diff options
author | Simon Marlow <simonmar@microsoft.com> | 2006-04-07 02:05:11 +0000 |
---|---|---|
committer | Simon Marlow <simonmar@microsoft.com> | 2006-04-07 02:05:11 +0000 |
commit | 0065d5ab628975892cea1ec7303f968c3338cbe1 (patch) | |
tree | 8e2afe0ab48ee33cf95009809d67c9649573ef92 /compiler/utils/FiniteMap.lhs | |
parent | 28a464a75e14cece5db40f2765a29348273ff2d2 (diff) | |
download | haskell-0065d5ab628975892cea1ec7303f968c3338cbe1.tar.gz |
Reorganisation of the source tree
Most of the other users of the fptools build system have migrated to
Cabal, and with the move to darcs we can now flatten the source tree
without losing history, so here goes.
The main change is that the ghc/ subdir is gone, and most of what it
contained is now at the top level. The build system now makes no
pretense at being multi-project, it is just the GHC build system.
No doubt this will break many things, and there will be a period of
instability while we fix the dependencies. A straightforward build
should work, but I haven't yet fixed binary/source distributions.
Changes to the Building Guide will follow, too.
Diffstat (limited to 'compiler/utils/FiniteMap.lhs')
-rw-r--r-- | compiler/utils/FiniteMap.lhs | 749 |
1 files changed, 749 insertions, 0 deletions
diff --git a/compiler/utils/FiniteMap.lhs b/compiler/utils/FiniteMap.lhs new file mode 100644 index 0000000000..9168d3656f --- /dev/null +++ b/compiler/utils/FiniteMap.lhs @@ -0,0 +1,749 @@ + +% (c) The AQUA Project, Glasgow University, 1994-1998 +% +\section[FiniteMap]{An implementation of finite maps} + +``Finite maps'' are the heart of the compiler's +lookup-tables/environments and its implementation of sets. Important +stuff! + +This code is derived from that in the paper: +\begin{display} + S Adams + "Efficient sets: a balancing act" + Journal of functional programming 3(4) Oct 1993, pp553-562 +\end{display} + +The code is SPECIALIZEd to various highly-desirable types (e.g., Id) +near the end. + +\begin{code} + +module FiniteMap ( + FiniteMap, -- abstract type + + emptyFM, unitFM, listToFM, + + addToFM, + addToFM_C, + addListToFM, + addListToFM_C, + delFromFM, + delListFromFM, + + plusFM, + plusFM_C, + minusFM, + foldFM, + + intersectFM, + intersectFM_C, + mapFM, filterFM, + + sizeFM, isEmptyFM, elemFM, lookupFM, lookupWithDefaultFM, + + fmToList, keysFM, eltsFM + + , bagToFM + + ) where + +#include "HsVersions.h" +#define IF_NOT_GHC(a) {--} + +#if defined(DEBUG_FINITEMAPS)/* NB NB NB */ +#define OUTPUTABLE_key , Outputable key +#else +#define OUTPUTABLE_key {--} +#endif + +import Maybes +import Bag ( Bag, foldrBag ) +import Util +import Outputable + +import GLAEXTS + +#if ! OMIT_NATIVE_CODEGEN +# define IF_NCG(a) a +#else +# define IF_NCG(a) {--} +#endif + + +-- SIGH: but we use unboxed "sizes"... +#if __GLASGOW_HASKELL__ +#define IF_GHC(a,b) a +#else /* not GHC */ +#define IF_GHC(a,b) b +#endif /* not GHC */ +\end{code} + + +%************************************************************************ +%* * +\subsection{The signature of the module} +%* * +%************************************************************************ + +\begin{code} +-- BUILDING +emptyFM :: FiniteMap key elt +unitFM :: key -> elt -> FiniteMap key elt +listToFM :: (Ord key OUTPUTABLE_key) => [(key,elt)] -> FiniteMap key elt + -- In the case of duplicates, the last is taken +bagToFM :: (Ord key OUTPUTABLE_key) => Bag (key,elt) -> FiniteMap key elt + -- In the case of duplicates, who knows which is taken + +-- ADDING AND DELETING + -- Throws away any previous binding + -- In the list case, the items are added starting with the + -- first one in the list +addToFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> key -> elt -> FiniteMap key elt +addListToFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> [(key,elt)] -> FiniteMap key elt + + -- Combines with previous binding + -- The combining fn goes (old -> new -> new) +addToFM_C :: (Ord key OUTPUTABLE_key) => (elt -> elt -> elt) + -> FiniteMap key elt -> key -> elt + -> FiniteMap key elt +addListToFM_C :: (Ord key OUTPUTABLE_key) => (elt -> elt -> elt) + -> FiniteMap key elt -> [(key,elt)] + -> FiniteMap key elt + + -- Deletion doesn't complain if you try to delete something + -- which isn't there +delFromFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> key -> FiniteMap key elt +delListFromFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> [key] -> FiniteMap key elt + +-- COMBINING + -- Bindings in right argument shadow those in the left +plusFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt + -> FiniteMap key elt + + -- Combines bindings for the same thing with the given function +plusFM_C :: (Ord key OUTPUTABLE_key) => (elt -> elt -> elt) + -> FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt + +minusFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt + -- (minusFM a1 a2) deletes from a1 any bindings which are bound in a2 + +intersectFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt +intersectFM_C :: (Ord key OUTPUTABLE_key) => (elt1 -> elt2 -> elt3) + -> FiniteMap key elt1 -> FiniteMap key elt2 -> FiniteMap key elt3 + +-- MAPPING, FOLDING, FILTERING +foldFM :: (key -> elt -> a -> a) -> a -> FiniteMap key elt -> a +mapFM :: (key -> elt1 -> elt2) -> FiniteMap key elt1 -> FiniteMap key elt2 +filterFM :: (Ord key OUTPUTABLE_key) => (key -> elt -> Bool) + -> FiniteMap key elt -> FiniteMap key elt + + +-- INTERROGATING +sizeFM :: FiniteMap key elt -> Int +isEmptyFM :: FiniteMap key elt -> Bool + +elemFM :: (Ord key OUTPUTABLE_key) => key -> FiniteMap key elt -> Bool +lookupFM :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> key -> Maybe elt +lookupWithDefaultFM + :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> elt -> key -> elt + -- lookupWithDefaultFM supplies a "default" elt + -- to return for an unmapped key + +-- LISTIFYING +fmToList :: FiniteMap key elt -> [(key,elt)] +keysFM :: FiniteMap key elt -> [key] +eltsFM :: FiniteMap key elt -> [elt] +\end{code} + +%************************************************************************ +%* * +\subsection{The @FiniteMap@ data type, and building of same} +%* * +%************************************************************************ + +Invariants about @FiniteMap@: +\begin{enumerate} +\item +all keys in a FiniteMap are distinct +\item +all keys in left subtree are $<$ key in Branch and +all keys in right subtree are $>$ key in Branch +\item +size field of a Branch gives number of Branch nodes in the tree +\item +size of left subtree is differs from size of right subtree by a +factor of at most \tr{sIZE_RATIO} +\end{enumerate} + +\begin{code} +data FiniteMap key elt + = EmptyFM + | Branch key elt -- Key and elt stored here + IF_GHC(Int#,Int{-STRICT-}) -- Size >= 1 + (FiniteMap key elt) -- Children + (FiniteMap key elt) +\end{code} + +\begin{code} +emptyFM = EmptyFM +{- +emptyFM + = Branch bottom bottom IF_GHC(0#,0) bottom bottom + where + bottom = panic "emptyFM" +-} + +-- #define EmptyFM (Branch _ _ IF_GHC(0#,0) _ _) + +unitFM key elt = Branch key elt IF_GHC(1#,1) emptyFM emptyFM + +listToFM = addListToFM emptyFM + +bagToFM = foldrBag (\(k,v) fm -> addToFM fm k v) emptyFM +\end{code} + +%************************************************************************ +%* * +\subsection{Adding to and deleting from @FiniteMaps@} +%* * +%************************************************************************ + +\begin{code} +addToFM fm key elt = addToFM_C (\ old new -> new) fm key elt + +addToFM_C combiner EmptyFM key elt = unitFM key elt +addToFM_C combiner (Branch key elt size fm_l fm_r) new_key new_elt + = case compare new_key key of + LT -> mkBalBranch key elt (addToFM_C combiner fm_l new_key new_elt) fm_r + GT -> mkBalBranch key elt fm_l (addToFM_C combiner fm_r new_key new_elt) + EQ -> Branch new_key (combiner elt new_elt) size fm_l fm_r + +addListToFM fm key_elt_pairs = addListToFM_C (\ old new -> new) fm key_elt_pairs + +addListToFM_C combiner fm key_elt_pairs + = foldl' add fm key_elt_pairs -- foldl adds from the left + where + add fmap (key,elt) = addToFM_C combiner fmap key elt +\end{code} + +\begin{code} +delFromFM EmptyFM del_key = emptyFM +delFromFM (Branch key elt size fm_l fm_r) del_key + = case compare del_key key of + GT -> mkBalBranch key elt fm_l (delFromFM fm_r del_key) + LT -> mkBalBranch key elt (delFromFM fm_l del_key) fm_r + EQ -> glueBal fm_l fm_r + +delListFromFM fm keys = foldl' delFromFM fm keys +\end{code} + +%************************************************************************ +%* * +\subsection{Combining @FiniteMaps@} +%* * +%************************************************************************ + +\begin{code} +plusFM_C combiner EmptyFM fm2 = fm2 +plusFM_C combiner fm1 EmptyFM = fm1 +plusFM_C combiner fm1 (Branch split_key elt2 _ left right) + = mkVBalBranch split_key new_elt + (plusFM_C combiner lts left) + (plusFM_C combiner gts right) + where + lts = splitLT fm1 split_key + gts = splitGT fm1 split_key + new_elt = case lookupFM fm1 split_key of + Nothing -> elt2 + Just elt1 -> combiner elt1 elt2 + +-- It's worth doing plusFM specially, because we don't need +-- to do the lookup in fm1. +-- FM2 over-rides FM1. + +plusFM EmptyFM fm2 = fm2 +plusFM fm1 EmptyFM = fm1 +plusFM fm1 (Branch split_key elt1 _ left right) + = mkVBalBranch split_key elt1 (plusFM lts left) (plusFM gts right) + where + lts = splitLT fm1 split_key + gts = splitGT fm1 split_key + +minusFM EmptyFM fm2 = emptyFM +minusFM fm1 EmptyFM = fm1 +minusFM fm1 (Branch split_key elt _ left right) + = glueVBal (minusFM lts left) (minusFM gts right) + -- The two can be way different, so we need glueVBal + where + lts = splitLT fm1 split_key -- NB gt and lt, so the equal ones + gts = splitGT fm1 split_key -- are not in either. + +intersectFM fm1 fm2 = intersectFM_C (\ left right -> right) fm1 fm2 + +intersectFM_C combiner fm1 EmptyFM = emptyFM +intersectFM_C combiner EmptyFM fm2 = emptyFM +intersectFM_C combiner fm1 (Branch split_key elt2 _ left right) + + | maybeToBool maybe_elt1 -- split_elt *is* in intersection + = mkVBalBranch split_key (combiner elt1 elt2) (intersectFM_C combiner lts left) + (intersectFM_C combiner gts right) + + | otherwise -- split_elt is *not* in intersection + = glueVBal (intersectFM_C combiner lts left) (intersectFM_C combiner gts right) + + where + lts = splitLT fm1 split_key -- NB gt and lt, so the equal ones + gts = splitGT fm1 split_key -- are not in either. + + maybe_elt1 = lookupFM fm1 split_key + Just elt1 = maybe_elt1 +\end{code} + +%************************************************************************ +%* * +\subsection{Mapping, folding, and filtering with @FiniteMaps@} +%* * +%************************************************************************ + +\begin{code} +foldFM k z EmptyFM = z +foldFM k z (Branch key elt _ fm_l fm_r) + = foldFM k (k key elt (foldFM k z fm_r)) fm_l + +mapFM f EmptyFM = emptyFM +mapFM f (Branch key elt size fm_l fm_r) + = Branch key (f key elt) size (mapFM f fm_l) (mapFM f fm_r) + +filterFM p EmptyFM = emptyFM +filterFM p (Branch key elt _ fm_l fm_r) + | p key elt -- Keep the item + = mkVBalBranch key elt (filterFM p fm_l) (filterFM p fm_r) + + | otherwise -- Drop the item + = glueVBal (filterFM p fm_l) (filterFM p fm_r) +\end{code} + +%************************************************************************ +%* * +\subsection{Interrogating @FiniteMaps@} +%* * +%************************************************************************ + +\begin{code} +--{-# INLINE sizeFM #-} +sizeFM EmptyFM = 0 +sizeFM (Branch _ _ size _ _) = IF_GHC(I# size, size) + +isEmptyFM fm = sizeFM fm == 0 + +lookupFM EmptyFM key = Nothing +lookupFM (Branch key elt _ fm_l fm_r) key_to_find + = case compare key_to_find key of + LT -> lookupFM fm_l key_to_find + GT -> lookupFM fm_r key_to_find + EQ -> Just elt + +key `elemFM` fm + = case (lookupFM fm key) of { Nothing -> False; Just elt -> True } + +lookupWithDefaultFM fm deflt key + = case (lookupFM fm key) of { Nothing -> deflt; Just elt -> elt } +\end{code} + +%************************************************************************ +%* * +\subsection{Listifying @FiniteMaps@} +%* * +%************************************************************************ + +\begin{code} +fmToList fm = foldFM (\ key elt rest -> (key,elt) : rest) [] fm +keysFM fm = foldFM (\ key elt rest -> key : rest) [] fm +eltsFM fm = foldFM (\ key elt rest -> elt : rest) [] fm +\end{code} + + +%************************************************************************ +%* * +\subsection{The implementation of balancing} +%* * +%************************************************************************ + +%************************************************************************ +%* * +\subsubsection{Basic construction of a @FiniteMap@} +%* * +%************************************************************************ + +@mkBranch@ simply gets the size component right. This is the ONLY +(non-trivial) place the Branch object is built, so the ASSERTion +recursively checks consistency. (The trivial use of Branch is in +@unitFM@.) + +\begin{code} +sIZE_RATIO :: Int +sIZE_RATIO = 5 + +mkBranch :: (Ord key OUTPUTABLE_key) -- Used for the assertion checking only + => Int + -> key -> elt + -> FiniteMap key elt -> FiniteMap key elt + -> FiniteMap key elt + +mkBranch which key elt fm_l fm_r + = --ASSERT( left_ok && right_ok && balance_ok ) +#if defined(DEBUG_FINITEMAPS) + if not ( left_ok && right_ok && balance_ok ) then + pprPanic ("mkBranch:"++show which) (vcat [ppr [left_ok, right_ok, balance_ok], + ppr key, + ppr fm_l, + ppr fm_r]) + else +#endif + let + result = Branch key elt (unbox (1 + left_size + right_size)) fm_l fm_r + in +-- if sizeFM result <= 8 then + result +-- else +-- pprTrace ("mkBranch:"++(show which)) (ppr result) ( +-- result +-- ) + where + left_ok = case fm_l of + EmptyFM -> True + Branch left_key _ _ _ _ -> let + biggest_left_key = fst (findMax fm_l) + in + biggest_left_key < key + right_ok = case fm_r of + EmptyFM -> True + Branch right_key _ _ _ _ -> let + smallest_right_key = fst (findMin fm_r) + in + key < smallest_right_key + balance_ok = True -- sigh +{- LATER: + balance_ok + = -- Both subtrees have one or no elements... + (left_size + right_size <= 1) +-- NO || left_size == 0 -- ??? +-- NO || right_size == 0 -- ??? + -- ... or the number of elements in a subtree does not exceed + -- sIZE_RATIO times the number of elements in the other subtree + || (left_size * sIZE_RATIO >= right_size && + right_size * sIZE_RATIO >= left_size) +-} + + left_size = sizeFM fm_l + right_size = sizeFM fm_r + +#ifdef __GLASGOW_HASKELL__ + unbox :: Int -> Int# + unbox (I# size) = size +#else + unbox :: Int -> Int + unbox x = x +#endif +\end{code} + +%************************************************************************ +%* * +\subsubsection{{\em Balanced} construction of a @FiniteMap@} +%* * +%************************************************************************ + +@mkBalBranch@ rebalances, assuming that the subtrees aren't too far +out of whack. + +\begin{code} +mkBalBranch :: (Ord key OUTPUTABLE_key) + => key -> elt + -> FiniteMap key elt -> FiniteMap key elt + -> FiniteMap key elt + +mkBalBranch key elt fm_L fm_R + + | size_l + size_r < 2 + = mkBranch 1{-which-} key elt fm_L fm_R + + | size_r > sIZE_RATIO * size_l -- Right tree too big + = case fm_R of + Branch _ _ _ fm_rl fm_rr + | sizeFM fm_rl < 2 * sizeFM fm_rr -> single_L fm_L fm_R + | otherwise -> double_L fm_L fm_R + -- Other case impossible + + | size_l > sIZE_RATIO * size_r -- Left tree too big + = case fm_L of + Branch _ _ _ fm_ll fm_lr + | sizeFM fm_lr < 2 * sizeFM fm_ll -> single_R fm_L fm_R + | otherwise -> double_R fm_L fm_R + -- Other case impossible + + | otherwise -- No imbalance + = mkBranch 2{-which-} key elt fm_L fm_R + + where + size_l = sizeFM fm_L + size_r = sizeFM fm_R + + single_L fm_l (Branch key_r elt_r _ fm_rl fm_rr) + = mkBranch 3{-which-} key_r elt_r (mkBranch 4{-which-} key elt fm_l fm_rl) fm_rr + + double_L fm_l (Branch key_r elt_r _ (Branch key_rl elt_rl _ fm_rll fm_rlr) fm_rr) + = mkBranch 5{-which-} key_rl elt_rl (mkBranch 6{-which-} key elt fm_l fm_rll) + (mkBranch 7{-which-} key_r elt_r fm_rlr fm_rr) + + single_R (Branch key_l elt_l _ fm_ll fm_lr) fm_r + = mkBranch 8{-which-} key_l elt_l fm_ll (mkBranch 9{-which-} key elt fm_lr fm_r) + + double_R (Branch key_l elt_l _ fm_ll (Branch key_lr elt_lr _ fm_lrl fm_lrr)) fm_r + = mkBranch 10{-which-} key_lr elt_lr (mkBranch 11{-which-} key_l elt_l fm_ll fm_lrl) + (mkBranch 12{-which-} key elt fm_lrr fm_r) +\end{code} + + +\begin{code} +mkVBalBranch :: (Ord key OUTPUTABLE_key) + => key -> elt + -> FiniteMap key elt -> FiniteMap key elt + -> FiniteMap key elt + +-- Assert: in any call to (mkVBalBranch_C comb key elt l r), +-- (a) all keys in l are < all keys in r +-- (b) all keys in l are < key +-- (c) all keys in r are > key + +mkVBalBranch key elt EmptyFM fm_r = addToFM fm_r key elt +mkVBalBranch key elt fm_l EmptyFM = addToFM fm_l key elt + +mkVBalBranch key elt fm_l@(Branch key_l elt_l _ fm_ll fm_lr) + fm_r@(Branch key_r elt_r _ fm_rl fm_rr) + | sIZE_RATIO * size_l < size_r + = mkBalBranch key_r elt_r (mkVBalBranch key elt fm_l fm_rl) fm_rr + + | sIZE_RATIO * size_r < size_l + = mkBalBranch key_l elt_l fm_ll (mkVBalBranch key elt fm_lr fm_r) + + | otherwise + = mkBranch 13{-which-} key elt fm_l fm_r + + where + size_l = sizeFM fm_l + size_r = sizeFM fm_r +\end{code} + +%************************************************************************ +%* * +\subsubsection{Gluing two trees together} +%* * +%************************************************************************ + +@glueBal@ assumes its two arguments aren't too far out of whack, just +like @mkBalBranch@. But: all keys in first arg are $<$ all keys in +second. + +\begin{code} +glueBal :: (Ord key OUTPUTABLE_key) + => FiniteMap key elt -> FiniteMap key elt + -> FiniteMap key elt + +glueBal EmptyFM fm2 = fm2 +glueBal fm1 EmptyFM = fm1 +glueBal fm1 fm2 + -- The case analysis here (absent in Adams' program) is really to deal + -- with the case where fm2 is a singleton. Then deleting the minimum means + -- we pass an empty tree to mkBalBranch, which breaks its invariant. + | sizeFM fm2 > sizeFM fm1 + = mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin fm2) + + | otherwise + = mkBalBranch mid_key1 mid_elt1 (deleteMax fm1) fm2 + where + (mid_key1, mid_elt1) = findMax fm1 + (mid_key2, mid_elt2) = findMin fm2 +\end{code} + +@glueVBal@ copes with arguments which can be of any size. +But: all keys in first arg are $<$ all keys in second. + +\begin{code} +glueVBal :: (Ord key OUTPUTABLE_key) + => FiniteMap key elt -> FiniteMap key elt + -> FiniteMap key elt + +glueVBal EmptyFM fm2 = fm2 +glueVBal fm1 EmptyFM = fm1 +glueVBal fm_l@(Branch key_l elt_l _ fm_ll fm_lr) + fm_r@(Branch key_r elt_r _ fm_rl fm_rr) + | sIZE_RATIO * size_l < size_r + = mkBalBranch key_r elt_r (glueVBal fm_l fm_rl) fm_rr + + | sIZE_RATIO * size_r < size_l + = mkBalBranch key_l elt_l fm_ll (glueVBal fm_lr fm_r) + + | otherwise -- We now need the same two cases as in glueBal above. + = glueBal fm_l fm_r + where + size_l = sizeFM fm_l + size_r = sizeFM fm_r +\end{code} + +%************************************************************************ +%* * +\subsection{Local utilities} +%* * +%************************************************************************ + +\begin{code} +splitLT, splitGT :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> key -> FiniteMap key elt + +-- splitLT fm split_key = fm restricted to keys < split_key +-- splitGT fm split_key = fm restricted to keys > split_key + +splitLT EmptyFM split_key = emptyFM +splitLT (Branch key elt _ fm_l fm_r) split_key + = case compare split_key key of + LT -> splitLT fm_l split_key + GT -> mkVBalBranch key elt fm_l (splitLT fm_r split_key) + EQ -> fm_l + +splitGT EmptyFM split_key = emptyFM +splitGT (Branch key elt _ fm_l fm_r) split_key + = case compare split_key key of + GT -> splitGT fm_r split_key + LT -> mkVBalBranch key elt (splitGT fm_l split_key) fm_r + EQ -> fm_r + +findMin :: FiniteMap key elt -> (key,elt) +findMin (Branch key elt _ EmptyFM _) = (key,elt) +findMin (Branch key elt _ fm_l _) = findMin fm_l + +deleteMin :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt +deleteMin (Branch key elt _ EmptyFM fm_r) = fm_r +deleteMin (Branch key elt _ fm_l fm_r) = mkBalBranch key elt (deleteMin fm_l) fm_r + +findMax :: FiniteMap key elt -> (key,elt) +findMax (Branch key elt _ _ EmptyFM) = (key,elt) +findMax (Branch key elt _ _ fm_r) = findMax fm_r + +deleteMax :: (Ord key OUTPUTABLE_key) => FiniteMap key elt -> FiniteMap key elt +deleteMax (Branch key elt _ fm_l EmptyFM) = fm_l +deleteMax (Branch key elt _ fm_l fm_r) = mkBalBranch key elt fm_l (deleteMax fm_r) +\end{code} + +%************************************************************************ +%* * +\subsection{Output-ery} +%* * +%************************************************************************ + +\begin{code} +#if defined(DEBUG_FINITEMAPS) + +instance (Outputable key) => Outputable (FiniteMap key elt) where + ppr fm = pprX fm + +pprX EmptyFM = char '!' +pprX (Branch key elt sz fm_l fm_r) + = parens (hcat [pprX fm_l, space, + ppr key, space, int (IF_GHC(I# sz, sz)), space, + pprX fm_r]) +#else +-- and when not debugging the package itself... +instance (Outputable key, Outputable elt) => Outputable (FiniteMap key elt) where + ppr fm = ppr (fmToList fm) +#endif + +#if 0 +instance (Eq key, Eq elt) => Eq (FiniteMap key elt) where + fm_1 == fm_2 = (sizeFM fm_1 == sizeFM fm_2) && -- quick test + (fmToList fm_1 == fmToList fm_2) + +{- NO: not clear what The Right Thing to do is: +instance (Ord key, Ord elt) => Ord (FiniteMap key elt) where + fm_1 <= fm_2 = (sizeFM fm_1 <= sizeFM fm_2) && -- quick test + (fmToList fm_1 <= fmToList fm_2) +-} +#endif +\end{code} + +%************************************************************************ +%* * +\subsection{Efficiency pragmas for GHC} +%* * +%************************************************************************ + +When the FiniteMap module is used in GHC, we specialise it for +\tr{Uniques}, for dastardly efficiency reasons. + +\begin{code} +#if 0 + +#if __GLASGOW_HASKELL__ + +{-# SPECIALIZE addListToFM + :: FiniteMap (FastString, FAST_STRING) elt -> [((FAST_STRING, FAST_STRING),elt)] -> FiniteMap (FAST_STRING, FAST_STRING) elt + , FiniteMap RdrName elt -> [(RdrName,elt)] -> FiniteMap RdrName elt + IF_NCG(COMMA FiniteMap Reg elt -> [(Reg COMMA elt)] -> FiniteMap Reg elt) + #-} +{-# SPECIALIZE addListToFM_C + :: (elt -> elt -> elt) -> FiniteMap TyCon elt -> [(TyCon,elt)] -> FiniteMap TyCon elt + , (elt -> elt -> elt) -> FiniteMap FastString elt -> [(FAST_STRING,elt)] -> FiniteMap FAST_STRING elt + IF_NCG(COMMA (elt -> elt -> elt) -> FiniteMap Reg elt -> [(Reg COMMA elt)] -> FiniteMap Reg elt) + #-} +{-# SPECIALIZE addToFM + :: FiniteMap CLabel elt -> CLabel -> elt -> FiniteMap CLabel elt + , FiniteMap FastString elt -> FAST_STRING -> elt -> FiniteMap FAST_STRING elt + , FiniteMap (FastString, FAST_STRING) elt -> (FAST_STRING, FAST_STRING) -> elt -> FiniteMap (FAST_STRING, FAST_STRING) elt + , FiniteMap RdrName elt -> RdrName -> elt -> FiniteMap RdrName elt + IF_NCG(COMMA FiniteMap Reg elt -> Reg -> elt -> FiniteMap Reg elt) + #-} +{-# SPECIALIZE addToFM_C + :: (elt -> elt -> elt) -> FiniteMap (RdrName, RdrName) elt -> (RdrName, RdrName) -> elt -> FiniteMap (RdrName, RdrName) elt + , (elt -> elt -> elt) -> FiniteMap FastString elt -> FAST_STRING -> elt -> FiniteMap FAST_STRING elt + IF_NCG(COMMA (elt -> elt -> elt) -> FiniteMap Reg elt -> Reg -> elt -> FiniteMap Reg elt) + #-} +{-# SPECIALIZE bagToFM + :: Bag (FastString,elt) -> FiniteMap FAST_STRING elt + #-} +{-# SPECIALIZE delListFromFM + :: FiniteMap RdrName elt -> [RdrName] -> FiniteMap RdrName elt + , FiniteMap FastString elt -> [FAST_STRING] -> FiniteMap FAST_STRING elt + IF_NCG(COMMA FiniteMap Reg elt -> [Reg] -> FiniteMap Reg elt) + #-} +{-# SPECIALIZE listToFM + :: [([Char],elt)] -> FiniteMap [Char] elt + , [(FastString,elt)] -> FiniteMap FAST_STRING elt + , [((FastString,FAST_STRING),elt)] -> FiniteMap (FAST_STRING, FAST_STRING) elt + IF_NCG(COMMA [(Reg COMMA elt)] -> FiniteMap Reg elt) + #-} +{-# SPECIALIZE lookupFM + :: FiniteMap CLabel elt -> CLabel -> Maybe elt + , FiniteMap [Char] elt -> [Char] -> Maybe elt + , FiniteMap FastString elt -> FAST_STRING -> Maybe elt + , FiniteMap (FastString,FAST_STRING) elt -> (FAST_STRING,FAST_STRING) -> Maybe elt + , FiniteMap RdrName elt -> RdrName -> Maybe elt + , FiniteMap (RdrName,RdrName) elt -> (RdrName,RdrName) -> Maybe elt + IF_NCG(COMMA FiniteMap Reg elt -> Reg -> Maybe elt) + #-} +{-# SPECIALIZE lookupWithDefaultFM + :: FiniteMap FastString elt -> elt -> FAST_STRING -> elt + IF_NCG(COMMA FiniteMap Reg elt -> elt -> Reg -> elt) + #-} +{-# SPECIALIZE plusFM + :: FiniteMap RdrName elt -> FiniteMap RdrName elt -> FiniteMap RdrName elt + , FiniteMap FastString elt -> FiniteMap FAST_STRING elt -> FiniteMap FAST_STRING elt + IF_NCG(COMMA FiniteMap Reg elt -> FiniteMap Reg elt -> FiniteMap Reg elt) + #-} +{-# SPECIALIZE plusFM_C + :: (elt -> elt -> elt) -> FiniteMap FastString elt -> FiniteMap FAST_STRING elt -> FiniteMap FAST_STRING elt + IF_NCG(COMMA (elt -> elt -> elt) -> FiniteMap Reg elt -> FiniteMap Reg elt -> FiniteMap Reg elt) + #-} + +#endif /* compiling with ghc and have specialiser */ + +#endif /* 0 */ +\end{code} |