summaryrefslogtreecommitdiff
path: root/libraries/base/cbits/primFloat.c
diff options
context:
space:
mode:
authorSimon Marlow <marlowsd@gmail.com>2009-08-01 22:07:43 +0000
committerSimon Marlow <marlowsd@gmail.com>2009-08-01 22:07:43 +0000
commit5f54b854776ab7a2e172054b2184c56156f14467 (patch)
tree760386aff94e2a9557ebb3d6867671b895c435f1 /libraries/base/cbits/primFloat.c
parent14ca5740ee951dc68b59ebaff8a4a6315436333f (diff)
downloadhaskell-5f54b854776ab7a2e172054b2184c56156f14467.tar.gz
Updates to follow the RTS tidyup
C functions like isDoubleNaN moved here (primFloat.c)
Diffstat (limited to 'libraries/base/cbits/primFloat.c')
-rw-r--r--libraries/base/cbits/primFloat.c261
1 files changed, 261 insertions, 0 deletions
diff --git a/libraries/base/cbits/primFloat.c b/libraries/base/cbits/primFloat.c
new file mode 100644
index 0000000000..3fa39d3c59
--- /dev/null
+++ b/libraries/base/cbits/primFloat.c
@@ -0,0 +1,261 @@
+/* -----------------------------------------------------------------------------
+ *
+ * (c) Lennart Augustsson
+ * (c) The GHC Team, 1998-2000
+ *
+ * Miscellaneous support for floating-point primitives
+ *
+ * ---------------------------------------------------------------------------*/
+
+#include "HsFFI.h"
+#include "Rts.h" // XXX wrong (for IEEE_FLOATING_POINT and WORDS_BIGENDIAN)
+
+#define IEEE_FLOATING_POINT 1
+
+union stg_ieee754_flt
+{
+ float f;
+ struct {
+
+#if WORDS_BIGENDIAN
+ unsigned int negative:1;
+ unsigned int exponent:8;
+ unsigned int mantissa:23;
+#else
+ unsigned int mantissa:23;
+ unsigned int exponent:8;
+ unsigned int negative:1;
+#endif
+ } ieee;
+ struct {
+
+#if WORDS_BIGENDIAN
+ unsigned int negative:1;
+ unsigned int exponent:8;
+ unsigned int quiet_nan:1;
+ unsigned int mantissa:22;
+#else
+ unsigned int mantissa:22;
+ unsigned int quiet_nan:1;
+ unsigned int exponent:8;
+ unsigned int negative:1;
+#endif
+ } ieee_nan;
+};
+
+/*
+
+ To recap, here's the representation of a double precision
+ IEEE floating point number:
+
+ sign 63 sign bit (0==positive, 1==negative)
+ exponent 62-52 exponent (biased by 1023)
+ fraction 51-0 fraction (bits to right of binary point)
+*/
+
+union stg_ieee754_dbl
+{
+ double d;
+ struct {
+
+#if WORDS_BIGENDIAN
+ unsigned int negative:1;
+ unsigned int exponent:11;
+ unsigned int mantissa0:20;
+ unsigned int mantissa1:32;
+#else
+#if FLOAT_WORDS_BIGENDIAN
+ unsigned int mantissa0:20;
+ unsigned int exponent:11;
+ unsigned int negative:1;
+ unsigned int mantissa1:32;
+#else
+ unsigned int mantissa1:32;
+ unsigned int mantissa0:20;
+ unsigned int exponent:11;
+ unsigned int negative:1;
+#endif
+#endif
+ } ieee;
+ /* This format makes it easier to see if a NaN is a signalling NaN. */
+ struct {
+
+#if WORDS_BIGENDIAN
+ unsigned int negative:1;
+ unsigned int exponent:11;
+ unsigned int quiet_nan:1;
+ unsigned int mantissa0:19;
+ unsigned int mantissa1:32;
+#else
+#if FLOAT_WORDS_BIGENDIAN
+ unsigned int mantissa0:19;
+ unsigned int quiet_nan:1;
+ unsigned int exponent:11;
+ unsigned int negative:1;
+ unsigned int mantissa1:32;
+#else
+ unsigned int mantissa1:32;
+ unsigned int mantissa0:19;
+ unsigned int quiet_nan:1;
+ unsigned int exponent:11;
+ unsigned int negative:1;
+#endif
+#endif
+ } ieee_nan;
+};
+
+/*
+ * Predicates for testing for extreme IEEE fp values.
+ */
+
+/* In case you don't suppport IEEE, you'll just get dummy defs.. */
+#ifdef IEEE_FLOATING_POINT
+
+HsInt
+isDoubleNaN(HsDouble d)
+{
+ union stg_ieee754_dbl u;
+
+ u.d = d;
+
+ return (
+ u.ieee.exponent == 2047 /* 2^11 - 1 */ && /* Is the exponent all ones? */
+ (u.ieee.mantissa0 != 0 || u.ieee.mantissa1 != 0)
+ /* and the mantissa non-zero? */
+ );
+}
+
+HsInt
+isDoubleInfinite(HsDouble d)
+{
+ union stg_ieee754_dbl u;
+
+ u.d = d;
+
+ /* Inf iff exponent is all ones, mantissa all zeros */
+ return (
+ u.ieee.exponent == 2047 /* 2^11 - 1 */ &&
+ u.ieee.mantissa0 == 0 &&
+ u.ieee.mantissa1 == 0
+ );
+}
+
+HsInt
+isDoubleDenormalized(HsDouble d)
+{
+ union stg_ieee754_dbl u;
+
+ u.d = d;
+
+ /* A (single/double/quad) precision floating point number
+ is denormalised iff:
+ - exponent is zero
+ - mantissa is non-zero.
+ - (don't care about setting of sign bit.)
+
+ */
+ return (
+ u.ieee.exponent == 0 &&
+ (u.ieee.mantissa0 != 0 ||
+ u.ieee.mantissa1 != 0)
+ );
+
+}
+
+HsInt
+isDoubleNegativeZero(HsDouble d)
+{
+ union stg_ieee754_dbl u;
+
+ u.d = d;
+ /* sign (bit 63) set (only) => negative zero */
+
+ return (
+ u.ieee.negative == 1 &&
+ u.ieee.exponent == 0 &&
+ u.ieee.mantissa0 == 0 &&
+ u.ieee.mantissa1 == 0);
+}
+
+/* Same tests, this time for HsFloats. */
+
+/*
+ To recap, here's the representation of a single precision
+ IEEE floating point number:
+
+ sign 31 sign bit (0 == positive, 1 == negative)
+ exponent 30-23 exponent (biased by 127)
+ fraction 22-0 fraction (bits to right of binary point)
+*/
+
+
+HsInt
+isFloatNaN(HsFloat f)
+{
+ union stg_ieee754_flt u;
+ u.f = f;
+
+ /* Floating point NaN iff exponent is all ones, mantissa is
+ non-zero (but see below.) */
+ return (
+ u.ieee.exponent == 255 /* 2^8 - 1 */ &&
+ u.ieee.mantissa != 0);
+}
+
+HsInt
+isFloatInfinite(HsFloat f)
+{
+ union stg_ieee754_flt u;
+ u.f = f;
+
+ /* A float is Inf iff exponent is max (all ones),
+ and mantissa is min(all zeros.) */
+ return (
+ u.ieee.exponent == 255 /* 2^8 - 1 */ &&
+ u.ieee.mantissa == 0);
+}
+
+HsInt
+isFloatDenormalized(HsFloat f)
+{
+ union stg_ieee754_flt u;
+ u.f = f;
+
+ /* A (single/double/quad) precision floating point number
+ is denormalised iff:
+ - exponent is zero
+ - mantissa is non-zero.
+ - (don't care about setting of sign bit.)
+
+ */
+ return (
+ u.ieee.exponent == 0 &&
+ u.ieee.mantissa != 0);
+}
+
+HsInt
+isFloatNegativeZero(HsFloat f)
+{
+ union stg_ieee754_flt u;
+ u.f = f;
+
+ /* sign (bit 31) set (only) => negative zero */
+ return (
+ u.ieee.negative &&
+ u.ieee.exponent == 0 &&
+ u.ieee.mantissa == 0);
+}
+
+#else /* ! IEEE_FLOATING_POINT */
+
+/* Dummy definitions of predicates - they all return false */
+HsInt isDoubleNaN(d) HsDouble d; { return 0; }
+HsInt isDoubleInfinite(d) HsDouble d; { return 0; }
+HsInt isDoubleDenormalized(d) HsDouble d; { return 0; }
+HsInt isDoubleNegativeZero(d) HsDouble d; { return 0; }
+HsInt isFloatNaN(f) HsFloat f; { return 0; }
+HsInt isFloatInfinite(f) HsFloat f; { return 0; }
+HsInt isFloatDenormalized(f) HsFloat f; { return 0; }
+HsInt isFloatNegativeZero(f) HsFloat f; { return 0; }
+
+#endif /* ! IEEE_FLOATING_POINT */