` sat2
+ where sat1 = filterBag pred b1
+ sat2 = filterBag pred b2
+filterBag pred (ListBag vs) = listToBag (filter pred vs)
+
+anyBag :: (a -> Bool) -> Bag a -> Bool
+anyBag _ EmptyBag = False
+anyBag p (UnitBag v) = p v
+anyBag p (TwoBags b1 b2) = anyBag p b1 || anyBag p b2
+anyBag p (ListBag xs) = any p xs
+
+concatBag :: Bag (Bag a) -> Bag a
+concatBag EmptyBag = EmptyBag
+concatBag (UnitBag b) = b
+concatBag (TwoBags b1 b2) = concatBag b1 `unionBags` concatBag b2
+concatBag (ListBag bs) = unionManyBags bs
+
+partitionBag :: (a -> Bool) -> Bag a -> (Bag a {- Satisfy predictate -},
+ Bag a {- Don't -})
+partitionBag _ EmptyBag = (EmptyBag, EmptyBag)
+partitionBag pred b@(UnitBag val)
+ = if pred val then (b, EmptyBag) else (EmptyBag, b)
+partitionBag pred (TwoBags b1 b2)
+ = (sat1 `unionBags` sat2, fail1 `unionBags` fail2)
+ where (sat1, fail1) = partitionBag pred b1
+ (sat2, fail2) = partitionBag pred b2
+partitionBag pred (ListBag vs) = (listToBag sats, listToBag fails)
+ where (sats, fails) = partition pred vs
+
+
+partitionBagWith :: (a -> Either b c) -> Bag a
+ -> (Bag b {- Left -},
+ Bag c {- Right -})
+partitionBagWith _ EmptyBag = (EmptyBag, EmptyBag)
+partitionBagWith pred (UnitBag val)
+ = case pred val of
+ Left a -> (UnitBag a, EmptyBag)
+ Right b -> (EmptyBag, UnitBag b)
+partitionBagWith pred (TwoBags b1 b2)
+ = (sat1 `unionBags` sat2, fail1 `unionBags` fail2)
+ where (sat1, fail1) = partitionBagWith pred b1
+ (sat2, fail2) = partitionBagWith pred b2
+partitionBagWith pred (ListBag vs) = (listToBag sats, listToBag fails)
+ where (sats, fails) = partitionWith pred vs
+
+foldBag :: (r -> r -> r) -- Replace TwoBags with this; should be associative
+ -> (a -> r) -- Replace UnitBag with this
+ -> r -- Replace EmptyBag with this
+ -> Bag a
+ -> r
+
+{- Standard definition
+foldBag t u e EmptyBag = e
+foldBag t u e (UnitBag x) = u x
+foldBag t u e (TwoBags b1 b2) = (foldBag t u e b1) `t` (foldBag t u e b2)
+foldBag t u e (ListBag xs) = foldr (t.u) e xs
+-}
+
+-- More tail-recursive definition, exploiting associativity of "t"
+foldBag _ _ e EmptyBag = e
+foldBag t u e (UnitBag x) = u x `t` e
+foldBag t u e (TwoBags b1 b2) = foldBag t u (foldBag t u e b2) b1
+foldBag t u e (ListBag xs) = foldr (t.u) e xs
+
+foldrBag :: (a -> r -> r) -> r
+ -> Bag a
+ -> r
+
+foldrBag _ z EmptyBag = z
+foldrBag k z (UnitBag x) = k x z
+foldrBag k z (TwoBags b1 b2) = foldrBag k (foldrBag k z b2) b1
+foldrBag k z (ListBag xs) = foldr k z xs
+
+foldlBag :: (r -> a -> r) -> r
+ -> Bag a
+ -> r
+
+foldlBag _ z EmptyBag = z
+foldlBag k z (UnitBag x) = k z x
+foldlBag k z (TwoBags b1 b2) = foldlBag k (foldlBag k z b1) b2
+foldlBag k z (ListBag xs) = foldl k z xs
+
+foldrBagM :: (Monad m) => (a -> b -> m b) -> b -> Bag a -> m b
+foldrBagM _ z EmptyBag = return z
+foldrBagM k z (UnitBag x) = k x z
+foldrBagM k z (TwoBags b1 b2) = do { z' <- foldrBagM k z b2; foldrBagM k z' b1 }
+foldrBagM k z (ListBag xs) = foldrM k z xs
+
+foldlBagM :: (Monad m) => (b -> a -> m b) -> b -> Bag a -> m b
+foldlBagM _ z EmptyBag = return z
+foldlBagM k z (UnitBag x) = k z x
+foldlBagM k z (TwoBags b1 b2) = do { z' <- foldlBagM k z b1; foldlBagM k z' b2 }
+foldlBagM k z (ListBag xs) = foldlM k z xs
+
+mapBag :: (a -> b) -> Bag a -> Bag b
+mapBag _ EmptyBag = EmptyBag
+mapBag f (UnitBag x) = UnitBag (f x)
+mapBag f (TwoBags b1 b2) = TwoBags (mapBag f b1) (mapBag f b2)
+mapBag f (ListBag xs) = ListBag (map f xs)
+
+mapBagM :: Monad m => (a -> m b) -> Bag a -> m (Bag b)
+mapBagM _ EmptyBag = return EmptyBag
+mapBagM f (UnitBag x) = do r <- f x
+ return (UnitBag r)
+mapBagM f (TwoBags b1 b2) = do r1 <- mapBagM f b1
+ r2 <- mapBagM f b2
+ return (TwoBags r1 r2)
+mapBagM f (ListBag xs) = do rs <- mapM f xs
+ return (ListBag rs)
+
+mapBagM_ :: Monad m => (a -> m b) -> Bag a -> m ()
+mapBagM_ _ EmptyBag = return ()
+mapBagM_ f (UnitBag x) = f x >> return ()
+mapBagM_ f (TwoBags b1 b2) = mapBagM_ f b1 >> mapBagM_ f b2
+mapBagM_ f (ListBag xs) = mapM_ f xs
+
+flatMapBagM :: Monad m => (a -> m (Bag b)) -> Bag a -> m (Bag b)
+flatMapBagM _ EmptyBag = return EmptyBag
+flatMapBagM f (UnitBag x) = f x
+flatMapBagM f (TwoBags b1 b2) = do r1 <- flatMapBagM f b1
+ r2 <- flatMapBagM f b2
+ return (r1 `unionBags` r2)
+flatMapBagM f (ListBag xs) = foldrM k EmptyBag xs
+ where
+ k x b2 = do { b1 <- f x; return (b1 `unionBags` b2) }
+
+flatMapBagPairM :: Monad m => (a -> m (Bag b, Bag c)) -> Bag a -> m (Bag b, Bag c)
+flatMapBagPairM _ EmptyBag = return (EmptyBag, EmptyBag)
+flatMapBagPairM f (UnitBag x) = f x
+flatMapBagPairM f (TwoBags b1 b2) = do (r1,s1) <- flatMapBagPairM f b1
+ (r2,s2) <- flatMapBagPairM f b2
+ return (r1 `unionBags` r2, s1 `unionBags` s2)
+flatMapBagPairM f (ListBag xs) = foldrM k (EmptyBag, EmptyBag) xs
+ where
+ k x (r2,s2) = do { (r1,s1) <- f x
+ ; return (r1 `unionBags` r2, s1 `unionBags` s2) }
+
+mapAndUnzipBagM :: Monad m => (a -> m (b,c)) -> Bag a -> m (Bag b, Bag c)
+mapAndUnzipBagM _ EmptyBag = return (EmptyBag, EmptyBag)
+mapAndUnzipBagM f (UnitBag x) = do (r,s) <- f x
+ return (UnitBag r, UnitBag s)
+mapAndUnzipBagM f (TwoBags b1 b2) = do (r1,s1) <- mapAndUnzipBagM f b1
+ (r2,s2) <- mapAndUnzipBagM f b2
+ return (TwoBags r1 r2, TwoBags s1 s2)
+mapAndUnzipBagM f (ListBag xs) = do ts <- mapM f xs
+ let (rs,ss) = unzip ts
+ return (ListBag rs, ListBag ss)
+
+mapAccumBagLM :: Monad m
+ => (acc -> x -> m (acc, y)) -- ^ combining funcction
+ -> acc -- ^ initial state
+ -> Bag x -- ^ inputs
+ -> m (acc, Bag y) -- ^ final state, outputs
+mapAccumBagLM _ s EmptyBag = return (s, EmptyBag)
+mapAccumBagLM f s (UnitBag x) = do { (s1, x1) <- f s x; return (s1, UnitBag x1) }
+mapAccumBagLM f s (TwoBags b1 b2) = do { (s1, b1') <- mapAccumBagLM f s b1
+ ; (s2, b2') <- mapAccumBagLM f s1 b2
+ ; return (s2, TwoBags b1' b2') }
+mapAccumBagLM f s (ListBag xs) = do { (s', xs') <- mapAccumLM f s xs
+ ; return (s', ListBag xs') }
+
+listToBag :: [a] -> Bag a
+listToBag [] = EmptyBag
+listToBag vs = ListBag vs
+
+bagToList :: Bag a -> [a]
+bagToList b = foldrBag (:) [] b
+
+instance (Outputable a) => Outputable (Bag a) where
+ ppr bag = braces (pprWithCommas ppr (bagToList bag))
+
+instance Data a => Data (Bag a) where
+ gfoldl k z b = z listToBag `k` bagToList b -- traverse abstract type abstractly
+ toConstr _ = abstractConstr $ "Bag("++show (typeOf (undefined::a))++")"
+ gunfold _ _ = error "gunfold"
+ dataTypeOf _ = mkNoRepType "Bag"
+ dataCast1 x = gcast1 x