diff options
author | Herbert Valerio Riedel <hvr@gnu.org> | 2014-11-07 16:26:59 +0100 |
---|---|---|
committer | Herbert Valerio Riedel <hvr@gnu.org> | 2014-11-07 17:23:34 +0100 |
commit | df3b1d43cc862fe03f0724a9c0ac9e7cecdf4605 (patch) | |
tree | 2b18cef139638c86d35025e934b07ec2c484cd0e /libraries/base/GHC/Float.hs | |
parent | 832ef3fb8f45f98add9dbfac5387281e3e0bc5dc (diff) | |
download | haskell-df3b1d43cc862fe03f0724a9c0ac9e7cecdf4605.tar.gz |
base: Manually unlit .lhs into .hs modules
This commit mostly converts literate comments into ordinary
Haskell comments or sometimes even Haddock comments, while also
removing literate comments in a few cases where they don't make
much sense anymore.
Moreover, in a few cases trailing whitespaces were removed as well.
Reviewed By: austin
Differential Revision: https://phabricator.haskell.org/D456
Diffstat (limited to 'libraries/base/GHC/Float.hs')
-rw-r--r-- | libraries/base/GHC/Float.hs | 1153 |
1 files changed, 1153 insertions, 0 deletions
diff --git a/libraries/base/GHC/Float.hs b/libraries/base/GHC/Float.hs new file mode 100644 index 0000000000..74d7cb8f01 --- /dev/null +++ b/libraries/base/GHC/Float.hs @@ -0,0 +1,1153 @@ +{-# LANGUAGE Trustworthy #-} +{-# LANGUAGE CPP + , NoImplicitPrelude + , MagicHash + , UnboxedTuples + #-} +-- We believe we could deorphan this module, by moving lots of things +-- around, but we haven't got there yet: +{-# OPTIONS_GHC -fno-warn-orphans #-} +{-# OPTIONS_HADDOCK hide #-} + +----------------------------------------------------------------------------- +-- | +-- Module : GHC.Float +-- Copyright : (c) The University of Glasgow 1994-2002 +-- Portions obtained from hbc (c) Lennart Augusstson +-- License : see libraries/base/LICENSE +-- +-- Maintainer : cvs-ghc@haskell.org +-- Stability : internal +-- Portability : non-portable (GHC Extensions) +-- +-- The types 'Float' and 'Double', and the classes 'Floating' and 'RealFloat'. +-- +----------------------------------------------------------------------------- + +#include "ieee-flpt.h" + +module GHC.Float( module GHC.Float, Float(..), Double(..), Float#, Double# + , double2Int, int2Double, float2Int, int2Float ) + where + +import Data.Maybe + +import Data.Bits +import GHC.Base +import GHC.List +import GHC.Enum +import GHC.Show +import GHC.Num +import GHC.Real +import GHC.Arr +import GHC.Float.RealFracMethods +import GHC.Float.ConversionUtils +import GHC.Integer.Logarithms ( integerLogBase# ) +import GHC.Integer.Logarithms.Internals + +infixr 8 ** + +------------------------------------------------------------------------ +-- Standard numeric classes +------------------------------------------------------------------------ + +-- | Trigonometric and hyperbolic functions and related functions. +class (Fractional a) => Floating a where + pi :: a + exp, log, sqrt :: a -> a + (**), logBase :: a -> a -> a + sin, cos, tan :: a -> a + asin, acos, atan :: a -> a + sinh, cosh, tanh :: a -> a + asinh, acosh, atanh :: a -> a + + {-# INLINE (**) #-} + {-# INLINE logBase #-} + {-# INLINE sqrt #-} + {-# INLINE tan #-} + {-# INLINE tanh #-} + x ** y = exp (log x * y) + logBase x y = log y / log x + sqrt x = x ** 0.5 + tan x = sin x / cos x + tanh x = sinh x / cosh x + +-- | Efficient, machine-independent access to the components of a +-- floating-point number. +class (RealFrac a, Floating a) => RealFloat a where + -- | a constant function, returning the radix of the representation + -- (often @2@) + floatRadix :: a -> Integer + -- | a constant function, returning the number of digits of + -- 'floatRadix' in the significand + floatDigits :: a -> Int + -- | a constant function, returning the lowest and highest values + -- the exponent may assume + floatRange :: a -> (Int,Int) + -- | The function 'decodeFloat' applied to a real floating-point + -- number returns the significand expressed as an 'Integer' and an + -- appropriately scaled exponent (an 'Int'). If @'decodeFloat' x@ + -- yields @(m,n)@, then @x@ is equal in value to @m*b^^n@, where @b@ + -- is the floating-point radix, and furthermore, either @m@ and @n@ + -- are both zero or else @b^(d-1) <= 'abs' m < b^d@, where @d@ is + -- the value of @'floatDigits' x@. + -- In particular, @'decodeFloat' 0 = (0,0)@. If the type + -- contains a negative zero, also @'decodeFloat' (-0.0) = (0,0)@. + -- /The result of/ @'decodeFloat' x@ /is unspecified if either of/ + -- @'isNaN' x@ /or/ @'isInfinite' x@ /is/ 'True'. + decodeFloat :: a -> (Integer,Int) + -- | 'encodeFloat' performs the inverse of 'decodeFloat' in the + -- sense that for finite @x@ with the exception of @-0.0@, + -- @'uncurry' 'encodeFloat' ('decodeFloat' x) = x@. + -- @'encodeFloat' m n@ is one of the two closest representable + -- floating-point numbers to @m*b^^n@ (or @±Infinity@ if overflow + -- occurs); usually the closer, but if @m@ contains too many bits, + -- the result may be rounded in the wrong direction. + encodeFloat :: Integer -> Int -> a + -- | 'exponent' corresponds to the second component of 'decodeFloat'. + -- @'exponent' 0 = 0@ and for finite nonzero @x@, + -- @'exponent' x = snd ('decodeFloat' x) + 'floatDigits' x@. + -- If @x@ is a finite floating-point number, it is equal in value to + -- @'significand' x * b ^^ 'exponent' x@, where @b@ is the + -- floating-point radix. + -- The behaviour is unspecified on infinite or @NaN@ values. + exponent :: a -> Int + -- | The first component of 'decodeFloat', scaled to lie in the open + -- interval (@-1@,@1@), either @0.0@ or of absolute value @>= 1\/b@, + -- where @b@ is the floating-point radix. + -- The behaviour is unspecified on infinite or @NaN@ values. + significand :: a -> a + -- | multiplies a floating-point number by an integer power of the radix + scaleFloat :: Int -> a -> a + -- | 'True' if the argument is an IEEE \"not-a-number\" (NaN) value + isNaN :: a -> Bool + -- | 'True' if the argument is an IEEE infinity or negative infinity + isInfinite :: a -> Bool + -- | 'True' if the argument is too small to be represented in + -- normalized format + isDenormalized :: a -> Bool + -- | 'True' if the argument is an IEEE negative zero + isNegativeZero :: a -> Bool + -- | 'True' if the argument is an IEEE floating point number + isIEEE :: a -> Bool + -- | a version of arctangent taking two real floating-point arguments. + -- For real floating @x@ and @y@, @'atan2' y x@ computes the angle + -- (from the positive x-axis) of the vector from the origin to the + -- point @(x,y)@. @'atan2' y x@ returns a value in the range [@-pi@, + -- @pi@]. It follows the Common Lisp semantics for the origin when + -- signed zeroes are supported. @'atan2' y 1@, with @y@ in a type + -- that is 'RealFloat', should return the same value as @'atan' y@. + -- A default definition of 'atan2' is provided, but implementors + -- can provide a more accurate implementation. + atan2 :: a -> a -> a + + + exponent x = if m == 0 then 0 else n + floatDigits x + where (m,n) = decodeFloat x + + significand x = encodeFloat m (negate (floatDigits x)) + where (m,_) = decodeFloat x + + scaleFloat 0 x = x + scaleFloat k x + | isFix = x + | otherwise = encodeFloat m (n + clamp b k) + where (m,n) = decodeFloat x + (l,h) = floatRange x + d = floatDigits x + b = h - l + 4*d + -- n+k may overflow, which would lead + -- to wrong results, hence we clamp the + -- scaling parameter. + -- If n + k would be larger than h, + -- n + clamp b k must be too, simliar + -- for smaller than l - d. + -- Add a little extra to keep clear + -- from the boundary cases. + isFix = x == 0 || isNaN x || isInfinite x + + atan2 y x + | x > 0 = atan (y/x) + | x == 0 && y > 0 = pi/2 + | x < 0 && y > 0 = pi + atan (y/x) + |(x <= 0 && y < 0) || + (x < 0 && isNegativeZero y) || + (isNegativeZero x && isNegativeZero y) + = -atan2 (-y) x + | y == 0 && (x < 0 || isNegativeZero x) + = pi -- must be after the previous test on zero y + | x==0 && y==0 = y -- must be after the other double zero tests + | otherwise = x + y -- x or y is a NaN, return a NaN (via +) + +------------------------------------------------------------------------ +-- Float +------------------------------------------------------------------------ + +instance Num Float where + (+) x y = plusFloat x y + (-) x y = minusFloat x y + negate x = negateFloat x + (*) x y = timesFloat x y + abs x | x == 0 = 0 -- handles (-0.0) + | x > 0 = x + | otherwise = negateFloat x + signum x | x > 0 = 1 + | x < 0 = negateFloat 1 + | otherwise = x -- handles 0.0, (-0.0), and NaN + + {-# INLINE fromInteger #-} + fromInteger i = F# (floatFromInteger i) + +instance Real Float where + toRational (F# x#) = + case decodeFloat_Int# x# of + (# m#, e# #) + | isTrue# (e# >=# 0#) -> + (smallInteger m# `shiftLInteger` e#) :% 1 + | isTrue# ((int2Word# m# `and#` 1##) `eqWord#` 0##) -> + case elimZerosInt# m# (negateInt# e#) of + (# n, d# #) -> n :% shiftLInteger 1 d# + | otherwise -> + smallInteger m# :% shiftLInteger 1 (negateInt# e#) + +instance Fractional Float where + (/) x y = divideFloat x y + {-# INLINE fromRational #-} + fromRational (n:%d) = rationalToFloat n d + recip x = 1.0 / x + +rationalToFloat :: Integer -> Integer -> Float +{-# NOINLINE [1] rationalToFloat #-} +rationalToFloat n 0 + | n == 0 = 0/0 + | n < 0 = (-1)/0 + | otherwise = 1/0 +rationalToFloat n d + | n == 0 = encodeFloat 0 0 + | n < 0 = -(fromRat'' minEx mantDigs (-n) d) + | otherwise = fromRat'' minEx mantDigs n d + where + minEx = FLT_MIN_EXP + mantDigs = FLT_MANT_DIG + +-- RULES for Integer and Int +{-# RULES +"properFraction/Float->Integer" properFraction = properFractionFloatInteger +"truncate/Float->Integer" truncate = truncateFloatInteger +"floor/Float->Integer" floor = floorFloatInteger +"ceiling/Float->Integer" ceiling = ceilingFloatInteger +"round/Float->Integer" round = roundFloatInteger +"properFraction/Float->Int" properFraction = properFractionFloatInt +"truncate/Float->Int" truncate = float2Int +"floor/Float->Int" floor = floorFloatInt +"ceiling/Float->Int" ceiling = ceilingFloatInt +"round/Float->Int" round = roundFloatInt + #-} +instance RealFrac Float where + + -- ceiling, floor, and truncate are all small + {-# INLINE [1] ceiling #-} + {-# INLINE [1] floor #-} + {-# INLINE [1] truncate #-} + +-- We assume that FLT_RADIX is 2 so that we can use more efficient code +#if FLT_RADIX != 2 +#error FLT_RADIX must be 2 +#endif + properFraction (F# x#) + = case decodeFloat_Int# x# of + (# m#, n# #) -> + let m = I# m# + n = I# n# + in + if n >= 0 + then (fromIntegral m * (2 ^ n), 0.0) + else let i = if m >= 0 then m `shiftR` negate n + else negate (negate m `shiftR` negate n) + f = m - (i `shiftL` negate n) + in (fromIntegral i, encodeFloat (fromIntegral f) n) + + truncate x = case properFraction x of + (n,_) -> n + + round x = case properFraction x of + (n,r) -> let + m = if r < 0.0 then n - 1 else n + 1 + half_down = abs r - 0.5 + in + case (compare half_down 0.0) of + LT -> n + EQ -> if even n then n else m + GT -> m + + ceiling x = case properFraction x of + (n,r) -> if r > 0.0 then n + 1 else n + + floor x = case properFraction x of + (n,r) -> if r < 0.0 then n - 1 else n + +instance Floating Float where + pi = 3.141592653589793238 + exp x = expFloat x + log x = logFloat x + sqrt x = sqrtFloat x + sin x = sinFloat x + cos x = cosFloat x + tan x = tanFloat x + asin x = asinFloat x + acos x = acosFloat x + atan x = atanFloat x + sinh x = sinhFloat x + cosh x = coshFloat x + tanh x = tanhFloat x + (**) x y = powerFloat x y + logBase x y = log y / log x + + asinh x = log (x + sqrt (1.0+x*x)) + acosh x = log (x + (x+1.0) * sqrt ((x-1.0)/(x+1.0))) + atanh x = 0.5 * log ((1.0+x) / (1.0-x)) + +instance RealFloat Float where + floatRadix _ = FLT_RADIX -- from float.h + floatDigits _ = FLT_MANT_DIG -- ditto + floatRange _ = (FLT_MIN_EXP, FLT_MAX_EXP) -- ditto + + decodeFloat (F# f#) = case decodeFloat_Int# f# of + (# i, e #) -> (smallInteger i, I# e) + + encodeFloat i (I# e) = F# (encodeFloatInteger i e) + + exponent x = case decodeFloat x of + (m,n) -> if m == 0 then 0 else n + floatDigits x + + significand x = case decodeFloat x of + (m,_) -> encodeFloat m (negate (floatDigits x)) + + scaleFloat 0 x = x + scaleFloat k x + | isFix = x + | otherwise = case decodeFloat x of + (m,n) -> encodeFloat m (n + clamp bf k) + where bf = FLT_MAX_EXP - (FLT_MIN_EXP) + 4*FLT_MANT_DIG + isFix = x == 0 || isFloatFinite x == 0 + + isNaN x = 0 /= isFloatNaN x + isInfinite x = 0 /= isFloatInfinite x + isDenormalized x = 0 /= isFloatDenormalized x + isNegativeZero x = 0 /= isFloatNegativeZero x + isIEEE _ = True + +instance Show Float where + showsPrec x = showSignedFloat showFloat x + showList = showList__ (showsPrec 0) + +------------------------------------------------------------------------ +-- Double +------------------------------------------------------------------------ + +instance Num Double where + (+) x y = plusDouble x y + (-) x y = minusDouble x y + negate x = negateDouble x + (*) x y = timesDouble x y + abs x | x == 0 = 0 -- handles (-0.0) + | x > 0 = x + | otherwise = negateDouble x + signum x | x > 0 = 1 + | x < 0 = negateDouble 1 + | otherwise = x -- handles 0.0, (-0.0), and NaN + + + {-# INLINE fromInteger #-} + fromInteger i = D# (doubleFromInteger i) + + +instance Real Double where + toRational (D# x#) = + case decodeDoubleInteger x# of + (# m, e# #) + | isTrue# (e# >=# 0#) -> + shiftLInteger m e# :% 1 + | isTrue# ((integerToWord m `and#` 1##) `eqWord#` 0##) -> + case elimZerosInteger m (negateInt# e#) of + (# n, d# #) -> n :% shiftLInteger 1 d# + | otherwise -> + m :% shiftLInteger 1 (negateInt# e#) + +instance Fractional Double where + (/) x y = divideDouble x y + {-# INLINE fromRational #-} + fromRational (n:%d) = rationalToDouble n d + recip x = 1.0 / x + +rationalToDouble :: Integer -> Integer -> Double +{-# NOINLINE [1] rationalToDouble #-} +rationalToDouble n 0 + | n == 0 = 0/0 + | n < 0 = (-1)/0 + | otherwise = 1/0 +rationalToDouble n d + | n == 0 = encodeFloat 0 0 + | n < 0 = -(fromRat'' minEx mantDigs (-n) d) + | otherwise = fromRat'' minEx mantDigs n d + where + minEx = DBL_MIN_EXP + mantDigs = DBL_MANT_DIG + +instance Floating Double where + pi = 3.141592653589793238 + exp x = expDouble x + log x = logDouble x + sqrt x = sqrtDouble x + sin x = sinDouble x + cos x = cosDouble x + tan x = tanDouble x + asin x = asinDouble x + acos x = acosDouble x + atan x = atanDouble x + sinh x = sinhDouble x + cosh x = coshDouble x + tanh x = tanhDouble x + (**) x y = powerDouble x y + logBase x y = log y / log x + + asinh x = log (x + sqrt (1.0+x*x)) + acosh x = log (x + (x+1.0) * sqrt ((x-1.0)/(x+1.0))) + atanh x = 0.5 * log ((1.0+x) / (1.0-x)) + +-- RULES for Integer and Int +{-# RULES +"properFraction/Double->Integer" properFraction = properFractionDoubleInteger +"truncate/Double->Integer" truncate = truncateDoubleInteger +"floor/Double->Integer" floor = floorDoubleInteger +"ceiling/Double->Integer" ceiling = ceilingDoubleInteger +"round/Double->Integer" round = roundDoubleInteger +"properFraction/Double->Int" properFraction = properFractionDoubleInt +"truncate/Double->Int" truncate = double2Int +"floor/Double->Int" floor = floorDoubleInt +"ceiling/Double->Int" ceiling = ceilingDoubleInt +"round/Double->Int" round = roundDoubleInt + #-} +instance RealFrac Double where + + -- ceiling, floor, and truncate are all small + {-# INLINE [1] ceiling #-} + {-# INLINE [1] floor #-} + {-# INLINE [1] truncate #-} + + properFraction x + = case (decodeFloat x) of { (m,n) -> + if n >= 0 then + (fromInteger m * 2 ^ n, 0.0) + else + case (quotRem m (2^(negate n))) of { (w,r) -> + (fromInteger w, encodeFloat r n) + } + } + + truncate x = case properFraction x of + (n,_) -> n + + round x = case properFraction x of + (n,r) -> let + m = if r < 0.0 then n - 1 else n + 1 + half_down = abs r - 0.5 + in + case (compare half_down 0.0) of + LT -> n + EQ -> if even n then n else m + GT -> m + + ceiling x = case properFraction x of + (n,r) -> if r > 0.0 then n + 1 else n + + floor x = case properFraction x of + (n,r) -> if r < 0.0 then n - 1 else n + +instance RealFloat Double where + floatRadix _ = FLT_RADIX -- from float.h + floatDigits _ = DBL_MANT_DIG -- ditto + floatRange _ = (DBL_MIN_EXP, DBL_MAX_EXP) -- ditto + + decodeFloat (D# x#) + = case decodeDoubleInteger x# of + (# i, j #) -> (i, I# j) + + encodeFloat i (I# j) = D# (encodeDoubleInteger i j) + + exponent x = case decodeFloat x of + (m,n) -> if m == 0 then 0 else n + floatDigits x + + significand x = case decodeFloat x of + (m,_) -> encodeFloat m (negate (floatDigits x)) + + scaleFloat 0 x = x + scaleFloat k x + | isFix = x + | otherwise = case decodeFloat x of + (m,n) -> encodeFloat m (n + clamp bd k) + where bd = DBL_MAX_EXP - (DBL_MIN_EXP) + 4*DBL_MANT_DIG + isFix = x == 0 || isDoubleFinite x == 0 + + isNaN x = 0 /= isDoubleNaN x + isInfinite x = 0 /= isDoubleInfinite x + isDenormalized x = 0 /= isDoubleDenormalized x + isNegativeZero x = 0 /= isDoubleNegativeZero x + isIEEE _ = True + +instance Show Double where + showsPrec x = showSignedFloat showFloat x + showList = showList__ (showsPrec 0) + + +------------------------------------------------------------------------ +-- Enum instances +------------------------------------------------------------------------ + +{- +The @Enum@ instances for Floats and Doubles are slightly unusual. +The @toEnum@ function truncates numbers to Int. The definitions +of @enumFrom@ and @enumFromThen@ allow floats to be used in arithmetic +series: [0,0.1 .. 1.0]. However, roundoff errors make these somewhat +dubious. This example may have either 10 or 11 elements, depending on +how 0.1 is represented. + +NOTE: The instances for Float and Double do not make use of the default +methods for @enumFromTo@ and @enumFromThenTo@, as these rely on there being +a `non-lossy' conversion to and from Ints. Instead we make use of the +1.2 default methods (back in the days when Enum had Ord as a superclass) +for these (@numericEnumFromTo@ and @numericEnumFromThenTo@ below.) +-} + +instance Enum Float where + succ x = x + 1 + pred x = x - 1 + toEnum = int2Float + fromEnum = fromInteger . truncate -- may overflow + enumFrom = numericEnumFrom + enumFromTo = numericEnumFromTo + enumFromThen = numericEnumFromThen + enumFromThenTo = numericEnumFromThenTo + +instance Enum Double where + succ x = x + 1 + pred x = x - 1 + toEnum = int2Double + fromEnum = fromInteger . truncate -- may overflow + enumFrom = numericEnumFrom + enumFromTo = numericEnumFromTo + enumFromThen = numericEnumFromThen + enumFromThenTo = numericEnumFromThenTo + +------------------------------------------------------------------------ +-- Printing floating point +------------------------------------------------------------------------ + +-- | Show a signed 'RealFloat' value to full precision +-- using standard decimal notation for arguments whose absolute value lies +-- between @0.1@ and @9,999,999@, and scientific notation otherwise. +showFloat :: (RealFloat a) => a -> ShowS +showFloat x = showString (formatRealFloat FFGeneric Nothing x) + +-- These are the format types. This type is not exported. + +data FFFormat = FFExponent | FFFixed | FFGeneric + +-- This is just a compatibility stub, as the "alt" argument formerly +-- didn't exist. +formatRealFloat :: (RealFloat a) => FFFormat -> Maybe Int -> a -> String +formatRealFloat fmt decs x = formatRealFloatAlt fmt decs False x + +formatRealFloatAlt :: (RealFloat a) => FFFormat -> Maybe Int -> Bool -> a + -> String +formatRealFloatAlt fmt decs alt x + | isNaN x = "NaN" + | isInfinite x = if x < 0 then "-Infinity" else "Infinity" + | x < 0 || isNegativeZero x = '-':doFmt fmt (floatToDigits (toInteger base) (-x)) + | otherwise = doFmt fmt (floatToDigits (toInteger base) x) + where + base = 10 + + doFmt format (is, e) = + let ds = map intToDigit is in + case format of + FFGeneric -> + doFmt (if e < 0 || e > 7 then FFExponent else FFFixed) + (is,e) + FFExponent -> + case decs of + Nothing -> + let show_e' = show (e-1) in + case ds of + "0" -> "0.0e0" + [d] -> d : ".0e" ++ show_e' + (d:ds') -> d : '.' : ds' ++ "e" ++ show_e' + [] -> error "formatRealFloat/doFmt/FFExponent: []" + Just dec -> + let dec' = max dec 1 in + case is of + [0] -> '0' :'.' : take dec' (repeat '0') ++ "e0" + _ -> + let + (ei,is') = roundTo base (dec'+1) is + (d:ds') = map intToDigit (if ei > 0 then init is' else is') + in + d:'.':ds' ++ 'e':show (e-1+ei) + FFFixed -> + let + mk0 ls = case ls of { "" -> "0" ; _ -> ls} + in + case decs of + Nothing + | e <= 0 -> "0." ++ replicate (-e) '0' ++ ds + | otherwise -> + let + f 0 s rs = mk0 (reverse s) ++ '.':mk0 rs + f n s "" = f (n-1) ('0':s) "" + f n s (r:rs) = f (n-1) (r:s) rs + in + f e "" ds + Just dec -> + let dec' = max dec 0 in + if e >= 0 then + let + (ei,is') = roundTo base (dec' + e) is + (ls,rs) = splitAt (e+ei) (map intToDigit is') + in + mk0 ls ++ (if null rs && not alt then "" else '.':rs) + else + let + (ei,is') = roundTo base dec' (replicate (-e) 0 ++ is) + d:ds' = map intToDigit (if ei > 0 then is' else 0:is') + in + d : (if null ds' && not alt then "" else '.':ds') + + +roundTo :: Int -> Int -> [Int] -> (Int,[Int]) +roundTo base d is = + case f d True is of + x@(0,_) -> x + (1,xs) -> (1, 1:xs) + _ -> error "roundTo: bad Value" + where + b2 = base `quot` 2 + + f n _ [] = (0, replicate n 0) + f 0 e (x:xs) | x == b2 && e && all (== 0) xs = (0, []) -- Round to even when at exactly half the base + | otherwise = (if x >= b2 then 1 else 0, []) + f n _ (i:xs) + | i' == base = (1,0:ds) + | otherwise = (0,i':ds) + where + (c,ds) = f (n-1) (even i) xs + i' = c + i + +-- Based on "Printing Floating-Point Numbers Quickly and Accurately" +-- by R.G. Burger and R.K. Dybvig in PLDI 96. +-- This version uses a much slower logarithm estimator. It should be improved. + +-- | 'floatToDigits' takes a base and a non-negative 'RealFloat' number, +-- and returns a list of digits and an exponent. +-- In particular, if @x>=0@, and +-- +-- > floatToDigits base x = ([d1,d2,...,dn], e) +-- +-- then +-- +-- (1) @n >= 1@ +-- +-- (2) @x = 0.d1d2...dn * (base**e)@ +-- +-- (3) @0 <= di <= base-1@ + +floatToDigits :: (RealFloat a) => Integer -> a -> ([Int], Int) +floatToDigits _ 0 = ([0], 0) +floatToDigits base x = + let + (f0, e0) = decodeFloat x + (minExp0, _) = floatRange x + p = floatDigits x + b = floatRadix x + minExp = minExp0 - p -- the real minimum exponent + -- Haskell requires that f be adjusted so denormalized numbers + -- will have an impossibly low exponent. Adjust for this. + (f, e) = + let n = minExp - e0 in + if n > 0 then (f0 `quot` (expt b n), e0+n) else (f0, e0) + (r, s, mUp, mDn) = + if e >= 0 then + let be = expt b e in + if f == expt b (p-1) then + (f*be*b*2, 2*b, be*b, be) -- according to Burger and Dybvig + else + (f*be*2, 2, be, be) + else + if e > minExp && f == expt b (p-1) then + (f*b*2, expt b (-e+1)*2, b, 1) + else + (f*2, expt b (-e)*2, 1, 1) + k :: Int + k = + let + k0 :: Int + k0 = + if b == 2 && base == 10 then + -- logBase 10 2 is very slightly larger than 8651/28738 + -- (about 5.3558e-10), so if log x >= 0, the approximation + -- k1 is too small, hence we add one and need one fixup step less. + -- If log x < 0, the approximation errs rather on the high side. + -- That is usually more than compensated for by ignoring the + -- fractional part of logBase 2 x, but when x is a power of 1/2 + -- or slightly larger and the exponent is a multiple of the + -- denominator of the rational approximation to logBase 10 2, + -- k1 is larger than logBase 10 x. If k1 > 1 + logBase 10 x, + -- we get a leading zero-digit we don't want. + -- With the approximation 3/10, this happened for + -- 0.5^1030, 0.5^1040, ..., 0.5^1070 and values close above. + -- The approximation 8651/28738 guarantees k1 < 1 + logBase 10 x + -- for IEEE-ish floating point types with exponent fields + -- <= 17 bits and mantissae of several thousand bits, earlier + -- convergents to logBase 10 2 would fail for long double. + -- Using quot instead of div is a little faster and requires + -- fewer fixup steps for negative lx. + let lx = p - 1 + e0 + k1 = (lx * 8651) `quot` 28738 + in if lx >= 0 then k1 + 1 else k1 + else + -- f :: Integer, log :: Float -> Float, + -- ceiling :: Float -> Int + ceiling ((log (fromInteger (f+1) :: Float) + + fromIntegral e * log (fromInteger b)) / + log (fromInteger base)) +--WAS: fromInt e * log (fromInteger b)) + + fixup n = + if n >= 0 then + if r + mUp <= expt base n * s then n else fixup (n+1) + else + if expt base (-n) * (r + mUp) <= s then n else fixup (n+1) + in + fixup k0 + + gen ds rn sN mUpN mDnN = + let + (dn, rn') = (rn * base) `quotRem` sN + mUpN' = mUpN * base + mDnN' = mDnN * base + in + case (rn' < mDnN', rn' + mUpN' > sN) of + (True, False) -> dn : ds + (False, True) -> dn+1 : ds + (True, True) -> if rn' * 2 < sN then dn : ds else dn+1 : ds + (False, False) -> gen (dn:ds) rn' sN mUpN' mDnN' + + rds = + if k >= 0 then + gen [] r (s * expt base k) mUp mDn + else + let bk = expt base (-k) in + gen [] (r * bk) s (mUp * bk) (mDn * bk) + in + (map fromIntegral (reverse rds), k) + +------------------------------------------------------------------------ +-- Converting from a Rational to a RealFloa +------------------------------------------------------------------------ + +{- +[In response to a request for documentation of how fromRational works, +Joe Fasel writes:] A quite reasonable request! This code was added to +the Prelude just before the 1.2 release, when Lennart, working with an +early version of hbi, noticed that (read . show) was not the identity +for floating-point numbers. (There was a one-bit error about half the +time.) The original version of the conversion function was in fact +simply a floating-point divide, as you suggest above. The new version +is, I grant you, somewhat denser. + +Unfortunately, Joe's code doesn't work! Here's an example: + +main = putStr (shows (1.82173691287639817263897126389712638972163e-300::Double) "\n") + +This program prints + 0.0000000000000000 +instead of + 1.8217369128763981e-300 + +Here's Joe's code: + +\begin{pseudocode} +fromRat :: (RealFloat a) => Rational -> a +fromRat x = x' + where x' = f e + +-- If the exponent of the nearest floating-point number to x +-- is e, then the significand is the integer nearest xb^(-e), +-- where b is the floating-point radix. We start with a good +-- guess for e, and if it is correct, the exponent of the +-- floating-point number we construct will again be e. If +-- not, one more iteration is needed. + + f e = if e' == e then y else f e' + where y = encodeFloat (round (x * (1 % b)^^e)) e + (_,e') = decodeFloat y + b = floatRadix x' + +-- We obtain a trial exponent by doing a floating-point +-- division of x's numerator by its denominator. The +-- result of this division may not itself be the ultimate +-- result, because of an accumulation of three rounding +-- errors. + + (s,e) = decodeFloat (fromInteger (numerator x) `asTypeOf` x' + / fromInteger (denominator x)) +\end{pseudocode} + +Now, here's Lennart's code (which works): +-} + +-- | Converts a 'Rational' value into any type in class 'RealFloat'. +{-# RULES +"fromRat/Float" fromRat = (fromRational :: Rational -> Float) +"fromRat/Double" fromRat = (fromRational :: Rational -> Double) + #-} + +{-# NOINLINE [1] fromRat #-} +fromRat :: (RealFloat a) => Rational -> a + +-- Deal with special cases first, delegating the real work to fromRat' +fromRat (n :% 0) | n > 0 = 1/0 -- +Infinity + | n < 0 = -1/0 -- -Infinity + | otherwise = 0/0 -- NaN + +fromRat (n :% d) | n > 0 = fromRat' (n :% d) + | n < 0 = - fromRat' ((-n) :% d) + | otherwise = encodeFloat 0 0 -- Zero + +-- Conversion process: +-- Scale the rational number by the RealFloat base until +-- it lies in the range of the mantissa (as used by decodeFloat/encodeFloat). +-- Then round the rational to an Integer and encode it with the exponent +-- that we got from the scaling. +-- To speed up the scaling process we compute the log2 of the number to get +-- a first guess of the exponent. + +fromRat' :: (RealFloat a) => Rational -> a +-- Invariant: argument is strictly positive +fromRat' x = r + where b = floatRadix r + p = floatDigits r + (minExp0, _) = floatRange r + minExp = minExp0 - p -- the real minimum exponent + xMax = toRational (expt b p) + p0 = (integerLogBase b (numerator x) - integerLogBase b (denominator x) - p) `max` minExp + -- if x = n/d and ln = integerLogBase b n, ld = integerLogBase b d, + -- then b^(ln-ld-1) < x < b^(ln-ld+1) + f = if p0 < 0 then 1 :% expt b (-p0) else expt b p0 :% 1 + x0 = x / f + -- if ln - ld >= minExp0, then b^(p-1) < x0 < b^(p+1), so there's at most + -- one scaling step needed, otherwise, x0 < b^p and no scaling is needed + (x', p') = if x0 >= xMax then (x0 / toRational b, p0+1) else (x0, p0) + r = encodeFloat (round x') p' + +-- Exponentiation with a cache for the most common numbers. +minExpt, maxExpt :: Int +minExpt = 0 +maxExpt = 1100 + +expt :: Integer -> Int -> Integer +expt base n = + if base == 2 && n >= minExpt && n <= maxExpt then + expts!n + else + if base == 10 && n <= maxExpt10 then + expts10!n + else + base^n + +expts :: Array Int Integer +expts = array (minExpt,maxExpt) [(n,2^n) | n <- [minExpt .. maxExpt]] + +maxExpt10 :: Int +maxExpt10 = 324 + +expts10 :: Array Int Integer +expts10 = array (minExpt,maxExpt10) [(n,10^n) | n <- [minExpt .. maxExpt10]] + +-- Compute the (floor of the) log of i in base b. +-- Simplest way would be just divide i by b until it's smaller then b, but that would +-- be very slow! We are just slightly more clever, except for base 2, where +-- we take advantage of the representation of Integers. +-- The general case could be improved by a lookup table for +-- approximating the result by integerLog2 i / integerLog2 b. +integerLogBase :: Integer -> Integer -> Int +integerLogBase b i + | i < b = 0 + | b == 2 = I# (integerLog2# i) + | otherwise = I# (integerLogBase# b i) + +{- +Unfortunately, the old conversion code was awfully slow due to +a) a slow integer logarithm +b) repeated calculation of gcd's + +For the case of Rational's coming from a Float or Double via toRational, +we can exploit the fact that the denominator is a power of two, which for +these brings a huge speedup since we need only shift and add instead +of division. + +The below is an adaption of fromRat' for the conversion to +Float or Double exploiting the known floatRadix and avoiding +divisions as much as possible. +-} + +{-# SPECIALISE fromRat'' :: Int -> Int -> Integer -> Integer -> Float, + Int -> Int -> Integer -> Integer -> Double #-} +fromRat'' :: RealFloat a => Int -> Int -> Integer -> Integer -> a +-- Invariant: n and d strictly positive +fromRat'' minEx@(I# me#) mantDigs@(I# md#) n d = + case integerLog2IsPowerOf2# d of + (# ld#, pw# #) + | isTrue# (pw# ==# 0#) -> + case integerLog2# n of + ln# | isTrue# (ln# >=# (ld# +# me# -# 1#)) -> + -- this means n/d >= 2^(minEx-1), i.e. we are guaranteed to get + -- a normalised number, round to mantDigs bits + if isTrue# (ln# <# md#) + then encodeFloat n (I# (negateInt# ld#)) + else let n' = n `shiftR` (I# (ln# +# 1# -# md#)) + n'' = case roundingMode# n (ln# -# md#) of + 0# -> n' + 2# -> n' + 1 + _ -> case fromInteger n' .&. (1 :: Int) of + 0 -> n' + _ -> n' + 1 + in encodeFloat n'' (I# (ln# -# ld# +# 1# -# md#)) + | otherwise -> + -- n/d < 2^(minEx-1), a denorm or rounded to 2^(minEx-1) + -- the exponent for encoding is always minEx-mantDigs + -- so we must shift right by (minEx-mantDigs) - (-ld) + case ld# +# (me# -# md#) of + ld'# | isTrue# (ld'# <=# 0#) -> -- we would shift left, so we don't shift + encodeFloat n (I# ((me# -# md#) -# ld'#)) + | isTrue# (ld'# <=# ln#) -> + let n' = n `shiftR` (I# ld'#) + in case roundingMode# n (ld'# -# 1#) of + 0# -> encodeFloat n' (minEx - mantDigs) + 1# -> if fromInteger n' .&. (1 :: Int) == 0 + then encodeFloat n' (minEx-mantDigs) + else encodeFloat (n' + 1) (minEx-mantDigs) + _ -> encodeFloat (n' + 1) (minEx-mantDigs) + | isTrue# (ld'# ># (ln# +# 1#)) -> encodeFloat 0 0 -- result of shift < 0.5 + | otherwise -> -- first bit of n shifted to 0.5 place + case integerLog2IsPowerOf2# n of + (# _, 0# #) -> encodeFloat 0 0 -- round to even + (# _, _ #) -> encodeFloat 1 (minEx - mantDigs) + | otherwise -> + let ln = I# (integerLog2# n) + ld = I# ld# + -- 2^(ln-ld-1) < n/d < 2^(ln-ld+1) + p0 = max minEx (ln - ld) + (n', d') + | p0 < mantDigs = (n `shiftL` (mantDigs - p0), d) + | p0 == mantDigs = (n, d) + | otherwise = (n, d `shiftL` (p0 - mantDigs)) + -- if ln-ld < minEx, then n'/d' < 2^mantDigs, else + -- 2^(mantDigs-1) < n'/d' < 2^(mantDigs+1) and we + -- may need one scaling step + scale p a b + | (b `shiftL` mantDigs) <= a = (p+1, a, b `shiftL` 1) + | otherwise = (p, a, b) + (p', n'', d'') = scale (p0-mantDigs) n' d' + -- n''/d'' < 2^mantDigs and p' == minEx-mantDigs or n''/d'' >= 2^(mantDigs-1) + rdq = case n'' `quotRem` d'' of + (q,r) -> case compare (r `shiftL` 1) d'' of + LT -> q + EQ -> if fromInteger q .&. (1 :: Int) == 0 + then q else q+1 + GT -> q+1 + in encodeFloat rdq p' + +------------------------------------------------------------------------ +-- Floating point numeric primops +------------------------------------------------------------------------ + +-- Definitions of the boxed PrimOps; these will be +-- used in the case of partial applications, etc. + +plusFloat, minusFloat, timesFloat, divideFloat :: Float -> Float -> Float +plusFloat (F# x) (F# y) = F# (plusFloat# x y) +minusFloat (F# x) (F# y) = F# (minusFloat# x y) +timesFloat (F# x) (F# y) = F# (timesFloat# x y) +divideFloat (F# x) (F# y) = F# (divideFloat# x y) + +negateFloat :: Float -> Float +negateFloat (F# x) = F# (negateFloat# x) + +gtFloat, geFloat, eqFloat, neFloat, ltFloat, leFloat :: Float -> Float -> Bool +gtFloat (F# x) (F# y) = isTrue# (gtFloat# x y) +geFloat (F# x) (F# y) = isTrue# (geFloat# x y) +eqFloat (F# x) (F# y) = isTrue# (eqFloat# x y) +neFloat (F# x) (F# y) = isTrue# (neFloat# x y) +ltFloat (F# x) (F# y) = isTrue# (ltFloat# x y) +leFloat (F# x) (F# y) = isTrue# (leFloat# x y) + +expFloat, logFloat, sqrtFloat :: Float -> Float +sinFloat, cosFloat, tanFloat :: Float -> Float +asinFloat, acosFloat, atanFloat :: Float -> Float +sinhFloat, coshFloat, tanhFloat :: Float -> Float +expFloat (F# x) = F# (expFloat# x) +logFloat (F# x) = F# (logFloat# x) +sqrtFloat (F# x) = F# (sqrtFloat# x) +sinFloat (F# x) = F# (sinFloat# x) +cosFloat (F# x) = F# (cosFloat# x) +tanFloat (F# x) = F# (tanFloat# x) +asinFloat (F# x) = F# (asinFloat# x) +acosFloat (F# x) = F# (acosFloat# x) +atanFloat (F# x) = F# (atanFloat# x) +sinhFloat (F# x) = F# (sinhFloat# x) +coshFloat (F# x) = F# (coshFloat# x) +tanhFloat (F# x) = F# (tanhFloat# x) + +powerFloat :: Float -> Float -> Float +powerFloat (F# x) (F# y) = F# (powerFloat# x y) + +-- definitions of the boxed PrimOps; these will be +-- used in the case of partial applications, etc. + +plusDouble, minusDouble, timesDouble, divideDouble :: Double -> Double -> Double +plusDouble (D# x) (D# y) = D# (x +## y) +minusDouble (D# x) (D# y) = D# (x -## y) +timesDouble (D# x) (D# y) = D# (x *## y) +divideDouble (D# x) (D# y) = D# (x /## y) + +negateDouble :: Double -> Double +negateDouble (D# x) = D# (negateDouble# x) + +gtDouble, geDouble, eqDouble, neDouble, leDouble, ltDouble :: Double -> Double -> Bool +gtDouble (D# x) (D# y) = isTrue# (x >## y) +geDouble (D# x) (D# y) = isTrue# (x >=## y) +eqDouble (D# x) (D# y) = isTrue# (x ==## y) +neDouble (D# x) (D# y) = isTrue# (x /=## y) +ltDouble (D# x) (D# y) = isTrue# (x <## y) +leDouble (D# x) (D# y) = isTrue# (x <=## y) + +double2Float :: Double -> Float +double2Float (D# x) = F# (double2Float# x) + +float2Double :: Float -> Double +float2Double (F# x) = D# (float2Double# x) + +expDouble, logDouble, sqrtDouble :: Double -> Double +sinDouble, cosDouble, tanDouble :: Double -> Double +asinDouble, acosDouble, atanDouble :: Double -> Double +sinhDouble, coshDouble, tanhDouble :: Double -> Double +expDouble (D# x) = D# (expDouble# x) +logDouble (D# x) = D# (logDouble# x) +sqrtDouble (D# x) = D# (sqrtDouble# x) +sinDouble (D# x) = D# (sinDouble# x) +cosDouble (D# x) = D# (cosDouble# x) +tanDouble (D# x) = D# (tanDouble# x) +asinDouble (D# x) = D# (asinDouble# x) +acosDouble (D# x) = D# (acosDouble# x) +atanDouble (D# x) = D# (atanDouble# x) +sinhDouble (D# x) = D# (sinhDouble# x) +coshDouble (D# x) = D# (coshDouble# x) +tanhDouble (D# x) = D# (tanhDouble# x) + +powerDouble :: Double -> Double -> Double +powerDouble (D# x) (D# y) = D# (x **## y) + +foreign import ccall unsafe "isFloatNaN" isFloatNaN :: Float -> Int +foreign import ccall unsafe "isFloatInfinite" isFloatInfinite :: Float -> Int +foreign import ccall unsafe "isFloatDenormalized" isFloatDenormalized :: Float -> Int +foreign import ccall unsafe "isFloatNegativeZero" isFloatNegativeZero :: Float -> Int +foreign import ccall unsafe "isFloatFinite" isFloatFinite :: Float -> Int + +foreign import ccall unsafe "isDoubleNaN" isDoubleNaN :: Double -> Int +foreign import ccall unsafe "isDoubleInfinite" isDoubleInfinite :: Double -> Int +foreign import ccall unsafe "isDoubleDenormalized" isDoubleDenormalized :: Double -> Int +foreign import ccall unsafe "isDoubleNegativeZero" isDoubleNegativeZero :: Double -> Int +foreign import ccall unsafe "isDoubleFinite" isDoubleFinite :: Double -> Int + +------------------------------------------------------------------------ +-- Coercion rules +------------------------------------------------------------------------ + +word2Double :: Word -> Double +word2Double (W# w) = D# (word2Double# w) + +word2Float :: Word -> Float +word2Float (W# w) = F# (word2Float# w) + +{-# RULES +"fromIntegral/Int->Float" fromIntegral = int2Float +"fromIntegral/Int->Double" fromIntegral = int2Double +"fromIntegral/Word->Float" fromIntegral = word2Float +"fromIntegral/Word->Double" fromIntegral = word2Double +"realToFrac/Float->Float" realToFrac = id :: Float -> Float +"realToFrac/Float->Double" realToFrac = float2Double +"realToFrac/Double->Float" realToFrac = double2Float +"realToFrac/Double->Double" realToFrac = id :: Double -> Double +"realToFrac/Int->Double" realToFrac = int2Double -- See Note [realToFrac int-to-float] +"realToFrac/Int->Float" realToFrac = int2Float -- ..ditto + #-} + +{- +Note [realToFrac int-to-float] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Don found that the RULES for realToFrac/Int->Double and simliarly +Float made a huge difference to some stream-fusion programs. Here's +an example + + import Data.Array.Vector + + n = 40000000 + + main = do + let c = replicateU n (2::Double) + a = mapU realToFrac (enumFromToU 0 (n-1) ) :: UArr Double + print (sumU (zipWithU (*) c a)) + +Without the RULE we get this loop body: + + case $wtoRational sc_sY4 of ww_aM7 { (# ww1_aM9, ww2_aMa #) -> + case $wfromRat ww1_aM9 ww2_aMa of tpl_X1P { D# ipv_sW3 -> + Main.$s$wfold + (+# sc_sY4 1) + (+# wild_X1i 1) + (+## sc2_sY6 (*## 2.0 ipv_sW3)) + +And with the rule: + + Main.$s$wfold + (+# sc_sXT 1) + (+# wild_X1h 1) + (+## sc2_sXV (*## 2.0 (int2Double# sc_sXT))) + +The running time of the program goes from 120 seconds to 0.198 seconds +with the native backend, and 0.143 seconds with the C backend. + +A few more details in Trac #2251, and the patch message +"Add RULES for realToFrac from Int". +-} + +-- Utils + +showSignedFloat :: (RealFloat a) + => (a -> ShowS) -- ^ a function that can show unsigned values + -> Int -- ^ the precedence of the enclosing context + -> a -- ^ the value to show + -> ShowS +showSignedFloat showPos p x + | x < 0 || isNegativeZero x + = showParen (p > 6) (showChar '-' . showPos (-x)) + | otherwise = showPos x + +{- +We need to prevent over/underflow of the exponent in encodeFloat when +called from scaleFloat, hence we clamp the scaling parameter. +We must have a large enough range to cover the maximum difference of +exponents returned by decodeFloat. +-} +clamp :: Int -> Int -> Int +clamp bd k = max (-bd) (min bd k) |