summaryrefslogtreecommitdiff
path: root/libraries/base/GHC/Float.hs
diff options
context:
space:
mode:
authorHerbert Valerio Riedel <hvr@gnu.org>2014-11-07 16:26:59 +0100
committerHerbert Valerio Riedel <hvr@gnu.org>2014-11-07 17:23:34 +0100
commitdf3b1d43cc862fe03f0724a9c0ac9e7cecdf4605 (patch)
tree2b18cef139638c86d35025e934b07ec2c484cd0e /libraries/base/GHC/Float.hs
parent832ef3fb8f45f98add9dbfac5387281e3e0bc5dc (diff)
downloadhaskell-df3b1d43cc862fe03f0724a9c0ac9e7cecdf4605.tar.gz
base: Manually unlit .lhs into .hs modules
This commit mostly converts literate comments into ordinary Haskell comments or sometimes even Haddock comments, while also removing literate comments in a few cases where they don't make much sense anymore. Moreover, in a few cases trailing whitespaces were removed as well. Reviewed By: austin Differential Revision: https://phabricator.haskell.org/D456
Diffstat (limited to 'libraries/base/GHC/Float.hs')
-rw-r--r--libraries/base/GHC/Float.hs1153
1 files changed, 1153 insertions, 0 deletions
diff --git a/libraries/base/GHC/Float.hs b/libraries/base/GHC/Float.hs
new file mode 100644
index 0000000000..74d7cb8f01
--- /dev/null
+++ b/libraries/base/GHC/Float.hs
@@ -0,0 +1,1153 @@
+{-# LANGUAGE Trustworthy #-}
+{-# LANGUAGE CPP
+ , NoImplicitPrelude
+ , MagicHash
+ , UnboxedTuples
+ #-}
+-- We believe we could deorphan this module, by moving lots of things
+-- around, but we haven't got there yet:
+{-# OPTIONS_GHC -fno-warn-orphans #-}
+{-# OPTIONS_HADDOCK hide #-}
+
+-----------------------------------------------------------------------------
+-- |
+-- Module : GHC.Float
+-- Copyright : (c) The University of Glasgow 1994-2002
+-- Portions obtained from hbc (c) Lennart Augusstson
+-- License : see libraries/base/LICENSE
+--
+-- Maintainer : cvs-ghc@haskell.org
+-- Stability : internal
+-- Portability : non-portable (GHC Extensions)
+--
+-- The types 'Float' and 'Double', and the classes 'Floating' and 'RealFloat'.
+--
+-----------------------------------------------------------------------------
+
+#include "ieee-flpt.h"
+
+module GHC.Float( module GHC.Float, Float(..), Double(..), Float#, Double#
+ , double2Int, int2Double, float2Int, int2Float )
+ where
+
+import Data.Maybe
+
+import Data.Bits
+import GHC.Base
+import GHC.List
+import GHC.Enum
+import GHC.Show
+import GHC.Num
+import GHC.Real
+import GHC.Arr
+import GHC.Float.RealFracMethods
+import GHC.Float.ConversionUtils
+import GHC.Integer.Logarithms ( integerLogBase# )
+import GHC.Integer.Logarithms.Internals
+
+infixr 8 **
+
+------------------------------------------------------------------------
+-- Standard numeric classes
+------------------------------------------------------------------------
+
+-- | Trigonometric and hyperbolic functions and related functions.
+class (Fractional a) => Floating a where
+ pi :: a
+ exp, log, sqrt :: a -> a
+ (**), logBase :: a -> a -> a
+ sin, cos, tan :: a -> a
+ asin, acos, atan :: a -> a
+ sinh, cosh, tanh :: a -> a
+ asinh, acosh, atanh :: a -> a
+
+ {-# INLINE (**) #-}
+ {-# INLINE logBase #-}
+ {-# INLINE sqrt #-}
+ {-# INLINE tan #-}
+ {-# INLINE tanh #-}
+ x ** y = exp (log x * y)
+ logBase x y = log y / log x
+ sqrt x = x ** 0.5
+ tan x = sin x / cos x
+ tanh x = sinh x / cosh x
+
+-- | Efficient, machine-independent access to the components of a
+-- floating-point number.
+class (RealFrac a, Floating a) => RealFloat a where
+ -- | a constant function, returning the radix of the representation
+ -- (often @2@)
+ floatRadix :: a -> Integer
+ -- | a constant function, returning the number of digits of
+ -- 'floatRadix' in the significand
+ floatDigits :: a -> Int
+ -- | a constant function, returning the lowest and highest values
+ -- the exponent may assume
+ floatRange :: a -> (Int,Int)
+ -- | The function 'decodeFloat' applied to a real floating-point
+ -- number returns the significand expressed as an 'Integer' and an
+ -- appropriately scaled exponent (an 'Int'). If @'decodeFloat' x@
+ -- yields @(m,n)@, then @x@ is equal in value to @m*b^^n@, where @b@
+ -- is the floating-point radix, and furthermore, either @m@ and @n@
+ -- are both zero or else @b^(d-1) <= 'abs' m < b^d@, where @d@ is
+ -- the value of @'floatDigits' x@.
+ -- In particular, @'decodeFloat' 0 = (0,0)@. If the type
+ -- contains a negative zero, also @'decodeFloat' (-0.0) = (0,0)@.
+ -- /The result of/ @'decodeFloat' x@ /is unspecified if either of/
+ -- @'isNaN' x@ /or/ @'isInfinite' x@ /is/ 'True'.
+ decodeFloat :: a -> (Integer,Int)
+ -- | 'encodeFloat' performs the inverse of 'decodeFloat' in the
+ -- sense that for finite @x@ with the exception of @-0.0@,
+ -- @'uncurry' 'encodeFloat' ('decodeFloat' x) = x@.
+ -- @'encodeFloat' m n@ is one of the two closest representable
+ -- floating-point numbers to @m*b^^n@ (or @&#177;Infinity@ if overflow
+ -- occurs); usually the closer, but if @m@ contains too many bits,
+ -- the result may be rounded in the wrong direction.
+ encodeFloat :: Integer -> Int -> a
+ -- | 'exponent' corresponds to the second component of 'decodeFloat'.
+ -- @'exponent' 0 = 0@ and for finite nonzero @x@,
+ -- @'exponent' x = snd ('decodeFloat' x) + 'floatDigits' x@.
+ -- If @x@ is a finite floating-point number, it is equal in value to
+ -- @'significand' x * b ^^ 'exponent' x@, where @b@ is the
+ -- floating-point radix.
+ -- The behaviour is unspecified on infinite or @NaN@ values.
+ exponent :: a -> Int
+ -- | The first component of 'decodeFloat', scaled to lie in the open
+ -- interval (@-1@,@1@), either @0.0@ or of absolute value @>= 1\/b@,
+ -- where @b@ is the floating-point radix.
+ -- The behaviour is unspecified on infinite or @NaN@ values.
+ significand :: a -> a
+ -- | multiplies a floating-point number by an integer power of the radix
+ scaleFloat :: Int -> a -> a
+ -- | 'True' if the argument is an IEEE \"not-a-number\" (NaN) value
+ isNaN :: a -> Bool
+ -- | 'True' if the argument is an IEEE infinity or negative infinity
+ isInfinite :: a -> Bool
+ -- | 'True' if the argument is too small to be represented in
+ -- normalized format
+ isDenormalized :: a -> Bool
+ -- | 'True' if the argument is an IEEE negative zero
+ isNegativeZero :: a -> Bool
+ -- | 'True' if the argument is an IEEE floating point number
+ isIEEE :: a -> Bool
+ -- | a version of arctangent taking two real floating-point arguments.
+ -- For real floating @x@ and @y@, @'atan2' y x@ computes the angle
+ -- (from the positive x-axis) of the vector from the origin to the
+ -- point @(x,y)@. @'atan2' y x@ returns a value in the range [@-pi@,
+ -- @pi@]. It follows the Common Lisp semantics for the origin when
+ -- signed zeroes are supported. @'atan2' y 1@, with @y@ in a type
+ -- that is 'RealFloat', should return the same value as @'atan' y@.
+ -- A default definition of 'atan2' is provided, but implementors
+ -- can provide a more accurate implementation.
+ atan2 :: a -> a -> a
+
+
+ exponent x = if m == 0 then 0 else n + floatDigits x
+ where (m,n) = decodeFloat x
+
+ significand x = encodeFloat m (negate (floatDigits x))
+ where (m,_) = decodeFloat x
+
+ scaleFloat 0 x = x
+ scaleFloat k x
+ | isFix = x
+ | otherwise = encodeFloat m (n + clamp b k)
+ where (m,n) = decodeFloat x
+ (l,h) = floatRange x
+ d = floatDigits x
+ b = h - l + 4*d
+ -- n+k may overflow, which would lead
+ -- to wrong results, hence we clamp the
+ -- scaling parameter.
+ -- If n + k would be larger than h,
+ -- n + clamp b k must be too, simliar
+ -- for smaller than l - d.
+ -- Add a little extra to keep clear
+ -- from the boundary cases.
+ isFix = x == 0 || isNaN x || isInfinite x
+
+ atan2 y x
+ | x > 0 = atan (y/x)
+ | x == 0 && y > 0 = pi/2
+ | x < 0 && y > 0 = pi + atan (y/x)
+ |(x <= 0 && y < 0) ||
+ (x < 0 && isNegativeZero y) ||
+ (isNegativeZero x && isNegativeZero y)
+ = -atan2 (-y) x
+ | y == 0 && (x < 0 || isNegativeZero x)
+ = pi -- must be after the previous test on zero y
+ | x==0 && y==0 = y -- must be after the other double zero tests
+ | otherwise = x + y -- x or y is a NaN, return a NaN (via +)
+
+------------------------------------------------------------------------
+-- Float
+------------------------------------------------------------------------
+
+instance Num Float where
+ (+) x y = plusFloat x y
+ (-) x y = minusFloat x y
+ negate x = negateFloat x
+ (*) x y = timesFloat x y
+ abs x | x == 0 = 0 -- handles (-0.0)
+ | x > 0 = x
+ | otherwise = negateFloat x
+ signum x | x > 0 = 1
+ | x < 0 = negateFloat 1
+ | otherwise = x -- handles 0.0, (-0.0), and NaN
+
+ {-# INLINE fromInteger #-}
+ fromInteger i = F# (floatFromInteger i)
+
+instance Real Float where
+ toRational (F# x#) =
+ case decodeFloat_Int# x# of
+ (# m#, e# #)
+ | isTrue# (e# >=# 0#) ->
+ (smallInteger m# `shiftLInteger` e#) :% 1
+ | isTrue# ((int2Word# m# `and#` 1##) `eqWord#` 0##) ->
+ case elimZerosInt# m# (negateInt# e#) of
+ (# n, d# #) -> n :% shiftLInteger 1 d#
+ | otherwise ->
+ smallInteger m# :% shiftLInteger 1 (negateInt# e#)
+
+instance Fractional Float where
+ (/) x y = divideFloat x y
+ {-# INLINE fromRational #-}
+ fromRational (n:%d) = rationalToFloat n d
+ recip x = 1.0 / x
+
+rationalToFloat :: Integer -> Integer -> Float
+{-# NOINLINE [1] rationalToFloat #-}
+rationalToFloat n 0
+ | n == 0 = 0/0
+ | n < 0 = (-1)/0
+ | otherwise = 1/0
+rationalToFloat n d
+ | n == 0 = encodeFloat 0 0
+ | n < 0 = -(fromRat'' minEx mantDigs (-n) d)
+ | otherwise = fromRat'' minEx mantDigs n d
+ where
+ minEx = FLT_MIN_EXP
+ mantDigs = FLT_MANT_DIG
+
+-- RULES for Integer and Int
+{-# RULES
+"properFraction/Float->Integer" properFraction = properFractionFloatInteger
+"truncate/Float->Integer" truncate = truncateFloatInteger
+"floor/Float->Integer" floor = floorFloatInteger
+"ceiling/Float->Integer" ceiling = ceilingFloatInteger
+"round/Float->Integer" round = roundFloatInteger
+"properFraction/Float->Int" properFraction = properFractionFloatInt
+"truncate/Float->Int" truncate = float2Int
+"floor/Float->Int" floor = floorFloatInt
+"ceiling/Float->Int" ceiling = ceilingFloatInt
+"round/Float->Int" round = roundFloatInt
+ #-}
+instance RealFrac Float where
+
+ -- ceiling, floor, and truncate are all small
+ {-# INLINE [1] ceiling #-}
+ {-# INLINE [1] floor #-}
+ {-# INLINE [1] truncate #-}
+
+-- We assume that FLT_RADIX is 2 so that we can use more efficient code
+#if FLT_RADIX != 2
+#error FLT_RADIX must be 2
+#endif
+ properFraction (F# x#)
+ = case decodeFloat_Int# x# of
+ (# m#, n# #) ->
+ let m = I# m#
+ n = I# n#
+ in
+ if n >= 0
+ then (fromIntegral m * (2 ^ n), 0.0)
+ else let i = if m >= 0 then m `shiftR` negate n
+ else negate (negate m `shiftR` negate n)
+ f = m - (i `shiftL` negate n)
+ in (fromIntegral i, encodeFloat (fromIntegral f) n)
+
+ truncate x = case properFraction x of
+ (n,_) -> n
+
+ round x = case properFraction x of
+ (n,r) -> let
+ m = if r < 0.0 then n - 1 else n + 1
+ half_down = abs r - 0.5
+ in
+ case (compare half_down 0.0) of
+ LT -> n
+ EQ -> if even n then n else m
+ GT -> m
+
+ ceiling x = case properFraction x of
+ (n,r) -> if r > 0.0 then n + 1 else n
+
+ floor x = case properFraction x of
+ (n,r) -> if r < 0.0 then n - 1 else n
+
+instance Floating Float where
+ pi = 3.141592653589793238
+ exp x = expFloat x
+ log x = logFloat x
+ sqrt x = sqrtFloat x
+ sin x = sinFloat x
+ cos x = cosFloat x
+ tan x = tanFloat x
+ asin x = asinFloat x
+ acos x = acosFloat x
+ atan x = atanFloat x
+ sinh x = sinhFloat x
+ cosh x = coshFloat x
+ tanh x = tanhFloat x
+ (**) x y = powerFloat x y
+ logBase x y = log y / log x
+
+ asinh x = log (x + sqrt (1.0+x*x))
+ acosh x = log (x + (x+1.0) * sqrt ((x-1.0)/(x+1.0)))
+ atanh x = 0.5 * log ((1.0+x) / (1.0-x))
+
+instance RealFloat Float where
+ floatRadix _ = FLT_RADIX -- from float.h
+ floatDigits _ = FLT_MANT_DIG -- ditto
+ floatRange _ = (FLT_MIN_EXP, FLT_MAX_EXP) -- ditto
+
+ decodeFloat (F# f#) = case decodeFloat_Int# f# of
+ (# i, e #) -> (smallInteger i, I# e)
+
+ encodeFloat i (I# e) = F# (encodeFloatInteger i e)
+
+ exponent x = case decodeFloat x of
+ (m,n) -> if m == 0 then 0 else n + floatDigits x
+
+ significand x = case decodeFloat x of
+ (m,_) -> encodeFloat m (negate (floatDigits x))
+
+ scaleFloat 0 x = x
+ scaleFloat k x
+ | isFix = x
+ | otherwise = case decodeFloat x of
+ (m,n) -> encodeFloat m (n + clamp bf k)
+ where bf = FLT_MAX_EXP - (FLT_MIN_EXP) + 4*FLT_MANT_DIG
+ isFix = x == 0 || isFloatFinite x == 0
+
+ isNaN x = 0 /= isFloatNaN x
+ isInfinite x = 0 /= isFloatInfinite x
+ isDenormalized x = 0 /= isFloatDenormalized x
+ isNegativeZero x = 0 /= isFloatNegativeZero x
+ isIEEE _ = True
+
+instance Show Float where
+ showsPrec x = showSignedFloat showFloat x
+ showList = showList__ (showsPrec 0)
+
+------------------------------------------------------------------------
+-- Double
+------------------------------------------------------------------------
+
+instance Num Double where
+ (+) x y = plusDouble x y
+ (-) x y = minusDouble x y
+ negate x = negateDouble x
+ (*) x y = timesDouble x y
+ abs x | x == 0 = 0 -- handles (-0.0)
+ | x > 0 = x
+ | otherwise = negateDouble x
+ signum x | x > 0 = 1
+ | x < 0 = negateDouble 1
+ | otherwise = x -- handles 0.0, (-0.0), and NaN
+
+
+ {-# INLINE fromInteger #-}
+ fromInteger i = D# (doubleFromInteger i)
+
+
+instance Real Double where
+ toRational (D# x#) =
+ case decodeDoubleInteger x# of
+ (# m, e# #)
+ | isTrue# (e# >=# 0#) ->
+ shiftLInteger m e# :% 1
+ | isTrue# ((integerToWord m `and#` 1##) `eqWord#` 0##) ->
+ case elimZerosInteger m (negateInt# e#) of
+ (# n, d# #) -> n :% shiftLInteger 1 d#
+ | otherwise ->
+ m :% shiftLInteger 1 (negateInt# e#)
+
+instance Fractional Double where
+ (/) x y = divideDouble x y
+ {-# INLINE fromRational #-}
+ fromRational (n:%d) = rationalToDouble n d
+ recip x = 1.0 / x
+
+rationalToDouble :: Integer -> Integer -> Double
+{-# NOINLINE [1] rationalToDouble #-}
+rationalToDouble n 0
+ | n == 0 = 0/0
+ | n < 0 = (-1)/0
+ | otherwise = 1/0
+rationalToDouble n d
+ | n == 0 = encodeFloat 0 0
+ | n < 0 = -(fromRat'' minEx mantDigs (-n) d)
+ | otherwise = fromRat'' minEx mantDigs n d
+ where
+ minEx = DBL_MIN_EXP
+ mantDigs = DBL_MANT_DIG
+
+instance Floating Double where
+ pi = 3.141592653589793238
+ exp x = expDouble x
+ log x = logDouble x
+ sqrt x = sqrtDouble x
+ sin x = sinDouble x
+ cos x = cosDouble x
+ tan x = tanDouble x
+ asin x = asinDouble x
+ acos x = acosDouble x
+ atan x = atanDouble x
+ sinh x = sinhDouble x
+ cosh x = coshDouble x
+ tanh x = tanhDouble x
+ (**) x y = powerDouble x y
+ logBase x y = log y / log x
+
+ asinh x = log (x + sqrt (1.0+x*x))
+ acosh x = log (x + (x+1.0) * sqrt ((x-1.0)/(x+1.0)))
+ atanh x = 0.5 * log ((1.0+x) / (1.0-x))
+
+-- RULES for Integer and Int
+{-# RULES
+"properFraction/Double->Integer" properFraction = properFractionDoubleInteger
+"truncate/Double->Integer" truncate = truncateDoubleInteger
+"floor/Double->Integer" floor = floorDoubleInteger
+"ceiling/Double->Integer" ceiling = ceilingDoubleInteger
+"round/Double->Integer" round = roundDoubleInteger
+"properFraction/Double->Int" properFraction = properFractionDoubleInt
+"truncate/Double->Int" truncate = double2Int
+"floor/Double->Int" floor = floorDoubleInt
+"ceiling/Double->Int" ceiling = ceilingDoubleInt
+"round/Double->Int" round = roundDoubleInt
+ #-}
+instance RealFrac Double where
+
+ -- ceiling, floor, and truncate are all small
+ {-# INLINE [1] ceiling #-}
+ {-# INLINE [1] floor #-}
+ {-# INLINE [1] truncate #-}
+
+ properFraction x
+ = case (decodeFloat x) of { (m,n) ->
+ if n >= 0 then
+ (fromInteger m * 2 ^ n, 0.0)
+ else
+ case (quotRem m (2^(negate n))) of { (w,r) ->
+ (fromInteger w, encodeFloat r n)
+ }
+ }
+
+ truncate x = case properFraction x of
+ (n,_) -> n
+
+ round x = case properFraction x of
+ (n,r) -> let
+ m = if r < 0.0 then n - 1 else n + 1
+ half_down = abs r - 0.5
+ in
+ case (compare half_down 0.0) of
+ LT -> n
+ EQ -> if even n then n else m
+ GT -> m
+
+ ceiling x = case properFraction x of
+ (n,r) -> if r > 0.0 then n + 1 else n
+
+ floor x = case properFraction x of
+ (n,r) -> if r < 0.0 then n - 1 else n
+
+instance RealFloat Double where
+ floatRadix _ = FLT_RADIX -- from float.h
+ floatDigits _ = DBL_MANT_DIG -- ditto
+ floatRange _ = (DBL_MIN_EXP, DBL_MAX_EXP) -- ditto
+
+ decodeFloat (D# x#)
+ = case decodeDoubleInteger x# of
+ (# i, j #) -> (i, I# j)
+
+ encodeFloat i (I# j) = D# (encodeDoubleInteger i j)
+
+ exponent x = case decodeFloat x of
+ (m,n) -> if m == 0 then 0 else n + floatDigits x
+
+ significand x = case decodeFloat x of
+ (m,_) -> encodeFloat m (negate (floatDigits x))
+
+ scaleFloat 0 x = x
+ scaleFloat k x
+ | isFix = x
+ | otherwise = case decodeFloat x of
+ (m,n) -> encodeFloat m (n + clamp bd k)
+ where bd = DBL_MAX_EXP - (DBL_MIN_EXP) + 4*DBL_MANT_DIG
+ isFix = x == 0 || isDoubleFinite x == 0
+
+ isNaN x = 0 /= isDoubleNaN x
+ isInfinite x = 0 /= isDoubleInfinite x
+ isDenormalized x = 0 /= isDoubleDenormalized x
+ isNegativeZero x = 0 /= isDoubleNegativeZero x
+ isIEEE _ = True
+
+instance Show Double where
+ showsPrec x = showSignedFloat showFloat x
+ showList = showList__ (showsPrec 0)
+
+
+------------------------------------------------------------------------
+-- Enum instances
+------------------------------------------------------------------------
+
+{-
+The @Enum@ instances for Floats and Doubles are slightly unusual.
+The @toEnum@ function truncates numbers to Int. The definitions
+of @enumFrom@ and @enumFromThen@ allow floats to be used in arithmetic
+series: [0,0.1 .. 1.0]. However, roundoff errors make these somewhat
+dubious. This example may have either 10 or 11 elements, depending on
+how 0.1 is represented.
+
+NOTE: The instances for Float and Double do not make use of the default
+methods for @enumFromTo@ and @enumFromThenTo@, as these rely on there being
+a `non-lossy' conversion to and from Ints. Instead we make use of the
+1.2 default methods (back in the days when Enum had Ord as a superclass)
+for these (@numericEnumFromTo@ and @numericEnumFromThenTo@ below.)
+-}
+
+instance Enum Float where
+ succ x = x + 1
+ pred x = x - 1
+ toEnum = int2Float
+ fromEnum = fromInteger . truncate -- may overflow
+ enumFrom = numericEnumFrom
+ enumFromTo = numericEnumFromTo
+ enumFromThen = numericEnumFromThen
+ enumFromThenTo = numericEnumFromThenTo
+
+instance Enum Double where
+ succ x = x + 1
+ pred x = x - 1
+ toEnum = int2Double
+ fromEnum = fromInteger . truncate -- may overflow
+ enumFrom = numericEnumFrom
+ enumFromTo = numericEnumFromTo
+ enumFromThen = numericEnumFromThen
+ enumFromThenTo = numericEnumFromThenTo
+
+------------------------------------------------------------------------
+-- Printing floating point
+------------------------------------------------------------------------
+
+-- | Show a signed 'RealFloat' value to full precision
+-- using standard decimal notation for arguments whose absolute value lies
+-- between @0.1@ and @9,999,999@, and scientific notation otherwise.
+showFloat :: (RealFloat a) => a -> ShowS
+showFloat x = showString (formatRealFloat FFGeneric Nothing x)
+
+-- These are the format types. This type is not exported.
+
+data FFFormat = FFExponent | FFFixed | FFGeneric
+
+-- This is just a compatibility stub, as the "alt" argument formerly
+-- didn't exist.
+formatRealFloat :: (RealFloat a) => FFFormat -> Maybe Int -> a -> String
+formatRealFloat fmt decs x = formatRealFloatAlt fmt decs False x
+
+formatRealFloatAlt :: (RealFloat a) => FFFormat -> Maybe Int -> Bool -> a
+ -> String
+formatRealFloatAlt fmt decs alt x
+ | isNaN x = "NaN"
+ | isInfinite x = if x < 0 then "-Infinity" else "Infinity"
+ | x < 0 || isNegativeZero x = '-':doFmt fmt (floatToDigits (toInteger base) (-x))
+ | otherwise = doFmt fmt (floatToDigits (toInteger base) x)
+ where
+ base = 10
+
+ doFmt format (is, e) =
+ let ds = map intToDigit is in
+ case format of
+ FFGeneric ->
+ doFmt (if e < 0 || e > 7 then FFExponent else FFFixed)
+ (is,e)
+ FFExponent ->
+ case decs of
+ Nothing ->
+ let show_e' = show (e-1) in
+ case ds of
+ "0" -> "0.0e0"
+ [d] -> d : ".0e" ++ show_e'
+ (d:ds') -> d : '.' : ds' ++ "e" ++ show_e'
+ [] -> error "formatRealFloat/doFmt/FFExponent: []"
+ Just dec ->
+ let dec' = max dec 1 in
+ case is of
+ [0] -> '0' :'.' : take dec' (repeat '0') ++ "e0"
+ _ ->
+ let
+ (ei,is') = roundTo base (dec'+1) is
+ (d:ds') = map intToDigit (if ei > 0 then init is' else is')
+ in
+ d:'.':ds' ++ 'e':show (e-1+ei)
+ FFFixed ->
+ let
+ mk0 ls = case ls of { "" -> "0" ; _ -> ls}
+ in
+ case decs of
+ Nothing
+ | e <= 0 -> "0." ++ replicate (-e) '0' ++ ds
+ | otherwise ->
+ let
+ f 0 s rs = mk0 (reverse s) ++ '.':mk0 rs
+ f n s "" = f (n-1) ('0':s) ""
+ f n s (r:rs) = f (n-1) (r:s) rs
+ in
+ f e "" ds
+ Just dec ->
+ let dec' = max dec 0 in
+ if e >= 0 then
+ let
+ (ei,is') = roundTo base (dec' + e) is
+ (ls,rs) = splitAt (e+ei) (map intToDigit is')
+ in
+ mk0 ls ++ (if null rs && not alt then "" else '.':rs)
+ else
+ let
+ (ei,is') = roundTo base dec' (replicate (-e) 0 ++ is)
+ d:ds' = map intToDigit (if ei > 0 then is' else 0:is')
+ in
+ d : (if null ds' && not alt then "" else '.':ds')
+
+
+roundTo :: Int -> Int -> [Int] -> (Int,[Int])
+roundTo base d is =
+ case f d True is of
+ x@(0,_) -> x
+ (1,xs) -> (1, 1:xs)
+ _ -> error "roundTo: bad Value"
+ where
+ b2 = base `quot` 2
+
+ f n _ [] = (0, replicate n 0)
+ f 0 e (x:xs) | x == b2 && e && all (== 0) xs = (0, []) -- Round to even when at exactly half the base
+ | otherwise = (if x >= b2 then 1 else 0, [])
+ f n _ (i:xs)
+ | i' == base = (1,0:ds)
+ | otherwise = (0,i':ds)
+ where
+ (c,ds) = f (n-1) (even i) xs
+ i' = c + i
+
+-- Based on "Printing Floating-Point Numbers Quickly and Accurately"
+-- by R.G. Burger and R.K. Dybvig in PLDI 96.
+-- This version uses a much slower logarithm estimator. It should be improved.
+
+-- | 'floatToDigits' takes a base and a non-negative 'RealFloat' number,
+-- and returns a list of digits and an exponent.
+-- In particular, if @x>=0@, and
+--
+-- > floatToDigits base x = ([d1,d2,...,dn], e)
+--
+-- then
+--
+-- (1) @n >= 1@
+--
+-- (2) @x = 0.d1d2...dn * (base**e)@
+--
+-- (3) @0 <= di <= base-1@
+
+floatToDigits :: (RealFloat a) => Integer -> a -> ([Int], Int)
+floatToDigits _ 0 = ([0], 0)
+floatToDigits base x =
+ let
+ (f0, e0) = decodeFloat x
+ (minExp0, _) = floatRange x
+ p = floatDigits x
+ b = floatRadix x
+ minExp = minExp0 - p -- the real minimum exponent
+ -- Haskell requires that f be adjusted so denormalized numbers
+ -- will have an impossibly low exponent. Adjust for this.
+ (f, e) =
+ let n = minExp - e0 in
+ if n > 0 then (f0 `quot` (expt b n), e0+n) else (f0, e0)
+ (r, s, mUp, mDn) =
+ if e >= 0 then
+ let be = expt b e in
+ if f == expt b (p-1) then
+ (f*be*b*2, 2*b, be*b, be) -- according to Burger and Dybvig
+ else
+ (f*be*2, 2, be, be)
+ else
+ if e > minExp && f == expt b (p-1) then
+ (f*b*2, expt b (-e+1)*2, b, 1)
+ else
+ (f*2, expt b (-e)*2, 1, 1)
+ k :: Int
+ k =
+ let
+ k0 :: Int
+ k0 =
+ if b == 2 && base == 10 then
+ -- logBase 10 2 is very slightly larger than 8651/28738
+ -- (about 5.3558e-10), so if log x >= 0, the approximation
+ -- k1 is too small, hence we add one and need one fixup step less.
+ -- If log x < 0, the approximation errs rather on the high side.
+ -- That is usually more than compensated for by ignoring the
+ -- fractional part of logBase 2 x, but when x is a power of 1/2
+ -- or slightly larger and the exponent is a multiple of the
+ -- denominator of the rational approximation to logBase 10 2,
+ -- k1 is larger than logBase 10 x. If k1 > 1 + logBase 10 x,
+ -- we get a leading zero-digit we don't want.
+ -- With the approximation 3/10, this happened for
+ -- 0.5^1030, 0.5^1040, ..., 0.5^1070 and values close above.
+ -- The approximation 8651/28738 guarantees k1 < 1 + logBase 10 x
+ -- for IEEE-ish floating point types with exponent fields
+ -- <= 17 bits and mantissae of several thousand bits, earlier
+ -- convergents to logBase 10 2 would fail for long double.
+ -- Using quot instead of div is a little faster and requires
+ -- fewer fixup steps for negative lx.
+ let lx = p - 1 + e0
+ k1 = (lx * 8651) `quot` 28738
+ in if lx >= 0 then k1 + 1 else k1
+ else
+ -- f :: Integer, log :: Float -> Float,
+ -- ceiling :: Float -> Int
+ ceiling ((log (fromInteger (f+1) :: Float) +
+ fromIntegral e * log (fromInteger b)) /
+ log (fromInteger base))
+--WAS: fromInt e * log (fromInteger b))
+
+ fixup n =
+ if n >= 0 then
+ if r + mUp <= expt base n * s then n else fixup (n+1)
+ else
+ if expt base (-n) * (r + mUp) <= s then n else fixup (n+1)
+ in
+ fixup k0
+
+ gen ds rn sN mUpN mDnN =
+ let
+ (dn, rn') = (rn * base) `quotRem` sN
+ mUpN' = mUpN * base
+ mDnN' = mDnN * base
+ in
+ case (rn' < mDnN', rn' + mUpN' > sN) of
+ (True, False) -> dn : ds
+ (False, True) -> dn+1 : ds
+ (True, True) -> if rn' * 2 < sN then dn : ds else dn+1 : ds
+ (False, False) -> gen (dn:ds) rn' sN mUpN' mDnN'
+
+ rds =
+ if k >= 0 then
+ gen [] r (s * expt base k) mUp mDn
+ else
+ let bk = expt base (-k) in
+ gen [] (r * bk) s (mUp * bk) (mDn * bk)
+ in
+ (map fromIntegral (reverse rds), k)
+
+------------------------------------------------------------------------
+-- Converting from a Rational to a RealFloa
+------------------------------------------------------------------------
+
+{-
+[In response to a request for documentation of how fromRational works,
+Joe Fasel writes:] A quite reasonable request! This code was added to
+the Prelude just before the 1.2 release, when Lennart, working with an
+early version of hbi, noticed that (read . show) was not the identity
+for floating-point numbers. (There was a one-bit error about half the
+time.) The original version of the conversion function was in fact
+simply a floating-point divide, as you suggest above. The new version
+is, I grant you, somewhat denser.
+
+Unfortunately, Joe's code doesn't work! Here's an example:
+
+main = putStr (shows (1.82173691287639817263897126389712638972163e-300::Double) "\n")
+
+This program prints
+ 0.0000000000000000
+instead of
+ 1.8217369128763981e-300
+
+Here's Joe's code:
+
+\begin{pseudocode}
+fromRat :: (RealFloat a) => Rational -> a
+fromRat x = x'
+ where x' = f e
+
+-- If the exponent of the nearest floating-point number to x
+-- is e, then the significand is the integer nearest xb^(-e),
+-- where b is the floating-point radix. We start with a good
+-- guess for e, and if it is correct, the exponent of the
+-- floating-point number we construct will again be e. If
+-- not, one more iteration is needed.
+
+ f e = if e' == e then y else f e'
+ where y = encodeFloat (round (x * (1 % b)^^e)) e
+ (_,e') = decodeFloat y
+ b = floatRadix x'
+
+-- We obtain a trial exponent by doing a floating-point
+-- division of x's numerator by its denominator. The
+-- result of this division may not itself be the ultimate
+-- result, because of an accumulation of three rounding
+-- errors.
+
+ (s,e) = decodeFloat (fromInteger (numerator x) `asTypeOf` x'
+ / fromInteger (denominator x))
+\end{pseudocode}
+
+Now, here's Lennart's code (which works):
+-}
+
+-- | Converts a 'Rational' value into any type in class 'RealFloat'.
+{-# RULES
+"fromRat/Float" fromRat = (fromRational :: Rational -> Float)
+"fromRat/Double" fromRat = (fromRational :: Rational -> Double)
+ #-}
+
+{-# NOINLINE [1] fromRat #-}
+fromRat :: (RealFloat a) => Rational -> a
+
+-- Deal with special cases first, delegating the real work to fromRat'
+fromRat (n :% 0) | n > 0 = 1/0 -- +Infinity
+ | n < 0 = -1/0 -- -Infinity
+ | otherwise = 0/0 -- NaN
+
+fromRat (n :% d) | n > 0 = fromRat' (n :% d)
+ | n < 0 = - fromRat' ((-n) :% d)
+ | otherwise = encodeFloat 0 0 -- Zero
+
+-- Conversion process:
+-- Scale the rational number by the RealFloat base until
+-- it lies in the range of the mantissa (as used by decodeFloat/encodeFloat).
+-- Then round the rational to an Integer and encode it with the exponent
+-- that we got from the scaling.
+-- To speed up the scaling process we compute the log2 of the number to get
+-- a first guess of the exponent.
+
+fromRat' :: (RealFloat a) => Rational -> a
+-- Invariant: argument is strictly positive
+fromRat' x = r
+ where b = floatRadix r
+ p = floatDigits r
+ (minExp0, _) = floatRange r
+ minExp = minExp0 - p -- the real minimum exponent
+ xMax = toRational (expt b p)
+ p0 = (integerLogBase b (numerator x) - integerLogBase b (denominator x) - p) `max` minExp
+ -- if x = n/d and ln = integerLogBase b n, ld = integerLogBase b d,
+ -- then b^(ln-ld-1) < x < b^(ln-ld+1)
+ f = if p0 < 0 then 1 :% expt b (-p0) else expt b p0 :% 1
+ x0 = x / f
+ -- if ln - ld >= minExp0, then b^(p-1) < x0 < b^(p+1), so there's at most
+ -- one scaling step needed, otherwise, x0 < b^p and no scaling is needed
+ (x', p') = if x0 >= xMax then (x0 / toRational b, p0+1) else (x0, p0)
+ r = encodeFloat (round x') p'
+
+-- Exponentiation with a cache for the most common numbers.
+minExpt, maxExpt :: Int
+minExpt = 0
+maxExpt = 1100
+
+expt :: Integer -> Int -> Integer
+expt base n =
+ if base == 2 && n >= minExpt && n <= maxExpt then
+ expts!n
+ else
+ if base == 10 && n <= maxExpt10 then
+ expts10!n
+ else
+ base^n
+
+expts :: Array Int Integer
+expts = array (minExpt,maxExpt) [(n,2^n) | n <- [minExpt .. maxExpt]]
+
+maxExpt10 :: Int
+maxExpt10 = 324
+
+expts10 :: Array Int Integer
+expts10 = array (minExpt,maxExpt10) [(n,10^n) | n <- [minExpt .. maxExpt10]]
+
+-- Compute the (floor of the) log of i in base b.
+-- Simplest way would be just divide i by b until it's smaller then b, but that would
+-- be very slow! We are just slightly more clever, except for base 2, where
+-- we take advantage of the representation of Integers.
+-- The general case could be improved by a lookup table for
+-- approximating the result by integerLog2 i / integerLog2 b.
+integerLogBase :: Integer -> Integer -> Int
+integerLogBase b i
+ | i < b = 0
+ | b == 2 = I# (integerLog2# i)
+ | otherwise = I# (integerLogBase# b i)
+
+{-
+Unfortunately, the old conversion code was awfully slow due to
+a) a slow integer logarithm
+b) repeated calculation of gcd's
+
+For the case of Rational's coming from a Float or Double via toRational,
+we can exploit the fact that the denominator is a power of two, which for
+these brings a huge speedup since we need only shift and add instead
+of division.
+
+The below is an adaption of fromRat' for the conversion to
+Float or Double exploiting the known floatRadix and avoiding
+divisions as much as possible.
+-}
+
+{-# SPECIALISE fromRat'' :: Int -> Int -> Integer -> Integer -> Float,
+ Int -> Int -> Integer -> Integer -> Double #-}
+fromRat'' :: RealFloat a => Int -> Int -> Integer -> Integer -> a
+-- Invariant: n and d strictly positive
+fromRat'' minEx@(I# me#) mantDigs@(I# md#) n d =
+ case integerLog2IsPowerOf2# d of
+ (# ld#, pw# #)
+ | isTrue# (pw# ==# 0#) ->
+ case integerLog2# n of
+ ln# | isTrue# (ln# >=# (ld# +# me# -# 1#)) ->
+ -- this means n/d >= 2^(minEx-1), i.e. we are guaranteed to get
+ -- a normalised number, round to mantDigs bits
+ if isTrue# (ln# <# md#)
+ then encodeFloat n (I# (negateInt# ld#))
+ else let n' = n `shiftR` (I# (ln# +# 1# -# md#))
+ n'' = case roundingMode# n (ln# -# md#) of
+ 0# -> n'
+ 2# -> n' + 1
+ _ -> case fromInteger n' .&. (1 :: Int) of
+ 0 -> n'
+ _ -> n' + 1
+ in encodeFloat n'' (I# (ln# -# ld# +# 1# -# md#))
+ | otherwise ->
+ -- n/d < 2^(minEx-1), a denorm or rounded to 2^(minEx-1)
+ -- the exponent for encoding is always minEx-mantDigs
+ -- so we must shift right by (minEx-mantDigs) - (-ld)
+ case ld# +# (me# -# md#) of
+ ld'# | isTrue# (ld'# <=# 0#) -> -- we would shift left, so we don't shift
+ encodeFloat n (I# ((me# -# md#) -# ld'#))
+ | isTrue# (ld'# <=# ln#) ->
+ let n' = n `shiftR` (I# ld'#)
+ in case roundingMode# n (ld'# -# 1#) of
+ 0# -> encodeFloat n' (minEx - mantDigs)
+ 1# -> if fromInteger n' .&. (1 :: Int) == 0
+ then encodeFloat n' (minEx-mantDigs)
+ else encodeFloat (n' + 1) (minEx-mantDigs)
+ _ -> encodeFloat (n' + 1) (minEx-mantDigs)
+ | isTrue# (ld'# ># (ln# +# 1#)) -> encodeFloat 0 0 -- result of shift < 0.5
+ | otherwise -> -- first bit of n shifted to 0.5 place
+ case integerLog2IsPowerOf2# n of
+ (# _, 0# #) -> encodeFloat 0 0 -- round to even
+ (# _, _ #) -> encodeFloat 1 (minEx - mantDigs)
+ | otherwise ->
+ let ln = I# (integerLog2# n)
+ ld = I# ld#
+ -- 2^(ln-ld-1) < n/d < 2^(ln-ld+1)
+ p0 = max minEx (ln - ld)
+ (n', d')
+ | p0 < mantDigs = (n `shiftL` (mantDigs - p0), d)
+ | p0 == mantDigs = (n, d)
+ | otherwise = (n, d `shiftL` (p0 - mantDigs))
+ -- if ln-ld < minEx, then n'/d' < 2^mantDigs, else
+ -- 2^(mantDigs-1) < n'/d' < 2^(mantDigs+1) and we
+ -- may need one scaling step
+ scale p a b
+ | (b `shiftL` mantDigs) <= a = (p+1, a, b `shiftL` 1)
+ | otherwise = (p, a, b)
+ (p', n'', d'') = scale (p0-mantDigs) n' d'
+ -- n''/d'' < 2^mantDigs and p' == minEx-mantDigs or n''/d'' >= 2^(mantDigs-1)
+ rdq = case n'' `quotRem` d'' of
+ (q,r) -> case compare (r `shiftL` 1) d'' of
+ LT -> q
+ EQ -> if fromInteger q .&. (1 :: Int) == 0
+ then q else q+1
+ GT -> q+1
+ in encodeFloat rdq p'
+
+------------------------------------------------------------------------
+-- Floating point numeric primops
+------------------------------------------------------------------------
+
+-- Definitions of the boxed PrimOps; these will be
+-- used in the case of partial applications, etc.
+
+plusFloat, minusFloat, timesFloat, divideFloat :: Float -> Float -> Float
+plusFloat (F# x) (F# y) = F# (plusFloat# x y)
+minusFloat (F# x) (F# y) = F# (minusFloat# x y)
+timesFloat (F# x) (F# y) = F# (timesFloat# x y)
+divideFloat (F# x) (F# y) = F# (divideFloat# x y)
+
+negateFloat :: Float -> Float
+negateFloat (F# x) = F# (negateFloat# x)
+
+gtFloat, geFloat, eqFloat, neFloat, ltFloat, leFloat :: Float -> Float -> Bool
+gtFloat (F# x) (F# y) = isTrue# (gtFloat# x y)
+geFloat (F# x) (F# y) = isTrue# (geFloat# x y)
+eqFloat (F# x) (F# y) = isTrue# (eqFloat# x y)
+neFloat (F# x) (F# y) = isTrue# (neFloat# x y)
+ltFloat (F# x) (F# y) = isTrue# (ltFloat# x y)
+leFloat (F# x) (F# y) = isTrue# (leFloat# x y)
+
+expFloat, logFloat, sqrtFloat :: Float -> Float
+sinFloat, cosFloat, tanFloat :: Float -> Float
+asinFloat, acosFloat, atanFloat :: Float -> Float
+sinhFloat, coshFloat, tanhFloat :: Float -> Float
+expFloat (F# x) = F# (expFloat# x)
+logFloat (F# x) = F# (logFloat# x)
+sqrtFloat (F# x) = F# (sqrtFloat# x)
+sinFloat (F# x) = F# (sinFloat# x)
+cosFloat (F# x) = F# (cosFloat# x)
+tanFloat (F# x) = F# (tanFloat# x)
+asinFloat (F# x) = F# (asinFloat# x)
+acosFloat (F# x) = F# (acosFloat# x)
+atanFloat (F# x) = F# (atanFloat# x)
+sinhFloat (F# x) = F# (sinhFloat# x)
+coshFloat (F# x) = F# (coshFloat# x)
+tanhFloat (F# x) = F# (tanhFloat# x)
+
+powerFloat :: Float -> Float -> Float
+powerFloat (F# x) (F# y) = F# (powerFloat# x y)
+
+-- definitions of the boxed PrimOps; these will be
+-- used in the case of partial applications, etc.
+
+plusDouble, minusDouble, timesDouble, divideDouble :: Double -> Double -> Double
+plusDouble (D# x) (D# y) = D# (x +## y)
+minusDouble (D# x) (D# y) = D# (x -## y)
+timesDouble (D# x) (D# y) = D# (x *## y)
+divideDouble (D# x) (D# y) = D# (x /## y)
+
+negateDouble :: Double -> Double
+negateDouble (D# x) = D# (negateDouble# x)
+
+gtDouble, geDouble, eqDouble, neDouble, leDouble, ltDouble :: Double -> Double -> Bool
+gtDouble (D# x) (D# y) = isTrue# (x >## y)
+geDouble (D# x) (D# y) = isTrue# (x >=## y)
+eqDouble (D# x) (D# y) = isTrue# (x ==## y)
+neDouble (D# x) (D# y) = isTrue# (x /=## y)
+ltDouble (D# x) (D# y) = isTrue# (x <## y)
+leDouble (D# x) (D# y) = isTrue# (x <=## y)
+
+double2Float :: Double -> Float
+double2Float (D# x) = F# (double2Float# x)
+
+float2Double :: Float -> Double
+float2Double (F# x) = D# (float2Double# x)
+
+expDouble, logDouble, sqrtDouble :: Double -> Double
+sinDouble, cosDouble, tanDouble :: Double -> Double
+asinDouble, acosDouble, atanDouble :: Double -> Double
+sinhDouble, coshDouble, tanhDouble :: Double -> Double
+expDouble (D# x) = D# (expDouble# x)
+logDouble (D# x) = D# (logDouble# x)
+sqrtDouble (D# x) = D# (sqrtDouble# x)
+sinDouble (D# x) = D# (sinDouble# x)
+cosDouble (D# x) = D# (cosDouble# x)
+tanDouble (D# x) = D# (tanDouble# x)
+asinDouble (D# x) = D# (asinDouble# x)
+acosDouble (D# x) = D# (acosDouble# x)
+atanDouble (D# x) = D# (atanDouble# x)
+sinhDouble (D# x) = D# (sinhDouble# x)
+coshDouble (D# x) = D# (coshDouble# x)
+tanhDouble (D# x) = D# (tanhDouble# x)
+
+powerDouble :: Double -> Double -> Double
+powerDouble (D# x) (D# y) = D# (x **## y)
+
+foreign import ccall unsafe "isFloatNaN" isFloatNaN :: Float -> Int
+foreign import ccall unsafe "isFloatInfinite" isFloatInfinite :: Float -> Int
+foreign import ccall unsafe "isFloatDenormalized" isFloatDenormalized :: Float -> Int
+foreign import ccall unsafe "isFloatNegativeZero" isFloatNegativeZero :: Float -> Int
+foreign import ccall unsafe "isFloatFinite" isFloatFinite :: Float -> Int
+
+foreign import ccall unsafe "isDoubleNaN" isDoubleNaN :: Double -> Int
+foreign import ccall unsafe "isDoubleInfinite" isDoubleInfinite :: Double -> Int
+foreign import ccall unsafe "isDoubleDenormalized" isDoubleDenormalized :: Double -> Int
+foreign import ccall unsafe "isDoubleNegativeZero" isDoubleNegativeZero :: Double -> Int
+foreign import ccall unsafe "isDoubleFinite" isDoubleFinite :: Double -> Int
+
+------------------------------------------------------------------------
+-- Coercion rules
+------------------------------------------------------------------------
+
+word2Double :: Word -> Double
+word2Double (W# w) = D# (word2Double# w)
+
+word2Float :: Word -> Float
+word2Float (W# w) = F# (word2Float# w)
+
+{-# RULES
+"fromIntegral/Int->Float" fromIntegral = int2Float
+"fromIntegral/Int->Double" fromIntegral = int2Double
+"fromIntegral/Word->Float" fromIntegral = word2Float
+"fromIntegral/Word->Double" fromIntegral = word2Double
+"realToFrac/Float->Float" realToFrac = id :: Float -> Float
+"realToFrac/Float->Double" realToFrac = float2Double
+"realToFrac/Double->Float" realToFrac = double2Float
+"realToFrac/Double->Double" realToFrac = id :: Double -> Double
+"realToFrac/Int->Double" realToFrac = int2Double -- See Note [realToFrac int-to-float]
+"realToFrac/Int->Float" realToFrac = int2Float -- ..ditto
+ #-}
+
+{-
+Note [realToFrac int-to-float]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Don found that the RULES for realToFrac/Int->Double and simliarly
+Float made a huge difference to some stream-fusion programs. Here's
+an example
+
+ import Data.Array.Vector
+
+ n = 40000000
+
+ main = do
+ let c = replicateU n (2::Double)
+ a = mapU realToFrac (enumFromToU 0 (n-1) ) :: UArr Double
+ print (sumU (zipWithU (*) c a))
+
+Without the RULE we get this loop body:
+
+ case $wtoRational sc_sY4 of ww_aM7 { (# ww1_aM9, ww2_aMa #) ->
+ case $wfromRat ww1_aM9 ww2_aMa of tpl_X1P { D# ipv_sW3 ->
+ Main.$s$wfold
+ (+# sc_sY4 1)
+ (+# wild_X1i 1)
+ (+## sc2_sY6 (*## 2.0 ipv_sW3))
+
+And with the rule:
+
+ Main.$s$wfold
+ (+# sc_sXT 1)
+ (+# wild_X1h 1)
+ (+## sc2_sXV (*## 2.0 (int2Double# sc_sXT)))
+
+The running time of the program goes from 120 seconds to 0.198 seconds
+with the native backend, and 0.143 seconds with the C backend.
+
+A few more details in Trac #2251, and the patch message
+"Add RULES for realToFrac from Int".
+-}
+
+-- Utils
+
+showSignedFloat :: (RealFloat a)
+ => (a -> ShowS) -- ^ a function that can show unsigned values
+ -> Int -- ^ the precedence of the enclosing context
+ -> a -- ^ the value to show
+ -> ShowS
+showSignedFloat showPos p x
+ | x < 0 || isNegativeZero x
+ = showParen (p > 6) (showChar '-' . showPos (-x))
+ | otherwise = showPos x
+
+{-
+We need to prevent over/underflow of the exponent in encodeFloat when
+called from scaleFloat, hence we clamp the scaling parameter.
+We must have a large enough range to cover the maximum difference of
+exponents returned by decodeFloat.
+-}
+clamp :: Int -> Int -> Int
+clamp bd k = max (-bd) (min bd k)