diff options
author | Simon Marlow <simonmar@microsoft.com> | 2006-04-07 02:05:11 +0000 |
---|---|---|
committer | Simon Marlow <simonmar@microsoft.com> | 2006-04-07 02:05:11 +0000 |
commit | 0065d5ab628975892cea1ec7303f968c3338cbe1 (patch) | |
tree | 8e2afe0ab48ee33cf95009809d67c9649573ef92 /rts/Capability.c | |
parent | 28a464a75e14cece5db40f2765a29348273ff2d2 (diff) | |
download | haskell-0065d5ab628975892cea1ec7303f968c3338cbe1.tar.gz |
Reorganisation of the source tree
Most of the other users of the fptools build system have migrated to
Cabal, and with the move to darcs we can now flatten the source tree
without losing history, so here goes.
The main change is that the ghc/ subdir is gone, and most of what it
contained is now at the top level. The build system now makes no
pretense at being multi-project, it is just the GHC build system.
No doubt this will break many things, and there will be a period of
instability while we fix the dependencies. A straightforward build
should work, but I haven't yet fixed binary/source distributions.
Changes to the Building Guide will follow, too.
Diffstat (limited to 'rts/Capability.c')
-rw-r--r-- | rts/Capability.c | 668 |
1 files changed, 668 insertions, 0 deletions
diff --git a/rts/Capability.c b/rts/Capability.c new file mode 100644 index 0000000000..51a42ef468 --- /dev/null +++ b/rts/Capability.c @@ -0,0 +1,668 @@ +/* --------------------------------------------------------------------------- + * + * (c) The GHC Team, 2003-2006 + * + * Capabilities + * + * A Capability represent the token required to execute STG code, + * and all the state an OS thread/task needs to run Haskell code: + * its STG registers, a pointer to its TSO, a nursery etc. During + * STG execution, a pointer to the capabilitity is kept in a + * register (BaseReg; actually it is a pointer to cap->r). + * + * Only in an THREADED_RTS build will there be multiple capabilities, + * for non-threaded builds there is only one global capability, namely + * MainCapability. + * + * --------------------------------------------------------------------------*/ + +#include "PosixSource.h" +#include "Rts.h" +#include "RtsUtils.h" +#include "RtsFlags.h" +#include "STM.h" +#include "OSThreads.h" +#include "Capability.h" +#include "Schedule.h" +#include "Sparks.h" + +// one global capability, this is the Capability for non-threaded +// builds, and for +RTS -N1 +Capability MainCapability; + +nat n_capabilities; +Capability *capabilities = NULL; + +// Holds the Capability which last became free. This is used so that +// an in-call has a chance of quickly finding a free Capability. +// Maintaining a global free list of Capabilities would require global +// locking, so we don't do that. +Capability *last_free_capability; + +#if defined(THREADED_RTS) +STATIC_INLINE rtsBool +globalWorkToDo (void) +{ + return blackholes_need_checking + || sched_state >= SCHED_INTERRUPTING + ; +} +#endif + +#if defined(THREADED_RTS) +STATIC_INLINE rtsBool +anyWorkForMe( Capability *cap, Task *task ) +{ + if (task->tso != NULL) { + // A bound task only runs if its thread is on the run queue of + // the capability on which it was woken up. Otherwise, we + // can't be sure that we have the right capability: the thread + // might be woken up on some other capability, and task->cap + // could change under our feet. + return !emptyRunQueue(cap) && cap->run_queue_hd->bound == task; + } else { + // A vanilla worker task runs if either there is a lightweight + // thread at the head of the run queue, or the run queue is + // empty and (there are sparks to execute, or there is some + // other global condition to check, such as threads blocked on + // blackholes). + if (emptyRunQueue(cap)) { + return !emptySparkPoolCap(cap) + || !emptyWakeupQueue(cap) + || globalWorkToDo(); + } else + return cap->run_queue_hd->bound == NULL; + } +} +#endif + +/* ----------------------------------------------------------------------------- + * Manage the returning_tasks lists. + * + * These functions require cap->lock + * -------------------------------------------------------------------------- */ + +#if defined(THREADED_RTS) +STATIC_INLINE void +newReturningTask (Capability *cap, Task *task) +{ + ASSERT_LOCK_HELD(&cap->lock); + ASSERT(task->return_link == NULL); + if (cap->returning_tasks_hd) { + ASSERT(cap->returning_tasks_tl->return_link == NULL); + cap->returning_tasks_tl->return_link = task; + } else { + cap->returning_tasks_hd = task; + } + cap->returning_tasks_tl = task; +} + +STATIC_INLINE Task * +popReturningTask (Capability *cap) +{ + ASSERT_LOCK_HELD(&cap->lock); + Task *task; + task = cap->returning_tasks_hd; + ASSERT(task); + cap->returning_tasks_hd = task->return_link; + if (!cap->returning_tasks_hd) { + cap->returning_tasks_tl = NULL; + } + task->return_link = NULL; + return task; +} +#endif + +/* ---------------------------------------------------------------------------- + * Initialisation + * + * The Capability is initially marked not free. + * ------------------------------------------------------------------------- */ + +static void +initCapability( Capability *cap, nat i ) +{ + nat g; + + cap->no = i; + cap->in_haskell = rtsFalse; + + cap->run_queue_hd = END_TSO_QUEUE; + cap->run_queue_tl = END_TSO_QUEUE; + +#if defined(THREADED_RTS) + initMutex(&cap->lock); + cap->running_task = NULL; // indicates cap is free + cap->spare_workers = NULL; + cap->suspended_ccalling_tasks = NULL; + cap->returning_tasks_hd = NULL; + cap->returning_tasks_tl = NULL; + cap->wakeup_queue_hd = END_TSO_QUEUE; + cap->wakeup_queue_tl = END_TSO_QUEUE; +#endif + + cap->f.stgGCEnter1 = (F_)__stg_gc_enter_1; + cap->f.stgGCFun = (F_)__stg_gc_fun; + + cap->mut_lists = stgMallocBytes(sizeof(bdescr *) * + RtsFlags.GcFlags.generations, + "initCapability"); + + for (g = 0; g < RtsFlags.GcFlags.generations; g++) { + cap->mut_lists[g] = NULL; + } + + cap->free_tvar_wait_queues = END_STM_WAIT_QUEUE; + cap->free_trec_chunks = END_STM_CHUNK_LIST; + cap->free_trec_headers = NO_TREC; + cap->transaction_tokens = 0; +} + +/* --------------------------------------------------------------------------- + * Function: initCapabilities() + * + * Purpose: set up the Capability handling. For the THREADED_RTS build, + * we keep a table of them, the size of which is + * controlled by the user via the RTS flag -N. + * + * ------------------------------------------------------------------------- */ +void +initCapabilities( void ) +{ +#if defined(THREADED_RTS) + nat i; + +#ifndef REG_Base + // We can't support multiple CPUs if BaseReg is not a register + if (RtsFlags.ParFlags.nNodes > 1) { + errorBelch("warning: multiple CPUs not supported in this build, reverting to 1"); + RtsFlags.ParFlags.nNodes = 1; + } +#endif + + n_capabilities = RtsFlags.ParFlags.nNodes; + + if (n_capabilities == 1) { + capabilities = &MainCapability; + // THREADED_RTS must work on builds that don't have a mutable + // BaseReg (eg. unregisterised), so in this case + // capabilities[0] must coincide with &MainCapability. + } else { + capabilities = stgMallocBytes(n_capabilities * sizeof(Capability), + "initCapabilities"); + } + + for (i = 0; i < n_capabilities; i++) { + initCapability(&capabilities[i], i); + } + + IF_DEBUG(scheduler, sched_belch("allocated %d capabilities", + n_capabilities)); + +#else /* !THREADED_RTS */ + + n_capabilities = 1; + capabilities = &MainCapability; + initCapability(&MainCapability, 0); + +#endif + + // There are no free capabilities to begin with. We will start + // a worker Task to each Capability, which will quickly put the + // Capability on the free list when it finds nothing to do. + last_free_capability = &capabilities[0]; +} + +/* ---------------------------------------------------------------------------- + * Give a Capability to a Task. The task must currently be sleeping + * on its condition variable. + * + * Requires cap->lock (modifies cap->running_task). + * + * When migrating a Task, the migrater must take task->lock before + * modifying task->cap, to synchronise with the waking up Task. + * Additionally, the migrater should own the Capability (when + * migrating the run queue), or cap->lock (when migrating + * returning_workers). + * + * ------------------------------------------------------------------------- */ + +#if defined(THREADED_RTS) +STATIC_INLINE void +giveCapabilityToTask (Capability *cap USED_IF_DEBUG, Task *task) +{ + ASSERT_LOCK_HELD(&cap->lock); + ASSERT(task->cap == cap); + IF_DEBUG(scheduler, + sched_belch("passing capability %d to %s %p", + cap->no, task->tso ? "bound task" : "worker", + (void *)task->id)); + ACQUIRE_LOCK(&task->lock); + task->wakeup = rtsTrue; + // the wakeup flag is needed because signalCondition() doesn't + // flag the condition if the thread is already runniing, but we want + // it to be sticky. + signalCondition(&task->cond); + RELEASE_LOCK(&task->lock); +} +#endif + +/* ---------------------------------------------------------------------------- + * Function: releaseCapability(Capability*) + * + * Purpose: Letting go of a capability. Causes a + * 'returning worker' thread or a 'waiting worker' + * to wake up, in that order. + * ------------------------------------------------------------------------- */ + +#if defined(THREADED_RTS) +void +releaseCapability_ (Capability* cap) +{ + Task *task; + + task = cap->running_task; + + ASSERT_PARTIAL_CAPABILITY_INVARIANTS(cap,task); + + cap->running_task = NULL; + + // Check to see whether a worker thread can be given + // the go-ahead to return the result of an external call.. + if (cap->returning_tasks_hd != NULL) { + giveCapabilityToTask(cap,cap->returning_tasks_hd); + // The Task pops itself from the queue (see waitForReturnCapability()) + return; + } + + // If the next thread on the run queue is a bound thread, + // give this Capability to the appropriate Task. + if (!emptyRunQueue(cap) && cap->run_queue_hd->bound) { + // Make sure we're not about to try to wake ourselves up + ASSERT(task != cap->run_queue_hd->bound); + task = cap->run_queue_hd->bound; + giveCapabilityToTask(cap,task); + return; + } + + if (!cap->spare_workers) { + // Create a worker thread if we don't have one. If the system + // is interrupted, we only create a worker task if there + // are threads that need to be completed. If the system is + // shutting down, we never create a new worker. + if (sched_state < SCHED_SHUTTING_DOWN || !emptyRunQueue(cap)) { + IF_DEBUG(scheduler, + sched_belch("starting new worker on capability %d", cap->no)); + startWorkerTask(cap, workerStart); + return; + } + } + + // If we have an unbound thread on the run queue, or if there's + // anything else to do, give the Capability to a worker thread. + if (!emptyRunQueue(cap) || !emptyWakeupQueue(cap) + || !emptySparkPoolCap(cap) || globalWorkToDo()) { + if (cap->spare_workers) { + giveCapabilityToTask(cap,cap->spare_workers); + // The worker Task pops itself from the queue; + return; + } + } + + last_free_capability = cap; + IF_DEBUG(scheduler, sched_belch("freeing capability %d", cap->no)); +} + +void +releaseCapability (Capability* cap USED_IF_THREADS) +{ + ACQUIRE_LOCK(&cap->lock); + releaseCapability_(cap); + RELEASE_LOCK(&cap->lock); +} + +static void +releaseCapabilityAndQueueWorker (Capability* cap USED_IF_THREADS) +{ + Task *task; + + ACQUIRE_LOCK(&cap->lock); + + task = cap->running_task; + + // If the current task is a worker, save it on the spare_workers + // list of this Capability. A worker can mark itself as stopped, + // in which case it is not replaced on the spare_worker queue. + // This happens when the system is shutting down (see + // Schedule.c:workerStart()). + // Also, be careful to check that this task hasn't just exited + // Haskell to do a foreign call (task->suspended_tso). + if (!isBoundTask(task) && !task->stopped && !task->suspended_tso) { + task->next = cap->spare_workers; + cap->spare_workers = task; + } + // Bound tasks just float around attached to their TSOs. + + releaseCapability_(cap); + + RELEASE_LOCK(&cap->lock); +} +#endif + +/* ---------------------------------------------------------------------------- + * waitForReturnCapability( Task *task ) + * + * Purpose: when an OS thread returns from an external call, + * it calls waitForReturnCapability() (via Schedule.resumeThread()) + * to wait for permission to enter the RTS & communicate the + * result of the external call back to the Haskell thread that + * made it. + * + * ------------------------------------------------------------------------- */ +void +waitForReturnCapability (Capability **pCap, Task *task) +{ +#if !defined(THREADED_RTS) + + MainCapability.running_task = task; + task->cap = &MainCapability; + *pCap = &MainCapability; + +#else + Capability *cap = *pCap; + + if (cap == NULL) { + // Try last_free_capability first + cap = last_free_capability; + if (!cap->running_task) { + nat i; + // otherwise, search for a free capability + for (i = 0; i < n_capabilities; i++) { + cap = &capabilities[i]; + if (!cap->running_task) { + break; + } + } + // Can't find a free one, use last_free_capability. + cap = last_free_capability; + } + + // record the Capability as the one this Task is now assocated with. + task->cap = cap; + + } else { + ASSERT(task->cap == cap); + } + + ACQUIRE_LOCK(&cap->lock); + + IF_DEBUG(scheduler, + sched_belch("returning; I want capability %d", cap->no)); + + if (!cap->running_task) { + // It's free; just grab it + cap->running_task = task; + RELEASE_LOCK(&cap->lock); + } else { + newReturningTask(cap,task); + RELEASE_LOCK(&cap->lock); + + for (;;) { + ACQUIRE_LOCK(&task->lock); + // task->lock held, cap->lock not held + if (!task->wakeup) waitCondition(&task->cond, &task->lock); + cap = task->cap; + task->wakeup = rtsFalse; + RELEASE_LOCK(&task->lock); + + // now check whether we should wake up... + ACQUIRE_LOCK(&cap->lock); + if (cap->running_task == NULL) { + if (cap->returning_tasks_hd != task) { + giveCapabilityToTask(cap,cap->returning_tasks_hd); + RELEASE_LOCK(&cap->lock); + continue; + } + cap->running_task = task; + popReturningTask(cap); + RELEASE_LOCK(&cap->lock); + break; + } + RELEASE_LOCK(&cap->lock); + } + + } + + ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task); + + IF_DEBUG(scheduler, + sched_belch("returning; got capability %d", cap->no)); + + *pCap = cap; +#endif +} + +#if defined(THREADED_RTS) +/* ---------------------------------------------------------------------------- + * yieldCapability + * ------------------------------------------------------------------------- */ + +void +yieldCapability (Capability** pCap, Task *task) +{ + Capability *cap = *pCap; + + // The fast path has no locking, if we don't enter this while loop + + while ( cap->returning_tasks_hd != NULL || !anyWorkForMe(cap,task) ) { + IF_DEBUG(scheduler, sched_belch("giving up capability %d", cap->no)); + + // We must now release the capability and wait to be woken up + // again. + task->wakeup = rtsFalse; + releaseCapabilityAndQueueWorker(cap); + + for (;;) { + ACQUIRE_LOCK(&task->lock); + // task->lock held, cap->lock not held + if (!task->wakeup) waitCondition(&task->cond, &task->lock); + cap = task->cap; + task->wakeup = rtsFalse; + RELEASE_LOCK(&task->lock); + + IF_DEBUG(scheduler, sched_belch("woken up on capability %d", cap->no)); + ACQUIRE_LOCK(&cap->lock); + if (cap->running_task != NULL) { + IF_DEBUG(scheduler, sched_belch("capability %d is owned by another task", cap->no)); + RELEASE_LOCK(&cap->lock); + continue; + } + + if (task->tso == NULL) { + ASSERT(cap->spare_workers != NULL); + // if we're not at the front of the queue, release it + // again. This is unlikely to happen. + if (cap->spare_workers != task) { + giveCapabilityToTask(cap,cap->spare_workers); + RELEASE_LOCK(&cap->lock); + continue; + } + cap->spare_workers = task->next; + task->next = NULL; + } + cap->running_task = task; + RELEASE_LOCK(&cap->lock); + break; + } + + IF_DEBUG(scheduler, sched_belch("got capability %d", cap->no)); + ASSERT(cap->running_task == task); + } + + *pCap = cap; + + ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task); + + return; +} + +/* ---------------------------------------------------------------------------- + * Wake up a thread on a Capability. + * + * This is used when the current Task is running on a Capability and + * wishes to wake up a thread on a different Capability. + * ------------------------------------------------------------------------- */ + +void +wakeupThreadOnCapability (Capability *cap, StgTSO *tso) +{ + ASSERT(tso->cap == cap); + ASSERT(tso->bound ? tso->bound->cap == cap : 1); + + ACQUIRE_LOCK(&cap->lock); + if (cap->running_task == NULL) { + // nobody is running this Capability, we can add our thread + // directly onto the run queue and start up a Task to run it. + appendToRunQueue(cap,tso); + + // start it up + cap->running_task = myTask(); // precond for releaseCapability_() + releaseCapability_(cap); + } else { + appendToWakeupQueue(cap,tso); + // someone is running on this Capability, so it cannot be + // freed without first checking the wakeup queue (see + // releaseCapability_). + } + RELEASE_LOCK(&cap->lock); +} + +/* ---------------------------------------------------------------------------- + * prodCapabilities + * + * Used to indicate that the interrupted flag is now set, or some + * other global condition that might require waking up a Task on each + * Capability. + * ------------------------------------------------------------------------- */ + +static void +prodCapabilities(rtsBool all) +{ + nat i; + Capability *cap; + Task *task; + + for (i=0; i < n_capabilities; i++) { + cap = &capabilities[i]; + ACQUIRE_LOCK(&cap->lock); + if (!cap->running_task) { + if (cap->spare_workers) { + task = cap->spare_workers; + ASSERT(!task->stopped); + giveCapabilityToTask(cap,task); + if (!all) { + RELEASE_LOCK(&cap->lock); + return; + } + } + } + RELEASE_LOCK(&cap->lock); + } + return; +} + +void +prodAllCapabilities (void) +{ + prodCapabilities(rtsTrue); +} + +/* ---------------------------------------------------------------------------- + * prodOneCapability + * + * Like prodAllCapabilities, but we only require a single Task to wake + * up in order to service some global event, such as checking for + * deadlock after some idle time has passed. + * ------------------------------------------------------------------------- */ + +void +prodOneCapability (void) +{ + prodCapabilities(rtsFalse); +} + +/* ---------------------------------------------------------------------------- + * shutdownCapability + * + * At shutdown time, we want to let everything exit as cleanly as + * possible. For each capability, we let its run queue drain, and + * allow the workers to stop. + * + * This function should be called when interrupted and + * shutting_down_scheduler = rtsTrue, thus any worker that wakes up + * will exit the scheduler and call taskStop(), and any bound thread + * that wakes up will return to its caller. Runnable threads are + * killed. + * + * ------------------------------------------------------------------------- */ + +void +shutdownCapability (Capability *cap, Task *task) +{ + nat i; + + ASSERT(sched_state == SCHED_SHUTTING_DOWN); + + task->cap = cap; + + for (i = 0; i < 50; i++) { + IF_DEBUG(scheduler, sched_belch("shutting down capability %d, attempt %d", cap->no, i)); + ACQUIRE_LOCK(&cap->lock); + if (cap->running_task) { + RELEASE_LOCK(&cap->lock); + IF_DEBUG(scheduler, sched_belch("not owner, yielding")); + yieldThread(); + continue; + } + cap->running_task = task; + if (!emptyRunQueue(cap) || cap->spare_workers) { + IF_DEBUG(scheduler, sched_belch("runnable threads or workers still alive, yielding")); + releaseCapability_(cap); // this will wake up a worker + RELEASE_LOCK(&cap->lock); + yieldThread(); + continue; + } + IF_DEBUG(scheduler, sched_belch("capability %d is stopped.", cap->no)); + RELEASE_LOCK(&cap->lock); + break; + } + // we now have the Capability, its run queue and spare workers + // list are both empty. +} + +/* ---------------------------------------------------------------------------- + * tryGrabCapability + * + * Attempt to gain control of a Capability if it is free. + * + * ------------------------------------------------------------------------- */ + +rtsBool +tryGrabCapability (Capability *cap, Task *task) +{ + if (cap->running_task != NULL) return rtsFalse; + ACQUIRE_LOCK(&cap->lock); + if (cap->running_task != NULL) { + RELEASE_LOCK(&cap->lock); + return rtsFalse; + } + task->cap = cap; + cap->running_task = task; + RELEASE_LOCK(&cap->lock); + return rtsTrue; +} + + +#endif /* THREADED_RTS */ + + |