summaryrefslogtreecommitdiff
path: root/compiler/utils
diff options
context:
space:
mode:
authorJoachim Breitner <mail@joachim-breitner.de>2014-02-21 10:57:34 +0100
committerJoachim Breitner <mail@joachim-breitner.de>2014-03-05 15:27:20 +0100
commitcb8a63cb61af3cbc871b73071c6b894780f04cc5 (patch)
tree94457e4adc0bcd828d8e06f809c4432bd692f4b8 /compiler/utils
parent01f9ac3e977fb128388467a31f62e84d769e17ec (diff)
downloadhaskell-cb8a63cb61af3cbc871b73071c6b894780f04cc5.tar.gz
Major Call Arity rework
This patch improves the call arity analysis in various ways. Most importantly, it enriches the analysis result information so that when looking at a call, we do not have to make a random choice about what side we want to take the information from. Instead we can combine the results in a way that does not lose valuable information. To do so, besides the incoming arities, we store remember "what can be called with what", i.e. an undirected graph between the (interesting) free variables of an expression. Of course it makes combining the results a bit more tricky (especially mutual recursion), but still doable. The actually implemation of the graph structure is abstractly put away in a module of its own (UnVarGraph.hs) The implementation is geared towards efficiently representing the graphs that we need (which can contain large complete and large complete bipartite graphs, which would be huge in other representations). If someone feels like designing data structures: There is surely some speed-up to be obtained by improving that data structure. Additionally, the analysis now takes into account that if a RHS stays a thunk, then its calls happen only once, even if the variables the RHS is bound to is evaluated multiple times, or is part of a recursive group.
Diffstat (limited to 'compiler/utils')
-rw-r--r--compiler/utils/UnVarGraph.hs136
-rw-r--r--compiler/utils/UniqFM.lhs4
2 files changed, 140 insertions, 0 deletions
diff --git a/compiler/utils/UnVarGraph.hs b/compiler/utils/UnVarGraph.hs
new file mode 100644
index 0000000000..228f3b5220
--- /dev/null
+++ b/compiler/utils/UnVarGraph.hs
@@ -0,0 +1,136 @@
+{-
+
+Copyright (c) 2014 Joachim Breitner
+
+A data structure for undirected graphs of variables
+(or in plain terms: Sets of unordered pairs of numbers)
+
+
+This is very specifically tailored for the use in CallArity. In particular it
+stores the graph as a union of complete and complete bipartite graph, which
+would be very expensive to store as sets of edges or as adjanceny lists.
+
+It does not normalize the graphs. This means that g `unionUnVarGraph` g is
+equal to g, but twice as expensive and large.
+
+-}
+module UnVarGraph
+ ( UnVarSet
+ , emptyUnVarSet, mkUnVarSet, varEnvDom, unionUnVarSet, unionUnVarSets
+ , delUnVarSet
+ , elemUnVarSet, isEmptyUnVarSet
+ , UnVarGraph
+ , emptyUnVarGraph
+ , unionUnVarGraph, unionUnVarGraphs
+ , completeGraph, completeBipartiteGraph
+ , neighbors
+ , delNode
+ ) where
+
+import Id
+import VarEnv
+import UniqFM
+import Outputable
+import Data.List
+import Bag
+import Unique
+
+import qualified Data.IntSet as S
+
+-- We need a type for sets of variables (UnVarSet).
+-- We do not use VarSet, because for that we need to have the actual variable
+-- at hand, and we do not have that when we turn the domain of a VarEnv into a UnVarSet.
+-- Therefore, use a IntSet directly (which is likely also a bit more efficient).
+
+-- Set of uniques, i.e. for adjancet nodes
+newtype UnVarSet = UnVarSet (S.IntSet)
+ deriving Eq
+
+k :: Var -> Int
+k v = getKey (getUnique v)
+
+emptyUnVarSet :: UnVarSet
+emptyUnVarSet = UnVarSet S.empty
+
+elemUnVarSet :: Var -> UnVarSet -> Bool
+elemUnVarSet v (UnVarSet s) = k v `S.member` s
+
+
+isEmptyUnVarSet :: UnVarSet -> Bool
+isEmptyUnVarSet (UnVarSet s) = S.null s
+
+delUnVarSet :: UnVarSet -> Var -> UnVarSet
+delUnVarSet (UnVarSet s) v = UnVarSet $ k v `S.delete` s
+
+mkUnVarSet :: [Var] -> UnVarSet
+mkUnVarSet vs = UnVarSet $ S.fromList $ map k vs
+
+varEnvDom :: VarEnv a -> UnVarSet
+varEnvDom ae = UnVarSet $ ufmToSet_Directly ae
+
+unionUnVarSet :: UnVarSet -> UnVarSet -> UnVarSet
+unionUnVarSet (UnVarSet set1) (UnVarSet set2) = UnVarSet (set1 `S.union` set2)
+
+unionUnVarSets :: [UnVarSet] -> UnVarSet
+unionUnVarSets = foldr unionUnVarSet emptyUnVarSet
+
+instance Outputable UnVarSet where
+ ppr (UnVarSet s) = braces $
+ hcat $ punctuate comma [ ppr (getUnique i) | i <- S.toList s]
+
+
+-- The graph type. A list of complete bipartite graphs
+data Gen = CBPG UnVarSet UnVarSet -- complete bipartite
+ | CG UnVarSet -- complete
+newtype UnVarGraph = UnVarGraph (Bag Gen)
+
+emptyUnVarGraph :: UnVarGraph
+emptyUnVarGraph = UnVarGraph emptyBag
+
+unionUnVarGraph :: UnVarGraph -> UnVarGraph -> UnVarGraph
+{-
+Premature optimisation, it seems.
+unionUnVarGraph (UnVarGraph [CBPG s1 s2]) (UnVarGraph [CG s3, CG s4])
+ | s1 == s3 && s2 == s4
+ = pprTrace "unionUnVarGraph fired" empty $
+ completeGraph (s1 `unionUnVarSet` s2)
+unionUnVarGraph (UnVarGraph [CBPG s1 s2]) (UnVarGraph [CG s3, CG s4])
+ | s2 == s3 && s1 == s4
+ = pprTrace "unionUnVarGraph fired2" empty $
+ completeGraph (s1 `unionUnVarSet` s2)
+-}
+unionUnVarGraph (UnVarGraph g1) (UnVarGraph g2)
+ = -- pprTrace "unionUnVarGraph" (ppr (length g1, length g2)) $
+ UnVarGraph (g1 `unionBags` g2)
+
+unionUnVarGraphs :: [UnVarGraph] -> UnVarGraph
+unionUnVarGraphs = foldl' unionUnVarGraph emptyUnVarGraph
+
+-- completeBipartiteGraph A B = { {a,b} | a ∈ A, b ∈ B }
+completeBipartiteGraph :: UnVarSet -> UnVarSet -> UnVarGraph
+completeBipartiteGraph s1 s2 = prune $ UnVarGraph $ unitBag $ CBPG s1 s2
+
+completeGraph :: UnVarSet -> UnVarGraph
+completeGraph s = prune $ UnVarGraph $ unitBag $ CG s
+
+neighbors :: UnVarGraph -> Var -> UnVarSet
+neighbors (UnVarGraph g) v = unionUnVarSets $ concatMap go $ bagToList g
+ where go (CG s) = (if v `elemUnVarSet` s then [s] else [])
+ go (CBPG s1 s2) = (if v `elemUnVarSet` s1 then [s2] else []) ++
+ (if v `elemUnVarSet` s2 then [s1] else [])
+
+delNode :: UnVarGraph -> Var -> UnVarGraph
+delNode (UnVarGraph g) v = prune $ UnVarGraph $ mapBag go g
+ where go (CG s) = CG (s `delUnVarSet` v)
+ go (CBPG s1 s2) = CBPG (s1 `delUnVarSet` v) (s2 `delUnVarSet` v)
+
+prune :: UnVarGraph -> UnVarGraph
+prune (UnVarGraph g) = UnVarGraph $ filterBag go g
+ where go (CG s) = not (isEmptyUnVarSet s)
+ go (CBPG s1 s2) = not (isEmptyUnVarSet s1) && not (isEmptyUnVarSet s2)
+
+instance Outputable Gen where
+ ppr (CG s) = ppr s <> char '²'
+ ppr (CBPG s1 s2) = ppr s1 <+> char 'x' <+> ppr s2
+instance Outputable UnVarGraph where
+ ppr (UnVarGraph g) = ppr g
diff --git a/compiler/utils/UniqFM.lhs b/compiler/utils/UniqFM.lhs
index 52cd3dd791..a13a17c412 100644
--- a/compiler/utils/UniqFM.lhs
+++ b/compiler/utils/UniqFM.lhs
@@ -58,6 +58,7 @@ module UniqFM (
lookupUFM, lookupUFM_Directly,
lookupWithDefaultUFM, lookupWithDefaultUFM_Directly,
eltsUFM, keysUFM, splitUFM,
+ ufmToSet_Directly,
ufmToList,
joinUFM
) where
@@ -69,6 +70,7 @@ import Compiler.Hoopl hiding (Unique)
import Data.Function (on)
import qualified Data.IntMap as M
+import qualified Data.IntSet as S
import qualified Data.Foldable as Foldable
import qualified Data.Traversable as Traversable
import Data.Typeable
@@ -180,6 +182,7 @@ lookupWithDefaultUFM_Directly
:: UniqFM elt -> elt -> Unique -> elt
keysUFM :: UniqFM elt -> [Unique] -- Get the keys
eltsUFM :: UniqFM elt -> [elt]
+ufmToSet_Directly :: UniqFM elt -> S.IntSet
ufmToList :: UniqFM elt -> [(Unique, elt)]
\end{code}
@@ -293,6 +296,7 @@ lookupWithDefaultUFM (UFM m) v k = M.findWithDefault v (getKey $ getUnique k) m
lookupWithDefaultUFM_Directly (UFM m) v u = M.findWithDefault v (getKey u) m
keysUFM (UFM m) = map getUnique $ M.keys m
eltsUFM (UFM m) = M.elems m
+ufmToSet_Directly (UFM m) = M.keysSet m
ufmToList (UFM m) = map (\(k, v) -> (getUnique k, v)) $ M.toList m
-- Hoopl