summaryrefslogtreecommitdiff
path: root/libraries/integer-simple
diff options
context:
space:
mode:
authorIan Lynagh <igloo@earth.li>2011-07-30 21:26:36 +0100
committerIan Lynagh <igloo@earth.li>2011-07-30 21:26:36 +0100
commita6b1f7f85e8740e5e5f9a5dcdec81fc1828c1dbb (patch)
tree8a575de76e0c1904c0d16c0b1b29e32b8720acdb /libraries/integer-simple
parent7d9e4f7f081d770c9732bcfb7eb309371e621c96 (diff)
downloadhaskell-a6b1f7f85e8740e5e5f9a5dcdec81fc1828c1dbb.tar.gz
Eliminate orphan instances
Diffstat (limited to 'libraries/integer-simple')
-rw-r--r--libraries/integer-simple/GHC/Integer.hs723
-rw-r--r--libraries/integer-simple/GHC/Integer/Logarithms/Internals.hs1
-rw-r--r--libraries/integer-simple/GHC/Integer/Type.hs724
3 files changed, 717 insertions, 731 deletions
diff --git a/libraries/integer-simple/GHC/Integer.hs b/libraries/integer-simple/GHC/Integer.hs
index 26e6210691..66e35c965f 100644
--- a/libraries/integer-simple/GHC/Integer.hs
+++ b/libraries/integer-simple/GHC/Integer.hs
@@ -1,9 +1,5 @@
-{-# LANGUAGE CPP, MagicHash, ForeignFunctionInterface,
- NoImplicitPrelude, BangPatterns, UnboxedTuples,
- UnliftedFFITypes #-}
--- TODO: Get rid of orphan instances
-{-# OPTIONS_GHC -fno-warn-orphans #-}
+{-# LANGUAGE CPP, MagicHash, NoImplicitPrelude #-}
-----------------------------------------------------------------------------
-- |
@@ -42,720 +38,3 @@ module GHC.Integer (
import GHC.Integer.Type
-import GHC.Classes
-import GHC.Ordering
-import GHC.Prim
-import GHC.Types
-import GHC.Unit ()
-#if WORD_SIZE_IN_BITS < 64
-import GHC.IntWord64
-#endif
-
-#if !defined(__HADDOCK__)
-
-errorInteger :: Integer
-errorInteger = Positive errorPositive
-
-errorPositive :: Positive
-errorPositive = Some 47## None -- Random number
-
-smallInteger :: Int# -> Integer
-smallInteger i = if i >=# 0# then wordToInteger (int2Word# i)
- else -- XXX is this right for -minBound?
- negateInteger (wordToInteger (int2Word# (negateInt# i)))
-
-wordToInteger :: Word# -> Integer
-wordToInteger w = if w `eqWord#` 0##
- then Naught
- else Positive (Some w None)
-
-integerToWord :: Integer -> Word#
-integerToWord (Positive (Some w _)) = w
-integerToWord (Negative (Some w _)) = 0## `minusWord#` w
--- Must be Naught by the invariant:
-integerToWord _ = 0##
-
-integerToInt :: Integer -> Int#
-integerToInt i = word2Int# (integerToWord i)
-
-#if WORD_SIZE_IN_BITS == 64
--- Nothing
-#elif WORD_SIZE_IN_BITS == 32
-integerToWord64 :: Integer -> Word64#
-integerToWord64 i = int64ToWord64# (integerToInt64 i)
-
-word64ToInteger:: Word64# -> Integer
-word64ToInteger w = if w `eqWord64#` wordToWord64# 0##
- then Naught
- else Positive (word64ToPositive w)
-
-integerToInt64 :: Integer -> Int64#
-integerToInt64 Naught = intToInt64# 0#
-integerToInt64 (Positive p) = word64ToInt64# (positiveToWord64 p)
-integerToInt64 (Negative p)
- = negateInt64# (word64ToInt64# (positiveToWord64 p))
-
-int64ToInteger :: Int64# -> Integer
-int64ToInteger i
- = if i `eqInt64#` intToInt64# 0#
- then Naught
- else if i `gtInt64#` intToInt64# 0#
- then Positive (word64ToPositive (int64ToWord64# i))
- else Negative (word64ToPositive (int64ToWord64# (negateInt64# i)))
-#else
-#error WORD_SIZE_IN_BITS not supported
-#endif
-
-oneInteger :: Integer
-oneInteger = Positive onePositive
-
-negativeOneInteger :: Integer
-negativeOneInteger = Negative onePositive
-
-twoToTheThirtytwoInteger :: Integer
-twoToTheThirtytwoInteger = Positive twoToTheThirtytwoPositive
-
-encodeDoubleInteger :: Integer -> Int# -> Double#
-encodeDoubleInteger (Positive ds0) e0 = f 0.0## ds0 e0
- where f !acc None (!_) = acc
- f !acc (Some d ds) !e = f (acc +## encodeDouble# d e)
- ds
- -- XXX We assume that this adding to e
- -- isn't going to overflow
- (e +# WORD_SIZE_IN_BITS#)
-encodeDoubleInteger (Negative ds) e
- = negateDouble# (encodeDoubleInteger (Positive ds) e)
-encodeDoubleInteger Naught _ = 0.0##
-
-foreign import ccall unsafe "__word_encodeDouble"
- encodeDouble# :: Word# -> Int# -> Double#
-
-encodeFloatInteger :: Integer -> Int# -> Float#
-encodeFloatInteger (Positive ds0) e0 = f 0.0# ds0 e0
- where f !acc None (!_) = acc
- f !acc (Some d ds) !e = f (acc `plusFloat#` encodeFloat# d e)
- ds
- -- XXX We assume that this adding to e
- -- isn't going to overflow
- (e +# WORD_SIZE_IN_BITS#)
-encodeFloatInteger (Negative ds) e
- = negateFloat# (encodeFloatInteger (Positive ds) e)
-encodeFloatInteger Naught _ = 0.0#
-
-foreign import ccall unsafe "__word_encodeFloat"
- encodeFloat# :: Word# -> Int# -> Float#
-
-decodeFloatInteger :: Float# -> (# Integer, Int# #)
-decodeFloatInteger f = case decodeFloat_Int# f of
- (# mant, exp #) -> (# smallInteger mant, exp #)
-
--- XXX This could be optimised better, by either (word-size dependent)
--- using single 64bit value for the mantissa, or doing the multiplication
--- by just building the Digits directly
-decodeDoubleInteger :: Double# -> (# Integer, Int# #)
-decodeDoubleInteger d
- = case decodeDouble_2Int# d of
- (# mantSign, mantHigh, mantLow, exp #) ->
- (# (smallInteger mantSign) `timesInteger`
- ( (wordToInteger mantHigh `timesInteger` twoToTheThirtytwoInteger)
- `plusInteger` wordToInteger mantLow),
- exp #)
-
-doubleFromInteger :: Integer -> Double#
-doubleFromInteger Naught = 0.0##
-doubleFromInteger (Positive p) = doubleFromPositive p
-doubleFromInteger (Negative p) = negateDouble# (doubleFromPositive p)
-
-floatFromInteger :: Integer -> Float#
-floatFromInteger Naught = 0.0#
-floatFromInteger (Positive p) = floatFromPositive p
-floatFromInteger (Negative p) = negateFloat# (floatFromPositive p)
-
-andInteger :: Integer -> Integer -> Integer
-Naught `andInteger` (!_) = Naught
-(!_) `andInteger` Naught = Naught
-Positive x `andInteger` Positive y = digitsToInteger (x `andDigits` y)
-{-
-To calculate x & -y we need to calculate
- x & twosComplement y
-The (imaginary) sign bits are 0 and 1, so &ing them give 0, i.e. positive.
-Note that
- twosComplement y
-has infinitely many 1s, but x has a finite number of digits, so andDigits
-will return a finite result.
--}
-Positive x `andInteger` Negative y = let y' = twosComplementPositive y
- z = y' `andDigitsOnes` x
- in digitsToInteger z
-Negative x `andInteger` Positive y = Positive y `andInteger` Negative x
-{-
-To calculate -x & -y, naively we need to calculate
- twosComplement (twosComplement x & twosComplement y)
-but
- twosComplement x & twosComplement y
-has infinitely many 1s, so this won't work. Thus we use de Morgan's law
-to get
- -x & -y = !(!(-x) | !(-y))
- = !(!(twosComplement x) | !(twosComplement y))
- = !(!(!x + 1) | (!y + 1))
- = !((x - 1) | (y - 1))
-but the result is negative, so we need to take the two's complement of
-this in order to get the magnitude of the result.
- twosComplement !((x - 1) | (y - 1))
- = !(!((x - 1) | (y - 1))) + 1
- = ((x - 1) | (y - 1)) + 1
--}
--- We don't know that x and y are /strictly/ greater than 1, but
--- minusPositive gives us the required answer anyway.
-Negative x `andInteger` Negative y = let x' = x `minusPositive` onePositive
- y' = y `minusPositive` onePositive
- z = x' `orDigits` y'
- -- XXX Cheating the precondition:
- z' = succPositive z
- in digitsToNegativeInteger z'
-
-orInteger :: Integer -> Integer -> Integer
-Naught `orInteger` (!i) = i
-(!i) `orInteger` Naught = i
-Positive x `orInteger` Positive y = Positive (x `orDigits` y)
-{-
-x | -y = - (twosComplement (x | twosComplement y))
- = - (twosComplement !(!x & !(twosComplement y)))
- = - (twosComplement !(!x & !(!y + 1)))
- = - (twosComplement !(!x & (y - 1)))
- = - ((!x & (y - 1)) + 1)
--}
-Positive x `orInteger` Negative y = let x' = flipBits x
- y' = y `minusPositive` onePositive
- z = x' `andDigitsOnes` y'
- z' = succPositive z
- in digitsToNegativeInteger z'
-Negative x `orInteger` Positive y = Positive y `orInteger` Negative x
-{-
--x | -y = - (twosComplement (twosComplement x | twosComplement y))
- = - (twosComplement !(!(twosComplement x) & !(twosComplement y)))
- = - (twosComplement !(!(!x + 1) & !(!y + 1)))
- = - (twosComplement !((x - 1) & (y - 1)))
- = - (((x - 1) & (y - 1)) + 1)
--}
-Negative x `orInteger` Negative y = let x' = x `minusPositive` onePositive
- y' = y `minusPositive` onePositive
- z = x' `andDigits` y'
- z' = succPositive z
- in digitsToNegativeInteger z'
-
-xorInteger :: Integer -> Integer -> Integer
-Naught `xorInteger` (!i) = i
-(!i) `xorInteger` Naught = i
-Positive x `xorInteger` Positive y = digitsToInteger (x `xorDigits` y)
-{-
-x ^ -y = - (twosComplement (x ^ twosComplement y))
- = - (twosComplement !(x ^ !(twosComplement y)))
- = - (twosComplement !(x ^ !(!y + 1)))
- = - (twosComplement !(x ^ (y - 1)))
- = - ((x ^ (y - 1)) + 1)
--}
-Positive x `xorInteger` Negative y = let y' = y `minusPositive` onePositive
- z = x `xorDigits` y'
- z' = succPositive z
- in digitsToNegativeInteger z'
-Negative x `xorInteger` Positive y = Positive y `xorInteger` Negative x
-{-
--x ^ -y = twosComplement x ^ twosComplement y
- = (!x + 1) ^ (!y + 1)
- = (!x + 1) ^ (!y + 1)
- = !(!x + 1) ^ !(!y + 1)
- = (x - 1) ^ (y - 1)
--}
-Negative x `xorInteger` Negative y = let x' = x `minusPositive` onePositive
- y' = y `minusPositive` onePositive
- z = x' `xorDigits` y'
- in digitsToInteger z
-
-complementInteger :: Integer -> Integer
-complementInteger x = negativeOneInteger `minusInteger` x
-
-shiftLInteger :: Integer -> Int# -> Integer
-shiftLInteger (Positive p) i = Positive (shiftLPositive p i)
-shiftLInteger (Negative n) i = Negative (shiftLPositive n i)
-shiftLInteger Naught _ = Naught
-
-shiftRInteger :: Integer -> Int# -> Integer
-shiftRInteger (Positive p) i = shiftRPositive p i
-shiftRInteger j@(Negative _) i
- = complementInteger (shiftRInteger (complementInteger j) i)
-shiftRInteger Naught _ = Naught
-
-twosComplementPositive :: Positive -> DigitsOnes
-twosComplementPositive p = flipBits (p `minusPositive` onePositive)
-
-flipBits :: Digits -> DigitsOnes
-flipBits ds = DigitsOnes (flipBitsDigits ds)
-
-flipBitsDigits :: Digits -> Digits
-flipBitsDigits None = None
-flipBitsDigits (Some w ws) = Some (not# w) (flipBitsDigits ws)
-
-negateInteger :: Integer -> Integer
-negateInteger (Positive p) = Negative p
-negateInteger (Negative p) = Positive p
-negateInteger Naught = Naught
-
-plusInteger :: Integer -> Integer -> Integer
-Positive p1 `plusInteger` Positive p2 = Positive (p1 `plusPositive` p2)
-Negative p1 `plusInteger` Negative p2 = Negative (p1 `plusPositive` p2)
-Positive p1 `plusInteger` Negative p2 = case p1 `comparePositive` p2 of
- GT -> Positive (p1 `minusPositive` p2)
- EQ -> Naught
- LT -> Negative (p2 `minusPositive` p1)
-Negative p1 `plusInteger` Positive p2 = Positive p2 `plusInteger` Negative p1
-Naught `plusInteger` (!i) = i
-(!i) `plusInteger` Naught = i
-
-minusInteger :: Integer -> Integer -> Integer
-i1 `minusInteger` i2 = i1 `plusInteger` negateInteger i2
-
-timesInteger :: Integer -> Integer -> Integer
-Positive p1 `timesInteger` Positive p2 = Positive (p1 `timesPositive` p2)
-Negative p1 `timesInteger` Negative p2 = Positive (p1 `timesPositive` p2)
-Positive p1 `timesInteger` Negative p2 = Negative (p1 `timesPositive` p2)
-Negative p1 `timesInteger` Positive p2 = Negative (p1 `timesPositive` p2)
-(!_) `timesInteger` (!_) = Naught
-
-divModInteger :: Integer -> Integer -> (# Integer, Integer #)
-n `divModInteger` d =
- case n `quotRemInteger` d of
- (# q, r #) ->
- if signumInteger r `eqInteger`
- negateInteger (signumInteger d)
- then (# q `minusInteger` oneInteger, r `plusInteger` d #)
- else (# q, r #)
-
-quotRemInteger :: Integer -> Integer -> (# Integer, Integer #)
-Naught `quotRemInteger` (!_) = (# Naught, Naught #)
-(!_) `quotRemInteger` Naught
- = (# errorInteger, errorInteger #) -- XXX Can't happen
--- XXX _ `quotRemInteger` Naught = error "Division by zero"
-Positive p1 `quotRemInteger` Positive p2 = p1 `quotRemPositive` p2
-Negative p1 `quotRemInteger` Positive p2 = case p1 `quotRemPositive` p2 of
- (# q, r #) ->
- (# negateInteger q,
- negateInteger r #)
-Positive p1 `quotRemInteger` Negative p2 = case p1 `quotRemPositive` p2 of
- (# q, r #) ->
- (# negateInteger q, r #)
-Negative p1 `quotRemInteger` Negative p2 = case p1 `quotRemPositive` p2 of
- (# q, r #) ->
- (# q, negateInteger r #)
-
-quotInteger :: Integer -> Integer -> Integer
-x `quotInteger` y = case x `quotRemInteger` y of
- (# q, _ #) -> q
-
-remInteger :: Integer -> Integer -> Integer
-x `remInteger` y = case x `quotRemInteger` y of
- (# _, r #) -> r
-
-compareInteger :: Integer -> Integer -> Ordering
-Positive x `compareInteger` Positive y = x `comparePositive` y
-Positive _ `compareInteger` (!_) = GT
-Naught `compareInteger` Naught = EQ
-Naught `compareInteger` Negative _ = GT
-Negative x `compareInteger` Negative y = y `comparePositive` x
-(!_) `compareInteger` (!_) = LT
-
-eqInteger :: Integer -> Integer -> Bool
-x `eqInteger` y = case x `compareInteger` y of
- EQ -> True
- _ -> False
-
-neqInteger :: Integer -> Integer -> Bool
-x `neqInteger` y = case x `compareInteger` y of
- EQ -> False
- _ -> True
-
-instance Eq Integer where
- (==) = eqInteger
- (/=) = neqInteger
-
-ltInteger :: Integer -> Integer -> Bool
-x `ltInteger` y = case x `compareInteger` y of
- LT -> True
- _ -> False
-
-gtInteger :: Integer -> Integer -> Bool
-x `gtInteger` y = case x `compareInteger` y of
- GT -> True
- _ -> False
-
-leInteger :: Integer -> Integer -> Bool
-x `leInteger` y = case x `compareInteger` y of
- GT -> False
- _ -> True
-
-geInteger :: Integer -> Integer -> Bool
-x `geInteger` y = case x `compareInteger` y of
- LT -> False
- _ -> True
-
-instance Ord Integer where
- (<=) = leInteger
- (>) = gtInteger
- (<) = ltInteger
- (>=) = geInteger
- compare = compareInteger
-
-absInteger :: Integer -> Integer
-absInteger (Negative x) = Positive x
-absInteger x = x
-
-signumInteger :: Integer -> Integer
-signumInteger (Negative _) = negativeOneInteger
-signumInteger Naught = Naught
-signumInteger (Positive _) = oneInteger
-
--- XXX This isn't a great hash function
-hashInteger :: Integer -> Int#
-hashInteger (!_) = 42#
-
--------------------------------------------------------------------
--- The hard work is done on positive numbers
-
-onePositive :: Positive
-onePositive = Some 1## None
-
-halfBoundUp, fullBound :: () -> Digit
-lowHalfMask :: () -> Digit
-highHalfShift :: () -> Int#
-twoToTheThirtytwoPositive :: Positive
-#if WORD_SIZE_IN_BITS == 64
-halfBoundUp () = 0x8000000000000000##
-fullBound () = 0xFFFFFFFFFFFFFFFF##
-lowHalfMask () = 0xFFFFFFFF##
-highHalfShift () = 32#
-twoToTheThirtytwoPositive = Some 0x100000000## None
-#elif WORD_SIZE_IN_BITS == 32
-halfBoundUp () = 0x80000000##
-fullBound () = 0xFFFFFFFF##
-lowHalfMask () = 0xFFFF##
-highHalfShift () = 16#
-twoToTheThirtytwoPositive = Some 0## (Some 1## None)
-#else
-#error Unhandled WORD_SIZE_IN_BITS
-#endif
-
-digitsMaybeZeroToInteger :: Digits -> Integer
-digitsMaybeZeroToInteger None = Naught
-digitsMaybeZeroToInteger ds = Positive ds
-
-digitsToInteger :: Digits -> Integer
-digitsToInteger ds = case removeZeroTails ds of
- None -> Naught
- ds' -> Positive ds'
-
-digitsToNegativeInteger :: Digits -> Integer
-digitsToNegativeInteger ds = case removeZeroTails ds of
- None -> Naught
- ds' -> Negative ds'
-
-removeZeroTails :: Digits -> Digits
-removeZeroTails (Some w ds) = if w `eqWord#` 0##
- then case removeZeroTails ds of
- None -> None
- ds' -> Some w ds'
- else Some w (removeZeroTails ds)
-removeZeroTails None = None
-
-#if WORD_SIZE_IN_BITS < 64
-word64ToPositive :: Word64# -> Positive
-word64ToPositive w
- = if w `eqWord64#` wordToWord64# 0##
- then None
- else Some (word64ToWord# w) (word64ToPositive (w `uncheckedShiftRL64#` 32#))
-
-positiveToWord64 :: Positive -> Word64#
-positiveToWord64 None = wordToWord64# 0## -- XXX Can't happen
-positiveToWord64 (Some w None) = wordToWord64# w
-positiveToWord64 (Some low (Some high _))
- = wordToWord64# low `or64#` (wordToWord64# high `uncheckedShiftL64#` 32#)
-#endif
-
-comparePositive :: Positive -> Positive -> Ordering
-Some x xs `comparePositive` Some y ys = case xs `comparePositive` ys of
- EQ -> if x `ltWord#` y then LT
- else if x `gtWord#` y then GT
- else EQ
- res -> res
-None `comparePositive` None = EQ
-(!_) `comparePositive` None = GT
-None `comparePositive` (!_) = LT
-
-plusPositive :: Positive -> Positive -> Positive
-plusPositive x0 y0 = addWithCarry 0## x0 y0
- where -- digit `elem` [0, 1]
- addWithCarry :: Digit -> Positive -> Positive -> Positive
- addWithCarry c (!xs) None = addOnCarry c xs
- addWithCarry c None (!ys) = addOnCarry c ys
- addWithCarry c xs@(Some x xs') ys@(Some y ys')
- = if x `ltWord#` y then addWithCarry c ys xs
- -- Now x >= y
- else if y `geWord#` halfBoundUp ()
- -- So they are both at least halfBoundUp, so we subtract
- -- halfBoundUp from each and thus carry 1
- then case x `minusWord#` halfBoundUp () of
- x' ->
- case y `minusWord#` halfBoundUp () of
- y' ->
- case x' `plusWord#` y' `plusWord#` c of
- this ->
- Some this withCarry
- else if x `geWord#` halfBoundUp ()
- then case x `minusWord#` halfBoundUp () of
- x' ->
- case x' `plusWord#` y `plusWord#` c of
- z ->
- -- We've taken off halfBoundUp, so now we need to
- -- add it back on
- if z `ltWord#` halfBoundUp ()
- then Some (z `plusWord#` halfBoundUp ()) withoutCarry
- else Some (z `minusWord#` halfBoundUp ()) withCarry
- else Some (x `plusWord#` y `plusWord#` c) withoutCarry
- where withCarry = addWithCarry 1## xs' ys'
- withoutCarry = addWithCarry 0## xs' ys'
-
- -- digit `elem` [0, 1]
- addOnCarry :: Digit -> Positive -> Positive
- addOnCarry (!c) (!ws) = if c `eqWord#` 0##
- then ws
- else succPositive ws
-
--- digit `elem` [0, 1]
-succPositive :: Positive -> Positive
-succPositive None = Some 1## None
-succPositive (Some w ws) = if w `eqWord#` fullBound ()
- then Some 0## (succPositive ws)
- else Some (w `plusWord#` 1##) ws
-
--- Requires x > y
--- In recursive calls, x >= y and x == y => result is None
-minusPositive :: Positive -> Positive -> Positive
-Some x xs `minusPositive` Some y ys
- = if x `eqWord#` y
- then case xs `minusPositive` ys of
- None -> None
- s -> Some 0## s
- else if x `gtWord#` y then
- Some (x `minusWord#` y) (xs `minusPositive` ys)
- else case (fullBound () `minusWord#` y) `plusWord#` 1## of
- z -> -- z = 2^n - y, calculated without overflow
- case z `plusWord#` x of
- z' -> -- z = 2^n + (x - y), calculated without overflow
- Some z' ((xs `minusPositive` ys) `minusPositive` onePositive)
-(!xs) `minusPositive` None = xs
-None `minusPositive` (!_) = errorPositive -- XXX Can't happen
--- XXX None `minusPositive` _ = error "minusPositive: Requirement x > y not met"
-
-timesPositive :: Positive -> Positive -> Positive
--- XXX None's can't happen here:
-None `timesPositive` (!_) = errorPositive
-(!_) `timesPositive` None = errorPositive
--- x and y are the last digits in Positive numbers, so are not 0:
-Some x None `timesPositive` Some y None = x `timesDigit` y
-xs@(Some _ None) `timesPositive` (!ys) = ys `timesPositive` xs
--- y is the last digit in a Positive number, so is not 0:
-Some x xs' `timesPositive` ys@(Some y None)
- = -- We could actually skip this test, and everything would
- -- turn out OK. We already play tricks like that in timesPositive.
- let zs = Some 0## (xs' `timesPositive` ys)
- in if x `eqWord#` 0##
- then zs
- else (x `timesDigit` y) `plusPositive` zs
-Some x xs' `timesPositive` ys@(Some _ _)
- = (Some x None `timesPositive` ys) `plusPositive`
- Some 0## (xs' `timesPositive` ys)
-
-{-
--- Requires arguments /= 0
-Suppose we have 2n bits in a Word. Then
- x = 2^n xh + xl
- y = 2^n yh + yl
- x * y = (2^n xh + xl) * (2^n yh + yl)
- = 2^(2n) (xh yh)
- + 2^n (xh yl)
- + 2^n (xl yh)
- + (xl yl)
- ~~~~~~~ - all fit in 2n bits
--}
-timesDigit :: Digit -> Digit -> Positive
-timesDigit (!x) (!y)
- = case splitHalves x of
- (# xh, xl #) ->
- case splitHalves y of
- (# yh, yl #) ->
- case xh `timesWord#` yh of
- xhyh ->
- case splitHalves (xh `timesWord#` yl) of
- (# xhylh, xhyll #) ->
- case xhyll `uncheckedShiftL#` highHalfShift () of
- xhyll' ->
- case splitHalves (xl `timesWord#` yh) of
- (# xlyhh, xlyhl #) ->
- case xlyhl `uncheckedShiftL#` highHalfShift () of
- xlyhl' ->
- case xl `timesWord#` yl of
- xlyl ->
- -- Add up all the high word results. As the result fits in
- -- 4n bits this can't overflow.
- case xhyh `plusWord#` xhylh `plusWord#` xlyhh of
- high ->
- -- low: xhyll<<n + xlyhl<<n + xlyl
- -- From this point we might make (Some 0 None), but we know
- -- that the final result will be positive and the addition
- -- will work out OK, so everything will work out in the end.
- -- One thing we do need to be careful of is avoiding returning
- -- Some 0 (Some 0 None) + Some n None, as this will result in
- -- Some n (Some 0 None) instead of Some n None.
- let low = Some xhyll' None `plusPositive`
- Some xlyhl' None `plusPositive`
- Some xlyl None
- in if high `eqWord#` 0##
- then low
- else Some 0## (Some high None) `plusPositive` low
-
-splitHalves :: Digit -> (# {- High -} Digit, {- Low -} Digit #)
-splitHalves (!x) = (# x `uncheckedShiftRL#` highHalfShift (),
- x `and#` lowHalfMask () #)
-
--- Assumes 0 <= i
-shiftLPositive :: Positive -> Int# -> Positive
-shiftLPositive p i
- = if i >=# WORD_SIZE_IN_BITS#
- then shiftLPositive (Some 0## p) (i -# WORD_SIZE_IN_BITS#)
- else smallShiftLPositive p i
-
--- Assumes 0 <= i < WORD_SIZE_IN_BITS#
-smallShiftLPositive :: Positive -> Int# -> Positive
-smallShiftLPositive (!p) 0# = p
-smallShiftLPositive (!p) (!i) =
- case WORD_SIZE_IN_BITS# -# i of
- j -> let f carry None = if carry `eqWord#` 0##
- then None
- else Some carry None
- f carry (Some w ws) = case w `uncheckedShiftRL#` j of
- carry' ->
- case w `uncheckedShiftL#` i of
- me ->
- Some (me `or#` carry) (f carry' ws)
- in f 0## p
-
--- Assumes 0 <= i
-shiftRPositive :: Positive -> Int# -> Integer
-shiftRPositive None _ = Naught
-shiftRPositive p@(Some _ q) i
- = if i >=# WORD_SIZE_IN_BITS#
- then shiftRPositive q (i -# WORD_SIZE_IN_BITS#)
- else smallShiftRPositive p i
-
--- Assumes 0 <= i < WORD_SIZE_IN_BITS#
-smallShiftRPositive :: Positive -> Int# -> Integer
-smallShiftRPositive (!p) (!i) =
- if i ==# 0#
- then Positive p
- else case smallShiftLPositive p (WORD_SIZE_IN_BITS# -# i) of
- Some _ p'@(Some _ _) -> Positive p'
- _ -> Naught
-
--- Long division
-quotRemPositive :: Positive -> Positive -> (# Integer, Integer #)
-(!xs) `quotRemPositive` (!ys)
- = case f xs of
- (# d, m #) -> (# digitsMaybeZeroToInteger d,
- digitsMaybeZeroToInteger m #)
- where
- subtractors :: Positives
- subtractors = mkSubtractors (WORD_SIZE_IN_BITS# -# 1#)
-
- mkSubtractors (!n) = if n ==# 0#
- then Cons ys Nil
- else Cons (ys `smallShiftLPositive` n)
- (mkSubtractors (n -# 1#))
-
- -- The main function. Go the the end of xs, then walk
- -- back trying to divide the number we accumulate by ys.
- f :: Positive -> (# Digits, Digits #)
- f None = (# None, None #)
- f (Some z zs)
- = case f zs of
- (# ds, m #) ->
- let -- We need to avoid making (Some Zero None) here
- m' = some z m
- in case g 0## subtractors m' of
- (# d, m'' #) ->
- (# some d ds, m'' #)
-
- g :: Digit -> Positives -> Digits -> (# Digit, Digits #)
- g (!d) Nil (!m) = (# d, m #)
- g (!d) (Cons sub subs) (!m)
- = case d `uncheckedShiftL#` 1# of
- d' ->
- case m `comparePositive` sub of
- LT -> g d' subs m
- _ -> g (d' `plusWord#` 1##)
- subs
- (m `minusPositive` sub)
-
-some :: Digit -> Digits -> Digits
-some (!w) None = if w `eqWord#` 0## then None else Some w None
-some (!w) (!ws) = Some w ws
-
-andDigits :: Digits -> Digits -> Digits
-andDigits (!_) None = None
-andDigits None (!_) = None
-andDigits (Some w1 ws1) (Some w2 ws2) = Some (w1 `and#` w2) (andDigits ws1 ws2)
-
--- DigitsOnes is just like Digits, only None is really 0xFFFFFFF...,
--- i.e. ones off to infinity. This makes sense when we want to "and"
--- a DigitOnes with a Digits, as the latter will bound the size of the
--- result.
-newtype DigitsOnes = DigitsOnes Digits
-
-andDigitsOnes :: DigitsOnes -> Digits -> Digits
-andDigitsOnes (!_) None = None
-andDigitsOnes (DigitsOnes None) (!ws2) = ws2
-andDigitsOnes (DigitsOnes (Some w1 ws1)) (Some w2 ws2)
- = Some (w1 `and#` w2) (andDigitsOnes (DigitsOnes ws1) ws2)
-
-orDigits :: Digits -> Digits -> Digits
-orDigits None (!ds) = ds
-orDigits (!ds) None = ds
-orDigits (Some w1 ds1) (Some w2 ds2) = Some (w1 `or#` w2) (orDigits ds1 ds2)
-
-xorDigits :: Digits -> Digits -> Digits
-xorDigits None (!ds) = ds
-xorDigits (!ds) None = ds
-xorDigits (Some w1 ds1) (Some w2 ds2) = Some (w1 `xor#` w2) (xorDigits ds1 ds2)
-
--- XXX We'd really like word2Double# for this
-doubleFromPositive :: Positive -> Double#
-doubleFromPositive None = 0.0##
-doubleFromPositive (Some w ds)
- = case splitHalves w of
- (# h, l #) ->
- (doubleFromPositive ds *## (2.0## **## WORD_SIZE_IN_BITS.0##))
- +## (int2Double# (word2Int# h) *##
- (2.0## **## int2Double# (highHalfShift ())))
- +## int2Double# (word2Int# l)
-
--- XXX We'd really like word2Float# for this
-floatFromPositive :: Positive -> Float#
-floatFromPositive None = 0.0#
-floatFromPositive (Some w ds)
- = case splitHalves w of
- (# h, l #) ->
- (floatFromPositive ds `timesFloat#` (2.0# `powerFloat#` WORD_SIZE_IN_BITS.0#))
- `plusFloat#` (int2Float# (word2Int# h) `timesFloat#`
- (2.0# `powerFloat#` int2Float# (highHalfShift ())))
- `plusFloat#` int2Float# (word2Int# l)
-
-#endif
-
diff --git a/libraries/integer-simple/GHC/Integer/Logarithms/Internals.hs b/libraries/integer-simple/GHC/Integer/Logarithms/Internals.hs
index c7aab33e53..529062aa6d 100644
--- a/libraries/integer-simple/GHC/Integer/Logarithms/Internals.hs
+++ b/libraries/integer-simple/GHC/Integer/Logarithms/Internals.hs
@@ -19,7 +19,6 @@ module GHC.Integer.Logarithms.Internals
import GHC.Prim
import GHC.Integer.Type
-import GHC.Integer
default ()
diff --git a/libraries/integer-simple/GHC/Integer/Type.hs b/libraries/integer-simple/GHC/Integer/Type.hs
index e81dfc7855..49e9c681eb 100644
--- a/libraries/integer-simple/GHC/Integer/Type.hs
+++ b/libraries/integer-simple/GHC/Integer/Type.hs
@@ -1,5 +1,8 @@
-{-# LANGUAGE NoImplicitPrelude, CPP, MagicHash #-}
+{-# LANGUAGE CPP, MagicHash, ForeignFunctionInterface,
+ NoImplicitPrelude, BangPatterns, UnboxedTuples,
+ UnliftedFFITypes #-}
+
-----------------------------------------------------------------------------
-- |
@@ -17,15 +20,16 @@
#include "MachDeps.h"
-module GHC.Integer.Type (
- Integer(..),
- Positive, Positives,
- Digits(..), Digit,
- List(..)
- ) where
+module GHC.Integer.Type where
import GHC.Prim
-import GHC.Types ()
+import GHC.Classes
+import GHC.Ordering
+import GHC.Types
+import GHC.Unit ()
+#if WORD_SIZE_IN_BITS < 64
+import GHC.IntWord64
+#endif
#if !defined(__HADDOCK__)
@@ -48,5 +52,709 @@ type Digit = Word#
-- XXX Could move [] above us
data List a = Nil | Cons a (List a)
+errorInteger :: Integer
+errorInteger = Positive errorPositive
+
+errorPositive :: Positive
+errorPositive = Some 47## None -- Random number
+
+smallInteger :: Int# -> Integer
+smallInteger i = if i >=# 0# then wordToInteger (int2Word# i)
+ else -- XXX is this right for -minBound?
+ negateInteger (wordToInteger (int2Word# (negateInt# i)))
+
+wordToInteger :: Word# -> Integer
+wordToInteger w = if w `eqWord#` 0##
+ then Naught
+ else Positive (Some w None)
+
+integerToWord :: Integer -> Word#
+integerToWord (Positive (Some w _)) = w
+integerToWord (Negative (Some w _)) = 0## `minusWord#` w
+-- Must be Naught by the invariant:
+integerToWord _ = 0##
+
+integerToInt :: Integer -> Int#
+integerToInt i = word2Int# (integerToWord i)
+
+#if WORD_SIZE_IN_BITS == 64
+-- Nothing
+#elif WORD_SIZE_IN_BITS == 32
+integerToWord64 :: Integer -> Word64#
+integerToWord64 i = int64ToWord64# (integerToInt64 i)
+
+word64ToInteger:: Word64# -> Integer
+word64ToInteger w = if w `eqWord64#` wordToWord64# 0##
+ then Naught
+ else Positive (word64ToPositive w)
+
+integerToInt64 :: Integer -> Int64#
+integerToInt64 Naught = intToInt64# 0#
+integerToInt64 (Positive p) = word64ToInt64# (positiveToWord64 p)
+integerToInt64 (Negative p)
+ = negateInt64# (word64ToInt64# (positiveToWord64 p))
+
+int64ToInteger :: Int64# -> Integer
+int64ToInteger i
+ = if i `eqInt64#` intToInt64# 0#
+ then Naught
+ else if i `gtInt64#` intToInt64# 0#
+ then Positive (word64ToPositive (int64ToWord64# i))
+ else Negative (word64ToPositive (int64ToWord64# (negateInt64# i)))
+#else
+#error WORD_SIZE_IN_BITS not supported
+#endif
+
+oneInteger :: Integer
+oneInteger = Positive onePositive
+
+negativeOneInteger :: Integer
+negativeOneInteger = Negative onePositive
+
+twoToTheThirtytwoInteger :: Integer
+twoToTheThirtytwoInteger = Positive twoToTheThirtytwoPositive
+
+encodeDoubleInteger :: Integer -> Int# -> Double#
+encodeDoubleInteger (Positive ds0) e0 = f 0.0## ds0 e0
+ where f !acc None (!_) = acc
+ f !acc (Some d ds) !e = f (acc +## encodeDouble# d e)
+ ds
+ -- XXX We assume that this adding to e
+ -- isn't going to overflow
+ (e +# WORD_SIZE_IN_BITS#)
+encodeDoubleInteger (Negative ds) e
+ = negateDouble# (encodeDoubleInteger (Positive ds) e)
+encodeDoubleInteger Naught _ = 0.0##
+
+foreign import ccall unsafe "__word_encodeDouble"
+ encodeDouble# :: Word# -> Int# -> Double#
+
+encodeFloatInteger :: Integer -> Int# -> Float#
+encodeFloatInteger (Positive ds0) e0 = f 0.0# ds0 e0
+ where f !acc None (!_) = acc
+ f !acc (Some d ds) !e = f (acc `plusFloat#` encodeFloat# d e)
+ ds
+ -- XXX We assume that this adding to e
+ -- isn't going to overflow
+ (e +# WORD_SIZE_IN_BITS#)
+encodeFloatInteger (Negative ds) e
+ = negateFloat# (encodeFloatInteger (Positive ds) e)
+encodeFloatInteger Naught _ = 0.0#
+
+foreign import ccall unsafe "__word_encodeFloat"
+ encodeFloat# :: Word# -> Int# -> Float#
+
+decodeFloatInteger :: Float# -> (# Integer, Int# #)
+decodeFloatInteger f = case decodeFloat_Int# f of
+ (# mant, exp #) -> (# smallInteger mant, exp #)
+
+-- XXX This could be optimised better, by either (word-size dependent)
+-- using single 64bit value for the mantissa, or doing the multiplication
+-- by just building the Digits directly
+decodeDoubleInteger :: Double# -> (# Integer, Int# #)
+decodeDoubleInteger d
+ = case decodeDouble_2Int# d of
+ (# mantSign, mantHigh, mantLow, exp #) ->
+ (# (smallInteger mantSign) `timesInteger`
+ ( (wordToInteger mantHigh `timesInteger` twoToTheThirtytwoInteger)
+ `plusInteger` wordToInteger mantLow),
+ exp #)
+
+doubleFromInteger :: Integer -> Double#
+doubleFromInteger Naught = 0.0##
+doubleFromInteger (Positive p) = doubleFromPositive p
+doubleFromInteger (Negative p) = negateDouble# (doubleFromPositive p)
+
+floatFromInteger :: Integer -> Float#
+floatFromInteger Naught = 0.0#
+floatFromInteger (Positive p) = floatFromPositive p
+floatFromInteger (Negative p) = negateFloat# (floatFromPositive p)
+
+andInteger :: Integer -> Integer -> Integer
+Naught `andInteger` (!_) = Naught
+(!_) `andInteger` Naught = Naught
+Positive x `andInteger` Positive y = digitsToInteger (x `andDigits` y)
+{-
+To calculate x & -y we need to calculate
+ x & twosComplement y
+The (imaginary) sign bits are 0 and 1, so &ing them give 0, i.e. positive.
+Note that
+ twosComplement y
+has infinitely many 1s, but x has a finite number of digits, so andDigits
+will return a finite result.
+-}
+Positive x `andInteger` Negative y = let y' = twosComplementPositive y
+ z = y' `andDigitsOnes` x
+ in digitsToInteger z
+Negative x `andInteger` Positive y = Positive y `andInteger` Negative x
+{-
+To calculate -x & -y, naively we need to calculate
+ twosComplement (twosComplement x & twosComplement y)
+but
+ twosComplement x & twosComplement y
+has infinitely many 1s, so this won't work. Thus we use de Morgan's law
+to get
+ -x & -y = !(!(-x) | !(-y))
+ = !(!(twosComplement x) | !(twosComplement y))
+ = !(!(!x + 1) | (!y + 1))
+ = !((x - 1) | (y - 1))
+but the result is negative, so we need to take the two's complement of
+this in order to get the magnitude of the result.
+ twosComplement !((x - 1) | (y - 1))
+ = !(!((x - 1) | (y - 1))) + 1
+ = ((x - 1) | (y - 1)) + 1
+-}
+-- We don't know that x and y are /strictly/ greater than 1, but
+-- minusPositive gives us the required answer anyway.
+Negative x `andInteger` Negative y = let x' = x `minusPositive` onePositive
+ y' = y `minusPositive` onePositive
+ z = x' `orDigits` y'
+ -- XXX Cheating the precondition:
+ z' = succPositive z
+ in digitsToNegativeInteger z'
+
+orInteger :: Integer -> Integer -> Integer
+Naught `orInteger` (!i) = i
+(!i) `orInteger` Naught = i
+Positive x `orInteger` Positive y = Positive (x `orDigits` y)
+{-
+x | -y = - (twosComplement (x | twosComplement y))
+ = - (twosComplement !(!x & !(twosComplement y)))
+ = - (twosComplement !(!x & !(!y + 1)))
+ = - (twosComplement !(!x & (y - 1)))
+ = - ((!x & (y - 1)) + 1)
+-}
+Positive x `orInteger` Negative y = let x' = flipBits x
+ y' = y `minusPositive` onePositive
+ z = x' `andDigitsOnes` y'
+ z' = succPositive z
+ in digitsToNegativeInteger z'
+Negative x `orInteger` Positive y = Positive y `orInteger` Negative x
+{-
+-x | -y = - (twosComplement (twosComplement x | twosComplement y))
+ = - (twosComplement !(!(twosComplement x) & !(twosComplement y)))
+ = - (twosComplement !(!(!x + 1) & !(!y + 1)))
+ = - (twosComplement !((x - 1) & (y - 1)))
+ = - (((x - 1) & (y - 1)) + 1)
+-}
+Negative x `orInteger` Negative y = let x' = x `minusPositive` onePositive
+ y' = y `minusPositive` onePositive
+ z = x' `andDigits` y'
+ z' = succPositive z
+ in digitsToNegativeInteger z'
+
+xorInteger :: Integer -> Integer -> Integer
+Naught `xorInteger` (!i) = i
+(!i) `xorInteger` Naught = i
+Positive x `xorInteger` Positive y = digitsToInteger (x `xorDigits` y)
+{-
+x ^ -y = - (twosComplement (x ^ twosComplement y))
+ = - (twosComplement !(x ^ !(twosComplement y)))
+ = - (twosComplement !(x ^ !(!y + 1)))
+ = - (twosComplement !(x ^ (y - 1)))
+ = - ((x ^ (y - 1)) + 1)
+-}
+Positive x `xorInteger` Negative y = let y' = y `minusPositive` onePositive
+ z = x `xorDigits` y'
+ z' = succPositive z
+ in digitsToNegativeInteger z'
+Negative x `xorInteger` Positive y = Positive y `xorInteger` Negative x
+{-
+-x ^ -y = twosComplement x ^ twosComplement y
+ = (!x + 1) ^ (!y + 1)
+ = (!x + 1) ^ (!y + 1)
+ = !(!x + 1) ^ !(!y + 1)
+ = (x - 1) ^ (y - 1)
+-}
+Negative x `xorInteger` Negative y = let x' = x `minusPositive` onePositive
+ y' = y `minusPositive` onePositive
+ z = x' `xorDigits` y'
+ in digitsToInteger z
+
+complementInteger :: Integer -> Integer
+complementInteger x = negativeOneInteger `minusInteger` x
+
+shiftLInteger :: Integer -> Int# -> Integer
+shiftLInteger (Positive p) i = Positive (shiftLPositive p i)
+shiftLInteger (Negative n) i = Negative (shiftLPositive n i)
+shiftLInteger Naught _ = Naught
+
+shiftRInteger :: Integer -> Int# -> Integer
+shiftRInteger (Positive p) i = shiftRPositive p i
+shiftRInteger j@(Negative _) i
+ = complementInteger (shiftRInteger (complementInteger j) i)
+shiftRInteger Naught _ = Naught
+
+twosComplementPositive :: Positive -> DigitsOnes
+twosComplementPositive p = flipBits (p `minusPositive` onePositive)
+
+flipBits :: Digits -> DigitsOnes
+flipBits ds = DigitsOnes (flipBitsDigits ds)
+
+flipBitsDigits :: Digits -> Digits
+flipBitsDigits None = None
+flipBitsDigits (Some w ws) = Some (not# w) (flipBitsDigits ws)
+
+negateInteger :: Integer -> Integer
+negateInteger (Positive p) = Negative p
+negateInteger (Negative p) = Positive p
+negateInteger Naught = Naught
+
+plusInteger :: Integer -> Integer -> Integer
+Positive p1 `plusInteger` Positive p2 = Positive (p1 `plusPositive` p2)
+Negative p1 `plusInteger` Negative p2 = Negative (p1 `plusPositive` p2)
+Positive p1 `plusInteger` Negative p2 = case p1 `comparePositive` p2 of
+ GT -> Positive (p1 `minusPositive` p2)
+ EQ -> Naught
+ LT -> Negative (p2 `minusPositive` p1)
+Negative p1 `plusInteger` Positive p2 = Positive p2 `plusInteger` Negative p1
+Naught `plusInteger` (!i) = i
+(!i) `plusInteger` Naught = i
+
+minusInteger :: Integer -> Integer -> Integer
+i1 `minusInteger` i2 = i1 `plusInteger` negateInteger i2
+
+timesInteger :: Integer -> Integer -> Integer
+Positive p1 `timesInteger` Positive p2 = Positive (p1 `timesPositive` p2)
+Negative p1 `timesInteger` Negative p2 = Positive (p1 `timesPositive` p2)
+Positive p1 `timesInteger` Negative p2 = Negative (p1 `timesPositive` p2)
+Negative p1 `timesInteger` Positive p2 = Negative (p1 `timesPositive` p2)
+(!_) `timesInteger` (!_) = Naught
+
+divModInteger :: Integer -> Integer -> (# Integer, Integer #)
+n `divModInteger` d =
+ case n `quotRemInteger` d of
+ (# q, r #) ->
+ if signumInteger r `eqInteger`
+ negateInteger (signumInteger d)
+ then (# q `minusInteger` oneInteger, r `plusInteger` d #)
+ else (# q, r #)
+
+quotRemInteger :: Integer -> Integer -> (# Integer, Integer #)
+Naught `quotRemInteger` (!_) = (# Naught, Naught #)
+(!_) `quotRemInteger` Naught
+ = (# errorInteger, errorInteger #) -- XXX Can't happen
+-- XXX _ `quotRemInteger` Naught = error "Division by zero"
+Positive p1 `quotRemInteger` Positive p2 = p1 `quotRemPositive` p2
+Negative p1 `quotRemInteger` Positive p2 = case p1 `quotRemPositive` p2 of
+ (# q, r #) ->
+ (# negateInteger q,
+ negateInteger r #)
+Positive p1 `quotRemInteger` Negative p2 = case p1 `quotRemPositive` p2 of
+ (# q, r #) ->
+ (# negateInteger q, r #)
+Negative p1 `quotRemInteger` Negative p2 = case p1 `quotRemPositive` p2 of
+ (# q, r #) ->
+ (# q, negateInteger r #)
+
+quotInteger :: Integer -> Integer -> Integer
+x `quotInteger` y = case x `quotRemInteger` y of
+ (# q, _ #) -> q
+
+remInteger :: Integer -> Integer -> Integer
+x `remInteger` y = case x `quotRemInteger` y of
+ (# _, r #) -> r
+
+compareInteger :: Integer -> Integer -> Ordering
+Positive x `compareInteger` Positive y = x `comparePositive` y
+Positive _ `compareInteger` (!_) = GT
+Naught `compareInteger` Naught = EQ
+Naught `compareInteger` Negative _ = GT
+Negative x `compareInteger` Negative y = y `comparePositive` x
+(!_) `compareInteger` (!_) = LT
+
+eqInteger :: Integer -> Integer -> Bool
+x `eqInteger` y = case x `compareInteger` y of
+ EQ -> True
+ _ -> False
+
+neqInteger :: Integer -> Integer -> Bool
+x `neqInteger` y = case x `compareInteger` y of
+ EQ -> False
+ _ -> True
+
+instance Eq Integer where
+ (==) = eqInteger
+ (/=) = neqInteger
+
+ltInteger :: Integer -> Integer -> Bool
+x `ltInteger` y = case x `compareInteger` y of
+ LT -> True
+ _ -> False
+
+gtInteger :: Integer -> Integer -> Bool
+x `gtInteger` y = case x `compareInteger` y of
+ GT -> True
+ _ -> False
+
+leInteger :: Integer -> Integer -> Bool
+x `leInteger` y = case x `compareInteger` y of
+ GT -> False
+ _ -> True
+
+geInteger :: Integer -> Integer -> Bool
+x `geInteger` y = case x `compareInteger` y of
+ LT -> False
+ _ -> True
+
+instance Ord Integer where
+ (<=) = leInteger
+ (>) = gtInteger
+ (<) = ltInteger
+ (>=) = geInteger
+ compare = compareInteger
+
+absInteger :: Integer -> Integer
+absInteger (Negative x) = Positive x
+absInteger x = x
+
+signumInteger :: Integer -> Integer
+signumInteger (Negative _) = negativeOneInteger
+signumInteger Naught = Naught
+signumInteger (Positive _) = oneInteger
+
+-- XXX This isn't a great hash function
+hashInteger :: Integer -> Int#
+hashInteger (!_) = 42#
+
+-------------------------------------------------------------------
+-- The hard work is done on positive numbers
+
+onePositive :: Positive
+onePositive = Some 1## None
+
+halfBoundUp, fullBound :: () -> Digit
+lowHalfMask :: () -> Digit
+highHalfShift :: () -> Int#
+twoToTheThirtytwoPositive :: Positive
+#if WORD_SIZE_IN_BITS == 64
+halfBoundUp () = 0x8000000000000000##
+fullBound () = 0xFFFFFFFFFFFFFFFF##
+lowHalfMask () = 0xFFFFFFFF##
+highHalfShift () = 32#
+twoToTheThirtytwoPositive = Some 0x100000000## None
+#elif WORD_SIZE_IN_BITS == 32
+halfBoundUp () = 0x80000000##
+fullBound () = 0xFFFFFFFF##
+lowHalfMask () = 0xFFFF##
+highHalfShift () = 16#
+twoToTheThirtytwoPositive = Some 0## (Some 1## None)
+#else
+#error Unhandled WORD_SIZE_IN_BITS
+#endif
+
+digitsMaybeZeroToInteger :: Digits -> Integer
+digitsMaybeZeroToInteger None = Naught
+digitsMaybeZeroToInteger ds = Positive ds
+
+digitsToInteger :: Digits -> Integer
+digitsToInteger ds = case removeZeroTails ds of
+ None -> Naught
+ ds' -> Positive ds'
+
+digitsToNegativeInteger :: Digits -> Integer
+digitsToNegativeInteger ds = case removeZeroTails ds of
+ None -> Naught
+ ds' -> Negative ds'
+
+removeZeroTails :: Digits -> Digits
+removeZeroTails (Some w ds) = if w `eqWord#` 0##
+ then case removeZeroTails ds of
+ None -> None
+ ds' -> Some w ds'
+ else Some w (removeZeroTails ds)
+removeZeroTails None = None
+
+#if WORD_SIZE_IN_BITS < 64
+word64ToPositive :: Word64# -> Positive
+word64ToPositive w
+ = if w `eqWord64#` wordToWord64# 0##
+ then None
+ else Some (word64ToWord# w) (word64ToPositive (w `uncheckedShiftRL64#` 32#))
+
+positiveToWord64 :: Positive -> Word64#
+positiveToWord64 None = wordToWord64# 0## -- XXX Can't happen
+positiveToWord64 (Some w None) = wordToWord64# w
+positiveToWord64 (Some low (Some high _))
+ = wordToWord64# low `or64#` (wordToWord64# high `uncheckedShiftL64#` 32#)
+#endif
+
+comparePositive :: Positive -> Positive -> Ordering
+Some x xs `comparePositive` Some y ys = case xs `comparePositive` ys of
+ EQ -> if x `ltWord#` y then LT
+ else if x `gtWord#` y then GT
+ else EQ
+ res -> res
+None `comparePositive` None = EQ
+(!_) `comparePositive` None = GT
+None `comparePositive` (!_) = LT
+
+plusPositive :: Positive -> Positive -> Positive
+plusPositive x0 y0 = addWithCarry 0## x0 y0
+ where -- digit `elem` [0, 1]
+ addWithCarry :: Digit -> Positive -> Positive -> Positive
+ addWithCarry c (!xs) None = addOnCarry c xs
+ addWithCarry c None (!ys) = addOnCarry c ys
+ addWithCarry c xs@(Some x xs') ys@(Some y ys')
+ = if x `ltWord#` y then addWithCarry c ys xs
+ -- Now x >= y
+ else if y `geWord#` halfBoundUp ()
+ -- So they are both at least halfBoundUp, so we subtract
+ -- halfBoundUp from each and thus carry 1
+ then case x `minusWord#` halfBoundUp () of
+ x' ->
+ case y `minusWord#` halfBoundUp () of
+ y' ->
+ case x' `plusWord#` y' `plusWord#` c of
+ this ->
+ Some this withCarry
+ else if x `geWord#` halfBoundUp ()
+ then case x `minusWord#` halfBoundUp () of
+ x' ->
+ case x' `plusWord#` y `plusWord#` c of
+ z ->
+ -- We've taken off halfBoundUp, so now we need to
+ -- add it back on
+ if z `ltWord#` halfBoundUp ()
+ then Some (z `plusWord#` halfBoundUp ()) withoutCarry
+ else Some (z `minusWord#` halfBoundUp ()) withCarry
+ else Some (x `plusWord#` y `plusWord#` c) withoutCarry
+ where withCarry = addWithCarry 1## xs' ys'
+ withoutCarry = addWithCarry 0## xs' ys'
+
+ -- digit `elem` [0, 1]
+ addOnCarry :: Digit -> Positive -> Positive
+ addOnCarry (!c) (!ws) = if c `eqWord#` 0##
+ then ws
+ else succPositive ws
+
+-- digit `elem` [0, 1]
+succPositive :: Positive -> Positive
+succPositive None = Some 1## None
+succPositive (Some w ws) = if w `eqWord#` fullBound ()
+ then Some 0## (succPositive ws)
+ else Some (w `plusWord#` 1##) ws
+
+-- Requires x > y
+-- In recursive calls, x >= y and x == y => result is None
+minusPositive :: Positive -> Positive -> Positive
+Some x xs `minusPositive` Some y ys
+ = if x `eqWord#` y
+ then case xs `minusPositive` ys of
+ None -> None
+ s -> Some 0## s
+ else if x `gtWord#` y then
+ Some (x `minusWord#` y) (xs `minusPositive` ys)
+ else case (fullBound () `minusWord#` y) `plusWord#` 1## of
+ z -> -- z = 2^n - y, calculated without overflow
+ case z `plusWord#` x of
+ z' -> -- z = 2^n + (x - y), calculated without overflow
+ Some z' ((xs `minusPositive` ys) `minusPositive` onePositive)
+(!xs) `minusPositive` None = xs
+None `minusPositive` (!_) = errorPositive -- XXX Can't happen
+-- XXX None `minusPositive` _ = error "minusPositive: Requirement x > y not met"
+
+timesPositive :: Positive -> Positive -> Positive
+-- XXX None's can't happen here:
+None `timesPositive` (!_) = errorPositive
+(!_) `timesPositive` None = errorPositive
+-- x and y are the last digits in Positive numbers, so are not 0:
+Some x None `timesPositive` Some y None = x `timesDigit` y
+xs@(Some _ None) `timesPositive` (!ys) = ys `timesPositive` xs
+-- y is the last digit in a Positive number, so is not 0:
+Some x xs' `timesPositive` ys@(Some y None)
+ = -- We could actually skip this test, and everything would
+ -- turn out OK. We already play tricks like that in timesPositive.
+ let zs = Some 0## (xs' `timesPositive` ys)
+ in if x `eqWord#` 0##
+ then zs
+ else (x `timesDigit` y) `plusPositive` zs
+Some x xs' `timesPositive` ys@(Some _ _)
+ = (Some x None `timesPositive` ys) `plusPositive`
+ Some 0## (xs' `timesPositive` ys)
+
+{-
+-- Requires arguments /= 0
+Suppose we have 2n bits in a Word. Then
+ x = 2^n xh + xl
+ y = 2^n yh + yl
+ x * y = (2^n xh + xl) * (2^n yh + yl)
+ = 2^(2n) (xh yh)
+ + 2^n (xh yl)
+ + 2^n (xl yh)
+ + (xl yl)
+ ~~~~~~~ - all fit in 2n bits
+-}
+timesDigit :: Digit -> Digit -> Positive
+timesDigit (!x) (!y)
+ = case splitHalves x of
+ (# xh, xl #) ->
+ case splitHalves y of
+ (# yh, yl #) ->
+ case xh `timesWord#` yh of
+ xhyh ->
+ case splitHalves (xh `timesWord#` yl) of
+ (# xhylh, xhyll #) ->
+ case xhyll `uncheckedShiftL#` highHalfShift () of
+ xhyll' ->
+ case splitHalves (xl `timesWord#` yh) of
+ (# xlyhh, xlyhl #) ->
+ case xlyhl `uncheckedShiftL#` highHalfShift () of
+ xlyhl' ->
+ case xl `timesWord#` yl of
+ xlyl ->
+ -- Add up all the high word results. As the result fits in
+ -- 4n bits this can't overflow.
+ case xhyh `plusWord#` xhylh `plusWord#` xlyhh of
+ high ->
+ -- low: xhyll<<n + xlyhl<<n + xlyl
+ -- From this point we might make (Some 0 None), but we know
+ -- that the final result will be positive and the addition
+ -- will work out OK, so everything will work out in the end.
+ -- One thing we do need to be careful of is avoiding returning
+ -- Some 0 (Some 0 None) + Some n None, as this will result in
+ -- Some n (Some 0 None) instead of Some n None.
+ let low = Some xhyll' None `plusPositive`
+ Some xlyhl' None `plusPositive`
+ Some xlyl None
+ in if high `eqWord#` 0##
+ then low
+ else Some 0## (Some high None) `plusPositive` low
+
+splitHalves :: Digit -> (# {- High -} Digit, {- Low -} Digit #)
+splitHalves (!x) = (# x `uncheckedShiftRL#` highHalfShift (),
+ x `and#` lowHalfMask () #)
+
+-- Assumes 0 <= i
+shiftLPositive :: Positive -> Int# -> Positive
+shiftLPositive p i
+ = if i >=# WORD_SIZE_IN_BITS#
+ then shiftLPositive (Some 0## p) (i -# WORD_SIZE_IN_BITS#)
+ else smallShiftLPositive p i
+
+-- Assumes 0 <= i < WORD_SIZE_IN_BITS#
+smallShiftLPositive :: Positive -> Int# -> Positive
+smallShiftLPositive (!p) 0# = p
+smallShiftLPositive (!p) (!i) =
+ case WORD_SIZE_IN_BITS# -# i of
+ j -> let f carry None = if carry `eqWord#` 0##
+ then None
+ else Some carry None
+ f carry (Some w ws) = case w `uncheckedShiftRL#` j of
+ carry' ->
+ case w `uncheckedShiftL#` i of
+ me ->
+ Some (me `or#` carry) (f carry' ws)
+ in f 0## p
+
+-- Assumes 0 <= i
+shiftRPositive :: Positive -> Int# -> Integer
+shiftRPositive None _ = Naught
+shiftRPositive p@(Some _ q) i
+ = if i >=# WORD_SIZE_IN_BITS#
+ then shiftRPositive q (i -# WORD_SIZE_IN_BITS#)
+ else smallShiftRPositive p i
+
+-- Assumes 0 <= i < WORD_SIZE_IN_BITS#
+smallShiftRPositive :: Positive -> Int# -> Integer
+smallShiftRPositive (!p) (!i) =
+ if i ==# 0#
+ then Positive p
+ else case smallShiftLPositive p (WORD_SIZE_IN_BITS# -# i) of
+ Some _ p'@(Some _ _) -> Positive p'
+ _ -> Naught
+
+-- Long division
+quotRemPositive :: Positive -> Positive -> (# Integer, Integer #)
+(!xs) `quotRemPositive` (!ys)
+ = case f xs of
+ (# d, m #) -> (# digitsMaybeZeroToInteger d,
+ digitsMaybeZeroToInteger m #)
+ where
+ subtractors :: Positives
+ subtractors = mkSubtractors (WORD_SIZE_IN_BITS# -# 1#)
+
+ mkSubtractors (!n) = if n ==# 0#
+ then Cons ys Nil
+ else Cons (ys `smallShiftLPositive` n)
+ (mkSubtractors (n -# 1#))
+
+ -- The main function. Go the the end of xs, then walk
+ -- back trying to divide the number we accumulate by ys.
+ f :: Positive -> (# Digits, Digits #)
+ f None = (# None, None #)
+ f (Some z zs)
+ = case f zs of
+ (# ds, m #) ->
+ let -- We need to avoid making (Some Zero None) here
+ m' = some z m
+ in case g 0## subtractors m' of
+ (# d, m'' #) ->
+ (# some d ds, m'' #)
+
+ g :: Digit -> Positives -> Digits -> (# Digit, Digits #)
+ g (!d) Nil (!m) = (# d, m #)
+ g (!d) (Cons sub subs) (!m)
+ = case d `uncheckedShiftL#` 1# of
+ d' ->
+ case m `comparePositive` sub of
+ LT -> g d' subs m
+ _ -> g (d' `plusWord#` 1##)
+ subs
+ (m `minusPositive` sub)
+
+some :: Digit -> Digits -> Digits
+some (!w) None = if w `eqWord#` 0## then None else Some w None
+some (!w) (!ws) = Some w ws
+
+andDigits :: Digits -> Digits -> Digits
+andDigits (!_) None = None
+andDigits None (!_) = None
+andDigits (Some w1 ws1) (Some w2 ws2) = Some (w1 `and#` w2) (andDigits ws1 ws2)
+
+-- DigitsOnes is just like Digits, only None is really 0xFFFFFFF...,
+-- i.e. ones off to infinity. This makes sense when we want to "and"
+-- a DigitOnes with a Digits, as the latter will bound the size of the
+-- result.
+newtype DigitsOnes = DigitsOnes Digits
+
+andDigitsOnes :: DigitsOnes -> Digits -> Digits
+andDigitsOnes (!_) None = None
+andDigitsOnes (DigitsOnes None) (!ws2) = ws2
+andDigitsOnes (DigitsOnes (Some w1 ws1)) (Some w2 ws2)
+ = Some (w1 `and#` w2) (andDigitsOnes (DigitsOnes ws1) ws2)
+
+orDigits :: Digits -> Digits -> Digits
+orDigits None (!ds) = ds
+orDigits (!ds) None = ds
+orDigits (Some w1 ds1) (Some w2 ds2) = Some (w1 `or#` w2) (orDigits ds1 ds2)
+
+xorDigits :: Digits -> Digits -> Digits
+xorDigits None (!ds) = ds
+xorDigits (!ds) None = ds
+xorDigits (Some w1 ds1) (Some w2 ds2) = Some (w1 `xor#` w2) (xorDigits ds1 ds2)
+
+-- XXX We'd really like word2Double# for this
+doubleFromPositive :: Positive -> Double#
+doubleFromPositive None = 0.0##
+doubleFromPositive (Some w ds)
+ = case splitHalves w of
+ (# h, l #) ->
+ (doubleFromPositive ds *## (2.0## **## WORD_SIZE_IN_BITS.0##))
+ +## (int2Double# (word2Int# h) *##
+ (2.0## **## int2Double# (highHalfShift ())))
+ +## int2Double# (word2Int# l)
+
+-- XXX We'd really like word2Float# for this
+floatFromPositive :: Positive -> Float#
+floatFromPositive None = 0.0#
+floatFromPositive (Some w ds)
+ = case splitHalves w of
+ (# h, l #) ->
+ (floatFromPositive ds `timesFloat#` (2.0# `powerFloat#` WORD_SIZE_IN_BITS.0#))
+ `plusFloat#` (int2Float# (word2Int# h) `timesFloat#`
+ (2.0# `powerFloat#` int2Float# (highHalfShift ())))
+ `plusFloat#` int2Float# (word2Int# l)
+
#endif