summaryrefslogtreecommitdiff
path: root/testsuite/tests/arrows/should_run
diff options
context:
space:
mode:
authorDavid Terei <davidterei@gmail.com>2011-07-20 11:09:03 -0700
committerDavid Terei <davidterei@gmail.com>2011-07-20 11:26:35 -0700
commit16514f272fb42af6e9c7674a9bd6c9dce369231f (patch)
treee4f332b45fe65e2a7a2451be5674f887b42bf199 /testsuite/tests/arrows/should_run
parentebd422aed41048476aa61dd4c520d43becd78682 (diff)
downloadhaskell-16514f272fb42af6e9c7674a9bd6c9dce369231f.tar.gz
Move tests from tests/ghc-regress/* to just tests/*
Diffstat (limited to 'testsuite/tests/arrows/should_run')
-rw-r--r--testsuite/tests/arrows/should_run/Makefile3
-rw-r--r--testsuite/tests/arrows/should_run/T3822.hs17
-rw-r--r--testsuite/tests/arrows/should_run/T3822.stdout2
-rw-r--r--testsuite/tests/arrows/should_run/all.T8
-rw-r--r--testsuite/tests/arrows/should_run/arrowrun001.hs48
-rw-r--r--testsuite/tests/arrows/should_run/arrowrun001.stdout2
-rw-r--r--testsuite/tests/arrows/should_run/arrowrun002.hs225
-rw-r--r--testsuite/tests/arrows/should_run/arrowrun002.stdout4
-rw-r--r--testsuite/tests/arrows/should_run/arrowrun003.hs133
-rw-r--r--testsuite/tests/arrows/should_run/arrowrun003.stdout6
-rw-r--r--testsuite/tests/arrows/should_run/arrowrun004.hs128
-rw-r--r--testsuite/tests/arrows/should_run/arrowrun004.stdout2
12 files changed, 578 insertions, 0 deletions
diff --git a/testsuite/tests/arrows/should_run/Makefile b/testsuite/tests/arrows/should_run/Makefile
new file mode 100644
index 0000000000..9101fbd40a
--- /dev/null
+++ b/testsuite/tests/arrows/should_run/Makefile
@@ -0,0 +1,3 @@
+TOP=../../..
+include $(TOP)/mk/boilerplate.mk
+include $(TOP)/mk/test.mk
diff --git a/testsuite/tests/arrows/should_run/T3822.hs b/testsuite/tests/arrows/should_run/T3822.hs
new file mode 100644
index 0000000000..93e6dc5797
--- /dev/null
+++ b/testsuite/tests/arrows/should_run/T3822.hs
@@ -0,0 +1,17 @@
+
+{-# LANGUAGE Arrows #-}
+
+import Control.Arrow
+import qualified Control.Category as Cat
+
+test :: Int -> Int
+test = proc x -> do
+ let neg = x < 0
+ case x of
+ x | neg -> returnA -< 0 -- GHC panics
+ --x | x < 0 -> returnA -< 0 -- GHC doesn't panic
+ _ -> returnA -< 10
+
+main = do
+ print $ test (-1)
+ print $ test 1
diff --git a/testsuite/tests/arrows/should_run/T3822.stdout b/testsuite/tests/arrows/should_run/T3822.stdout
new file mode 100644
index 0000000000..25e7f55667
--- /dev/null
+++ b/testsuite/tests/arrows/should_run/T3822.stdout
@@ -0,0 +1,2 @@
+0
+10
diff --git a/testsuite/tests/arrows/should_run/all.T b/testsuite/tests/arrows/should_run/all.T
new file mode 100644
index 0000000000..a9867dd395
--- /dev/null
+++ b/testsuite/tests/arrows/should_run/all.T
@@ -0,0 +1,8 @@
+setTestOpts(only_compiler_types(['ghc']))
+
+test('arrowrun001', normal, compile_and_run, [''])
+test('arrowrun002', skip_if_fast, compile_and_run, [''])
+test('arrowrun003', normal, compile_and_run, [''])
+test('arrowrun004', skip_if_fast, compile_and_run, [''])
+test('T3822', normal, compile_and_run, [''])
+
diff --git a/testsuite/tests/arrows/should_run/arrowrun001.hs b/testsuite/tests/arrows/should_run/arrowrun001.hs
new file mode 100644
index 0000000000..c686b32546
--- /dev/null
+++ b/testsuite/tests/arrows/should_run/arrowrun001.hs
@@ -0,0 +1,48 @@
+{-# LANGUAGE Arrows #-}
+
+-- Toy lambda-calculus interpreter from John Hughes's arrows paper (s5)
+
+module Main(main) where
+
+import Data.Maybe(fromJust)
+import Control.Arrow
+
+type Id = String
+data Val a = Num Int | Bl Bool | Fun (a (Val a) (Val a))
+data Exp = Var Id | Add Exp Exp | If Exp Exp Exp | Lam Id Exp | App Exp Exp
+
+eval :: (ArrowChoice a, ArrowApply a) => Exp -> a [(Id, Val a)] (Val a)
+eval (Var s) = proc env ->
+ returnA -< fromJust (lookup s env)
+eval (Add e1 e2) = proc env -> do
+ ~(Num u) <- eval e1 -< env
+ ~(Num v) <- eval e2 -< env
+ returnA -< Num (u + v)
+eval (If e1 e2 e3) = proc env -> do
+ ~(Bl b) <- eval e1 -< env
+ if b then eval e2 -< env
+ else eval e3 -< env
+eval (Lam x e) = proc env ->
+ returnA -< Fun (proc v -> eval e -< (x,v):env)
+eval (App e1 e2) = proc env -> do
+ ~(Fun f) <- eval e1 -< env
+ v <- eval e2 -< env
+ f -<< v
+
+-- some tests
+
+i = Lam "x" (Var "x")
+k = Lam "x" (Lam "y" (Var "x"))
+double = Lam "x" (Add (Var "x") (Var "x"))
+
+-- if b then k (double x) x else x + x + x
+
+text_exp = If (Var "b")
+ (App (App k (App double (Var "x"))) (Var "x"))
+ (Add (Var "x") (Add (Var "x") (Var "x")))
+
+unNum (Num n) = n
+
+main = do
+ print (unNum (eval text_exp [("b", Bl True), ("x", Num 5)]))
+ print (unNum (eval text_exp [("b", Bl False), ("x", Num 5)]))
diff --git a/testsuite/tests/arrows/should_run/arrowrun001.stdout b/testsuite/tests/arrows/should_run/arrowrun001.stdout
new file mode 100644
index 0000000000..349103a876
--- /dev/null
+++ b/testsuite/tests/arrows/should_run/arrowrun001.stdout
@@ -0,0 +1,2 @@
+10
+15
diff --git a/testsuite/tests/arrows/should_run/arrowrun002.hs b/testsuite/tests/arrows/should_run/arrowrun002.hs
new file mode 100644
index 0000000000..16f29806ac
--- /dev/null
+++ b/testsuite/tests/arrows/should_run/arrowrun002.hs
@@ -0,0 +1,225 @@
+{-# LANGUAGE Arrows #-}
+
+-- Homogeneous (or depth-preserving) functions over perfectly balanced trees.
+
+module Main where
+
+import Control.Arrow
+import Control.Category
+import Data.Complex
+import Prelude hiding (id, (.))
+
+infixr 4 :&:
+
+-- Consider the following non-regular type of perfectly balanced trees,
+-- or `powertrees' (cf Jayadev Misra's powerlists):
+
+data Pow a = Zero a | Succ (Pow (Pair a))
+ deriving Show
+
+type Pair a = (a, a)
+
+-- Here are some example elements:
+
+tree0 = Zero 1
+tree1 = Succ (Zero (1, 2))
+tree2 = Succ (Succ (Zero ((1, 2), (3, 4))))
+tree3 = Succ (Succ (Succ (Zero (((1, 2), (3, 4)), ((5, 6), (7, 8))))))
+
+-- The elements of this type have a string of constructors expressing
+-- a depth n as a Peano numeral, enclosing a nested pair tree of 2^n
+-- elements. The type definition ensures that all elements of this type
+-- are perfectly balanced binary trees of this form. (Such things arise
+-- in circuit design, eg Ruby, and descriptions of parallel algorithms.)
+-- And the type system will ensure that all legal programs preserve
+-- this structural invariant.
+--
+-- The only problem is that the type constraint is too restrictive, rejecting
+-- many of the standard operations on these trees. Typically you want to
+-- split a tree into two subtrees, do some processing on the subtrees and
+-- combine the results. But the type system cannot discover that the two
+-- results are of the same depth (and thus combinable). We need a type
+-- that says a function preserves depth. Here it is:
+
+data Hom a b = (a -> b) :&: Hom (Pair a) (Pair b)
+
+-- A homogeneous (or depth-preserving) function is an infinite sequence of
+-- functions of type Pair^n a -> Pair^n b, one for each depth n. We can
+-- apply a homogeneous function to a powertree by selecting the function
+-- for the required depth:
+
+apply :: Hom a b -> Pow a -> Pow b
+apply (f :&: fs) (Zero x) = Zero (f x)
+apply (f :&: fs) (Succ t) = Succ (apply fs t)
+
+-- Having defined apply, we can forget about powertrees and do all our
+-- programming with Hom's. Firstly, Hom is an arrow:
+
+instance Category Hom where
+ id = id :&: id
+ (f :&: fs) . (g :&: gs) = (f . g) :&: (fs . gs)
+
+instance Arrow Hom where
+ arr f = f :&: arr (f *** f)
+ first (f :&: fs) =
+ first f :&: (arr transpose >>> first fs >>> arr transpose)
+
+transpose :: ((a,b), (c,d)) -> ((a,c), (b,d))
+transpose ((a,b), (c,d)) = ((a,c), (b,d))
+
+-- arr maps f over the leaves of a powertree.
+
+-- The composition >>> composes sequences of functions pairwise.
+--
+-- The *** operator unriffles a powertree of pairs into a pair of powertrees,
+-- applies the appropriate function to each and riffles the results.
+-- It defines a categorical product for this arrow category.
+
+-- When describing algorithms, one often provides a pure function for the
+-- base case (trees of one element) and a (usually recursive) expression
+-- for trees of pairs.
+
+-- For example, a common divide-and-conquer pattern is the butterfly, where
+-- one recursive call processes the odd-numbered elements and the other
+-- processes the even ones (cf Geraint Jones and Mary Sheeran's Ruby papers):
+
+butterfly :: (Pair a -> Pair a) -> Hom a a
+butterfly f = id :&: proc (x, y) -> do
+ x' <- butterfly f -< x
+ y' <- butterfly f -< y
+ returnA -< f (x', y')
+
+-- The recursive calls operate on halves of the original tree, so the
+-- recursion is well-defined.
+
+-- Some examples of butterflies:
+
+rev :: Hom a a
+rev = butterfly swap
+ where swap (x, y) = (y, x)
+
+unriffle :: Hom (Pair a) (Pair a)
+unriffle = butterfly transpose
+
+-- Batcher's sorter for bitonic sequences:
+
+bisort :: Ord a => Hom a a
+bisort = butterfly cmp
+ where cmp (x, y) = (min x y, max x y)
+
+-- This can be used (with rev) as the merge phase of a merge sort.
+--
+sort :: Ord a => Hom a a
+sort = id :&: proc (x, y) -> do
+ x' <- sort -< x
+ y' <- sort -< y
+ yr <- rev -< y'
+ p <- unriffle -< (x', yr)
+ bisort2 -< p
+ where _ :&: bisort2 = bisort
+
+-- Here is the scan operation, using the algorithm of Ladner and Fischer:
+
+scan :: (a -> a -> a) -> a -> Hom a a
+scan op b = id :&: proc (x, y) -> do
+ y' <- scan op b -< op x y
+ l <- rsh b -< y'
+ returnA -< (op l x, y')
+
+-- The auxiliary function rsh b shifts each element in the tree one place to
+-- the right, placing b in the now-vacant leftmost position, and discarding
+-- the old rightmost element:
+
+rsh :: a -> Hom a a
+rsh b = const b :&: proc (x, y) -> do
+ w <- rsh b -< y
+ returnA -< (w, x)
+
+-- Finally, here is the Fast Fourier Transform:
+
+type C = Complex Double
+
+fft :: Hom C C
+fft = id :&: proc (x, y) -> do
+ x' <- fft -< x
+ y' <- fft -< y
+ r <- roots (-1) -< ()
+ let z = r*y'
+ unriffle -< (x' + z, x' - z)
+
+-- The auxiliary function roots r (where r is typically a root of unity)
+-- populates a tree of size n (necessarily a power of 2) with the values
+-- 1, w, w^2, ..., w^(n-1), where w^n = r.
+
+roots :: C -> Hom () C
+roots r = const 1 :&: proc _ -> do
+ x <- roots r' -< ()
+ unriffle -< (x, x*r')
+ where r' = if imagPart s >= 0 then -s else s
+ s = sqrt r
+
+-- Miscellaneous functions:
+
+rrot :: Hom a a
+rrot = id :&: proc (x, y) -> do
+ w <- rrot -< y
+ returnA -< (w, x)
+
+ilv :: Hom a a -> Hom (Pair a) (Pair a)
+ilv f = proc (x, y) -> do
+ x' <- f -< x
+ y' <- f -< y
+ returnA -< (x', y')
+
+scan' :: (a -> a -> a) -> a -> Hom a a
+scan' op b = proc x -> do
+ l <- rsh b -< x
+ (id :&: ilv (scan' op b)) -< op l x
+
+riffle :: Hom (Pair a) (Pair a)
+riffle = id :&: proc ((x1, y1), (x2, y2)) -> do
+ x <- riffle -< (x1, x2)
+ y <- riffle -< (y1, y2)
+ returnA -< (x, y)
+
+invert :: Hom a a
+invert = id :&: proc (x, y) -> do
+ x' <- invert -< x
+ y' <- invert -< y
+ unriffle -< (x', y')
+
+carryLookaheadAdder :: Hom (Bool, Bool) Bool
+carryLookaheadAdder = proc (x, y) -> do
+ carryOut <- rsh (Just False) -<
+ if x == y then Just x else Nothing
+ Just carryIn <- scan plusMaybe Nothing -< carryOut
+ returnA -< x `xor` y `xor` carryIn
+ where plusMaybe x Nothing = x
+ plusMaybe x (Just y) = Just y
+ False `xor` b = b
+ True `xor` b = not b
+
+-- Global conditional for SIMD
+
+ifAll :: Hom a b -> Hom a b -> Hom (a, Bool) b
+ifAll fs gs = ifAllAux snd (arr fst >>> fs) (arr fst >>> gs)
+ where ifAllAux :: (a -> Bool) -> Hom a b -> Hom a b -> Hom a b
+ ifAllAux p (f :&: fs) (g :&: gs) =
+ liftIf p f g :&: ifAllAux (liftAnd p) fs gs
+ liftIf p f g x = if p x then f x else g x
+ liftAnd p (x, y) = p x && p y
+
+maybeAll :: Hom a c -> Hom (a, b) c -> Hom (a, Maybe b) c
+maybeAll (n :&: ns) (j :&: js) =
+ choose :&: (arr dist >>> maybeAll ns (arr transpose >>> js))
+ where choose (a, Nothing) = n a
+ choose (a, Just b) = j (a, b)
+ dist ((a1, b1), (a2, b2)) = ((a1, a2), zipMaybe b1 b2)
+ zipMaybe (Just x) (Just y) = Just (x, y)
+ zipMaybe _ _ = Nothing
+
+main = do
+ print (apply rev tree3)
+ print (apply invert tree3)
+ print (apply (invert >>> sort) tree3)
+ print (apply (scan (+) 0) tree3)
diff --git a/testsuite/tests/arrows/should_run/arrowrun002.stdout b/testsuite/tests/arrows/should_run/arrowrun002.stdout
new file mode 100644
index 0000000000..b13ce3b37a
--- /dev/null
+++ b/testsuite/tests/arrows/should_run/arrowrun002.stdout
@@ -0,0 +1,4 @@
+Succ (Succ (Succ (Zero (((8,7),(6,5)),((4,3),(2,1))))))
+Succ (Succ (Succ (Zero (((1,5),(3,7)),((2,6),(4,8))))))
+Succ (Succ (Succ (Zero (((1,2),(3,4)),((5,6),(7,8))))))
+Succ (Succ (Succ (Zero (((1,3),(6,10)),((15,21),(28,36))))))
diff --git a/testsuite/tests/arrows/should_run/arrowrun003.hs b/testsuite/tests/arrows/should_run/arrowrun003.hs
new file mode 100644
index 0000000000..5f4580ab87
--- /dev/null
+++ b/testsuite/tests/arrows/should_run/arrowrun003.hs
@@ -0,0 +1,133 @@
+{-# LANGUAGE Arrows #-}
+
+module Main(main) where
+
+import Control.Arrow
+import Control.Category
+import Prelude hiding (id, (.))
+
+class ArrowLoop a => ArrowCircuit a where
+ delay :: b -> a b b
+
+-- stream map instance
+
+data Stream a = Cons a (Stream a)
+
+instance Functor Stream where
+ fmap f ~(Cons a as) = Cons (f a) (fmap f as)
+
+zipStream :: Stream a -> Stream b -> Stream (a,b)
+zipStream ~(Cons a as) ~(Cons b bs) = Cons (a,b) (zipStream as bs)
+
+unzipStream :: Stream (a,b) -> (Stream a, Stream b)
+unzipStream abs = (fmap fst abs, fmap snd abs)
+
+newtype StreamMap a b = StreamMap (Stream a -> Stream b)
+unStreamMap (StreamMap f) = f
+
+instance Category StreamMap where
+ id = StreamMap id
+ StreamMap f . StreamMap g = StreamMap (f . g)
+
+instance Arrow StreamMap where
+ arr f = StreamMap (fmap f)
+ first (StreamMap f) =
+ StreamMap (uncurry zipStream . first f . unzipStream)
+
+instance ArrowLoop StreamMap where
+ loop (StreamMap f) =
+ StreamMap (loop (unzipStream . f . uncurry zipStream))
+
+instance ArrowCircuit StreamMap where
+ delay a = StreamMap (Cons a)
+
+listToStream :: [a] -> Stream a
+listToStream = foldr Cons undefined
+
+streamToList :: Stream a -> [a]
+streamToList (Cons a as) = a:streamToList as
+
+runStreamMap :: StreamMap a b -> [a] -> [b]
+runStreamMap (StreamMap f) as =
+ take (length as) (streamToList (f (listToStream as)))
+
+-- simple automaton instance
+
+data Auto a b = Auto (a -> (b, Auto a b))
+
+instance Category Auto where
+ id = Auto $ \a -> (a, id)
+ Auto f . Auto g = Auto $ \b ->
+ let (c, g') = g b
+ (d, f') = f c
+ in (d, f' . g')
+
+instance Arrow Auto where
+ arr f = Auto $ \a -> (f a, arr f)
+ first (Auto f) = Auto $ \(b,d) -> let (c,f') = f b in ((c,d), first f')
+
+instance ArrowLoop Auto where
+ loop (Auto f) = Auto $ \b ->
+ let (~(c,d), f') = f (b,d)
+ in (c, loop f')
+
+instance ArrowCircuit Auto where
+ delay a = Auto $ \a' -> (a, delay a')
+
+runAuto :: Auto a b -> [a] -> [b]
+runAuto (Auto f) [] = []
+runAuto (Auto f) (a:as) = let (b, f') = f a in b:runAuto f' as
+
+-- Some simple example circuits
+
+-- A resettable counter (first example in several Hawk papers):
+
+counter :: ArrowCircuit a => a Bool Int
+counter = proc reset -> do
+ rec output <- returnA -< if reset then 0 else next
+ next <- delay 0 -< output+1
+ returnA -< output
+
+-- Some other basic circuits from the Hawk library.
+
+-- flush: when reset is True, return d for n ticks, otherwise copy value.
+-- (a variation on the resettable counter)
+
+flush :: ArrowCircuit a => Int -> b -> a (b, Bool) b
+flush n d = proc (value, reset) -> do
+ rec count <- returnA -< if reset then n else max (next-1) 0
+ next <- delay 0 -< count
+ returnA -< if count > 0 then d else value
+
+-- latch: on each tick, return the last value for which reset was True,
+-- or init if there was none.
+--
+latch :: ArrowCircuit a => b -> a (b, Bool) b
+latch init = proc (value, reset) -> do
+ rec out <- returnA -< if reset then value else last
+ last <- delay init -< out
+ returnA -< out
+
+-- Some tests using the counter
+
+test_input = [True, False, True, False, False, True, False, True]
+test_input2 = zip [1..] test_input
+
+-- A test of the resettable counter.
+
+main = do
+ print (runStreamMap counter test_input)
+ print (runAuto counter test_input)
+ print (runStreamMap (flush 2 0) test_input2)
+ print (runAuto (flush 2 0) test_input2)
+ print (runStreamMap (latch 0) test_input2)
+ print (runAuto (latch 0) test_input2)
+
+-- A step function (cf current in Lustre)
+
+step :: ArrowCircuit a => b -> a (Either b c) b
+step b = proc x -> do
+ rec last_b <- delay b -< getLeft last_b x
+ returnA -< last_b
+ where getLeft _ (Left b) = b
+ getLeft b (Right _) = b
diff --git a/testsuite/tests/arrows/should_run/arrowrun003.stdout b/testsuite/tests/arrows/should_run/arrowrun003.stdout
new file mode 100644
index 0000000000..21a7156d60
--- /dev/null
+++ b/testsuite/tests/arrows/should_run/arrowrun003.stdout
@@ -0,0 +1,6 @@
+[0,1,0,1,2,0,1,0]
+[0,1,0,1,2,0,1,0]
+[0,0,0,0,5,0,0,0]
+[0,0,0,0,5,0,0,0]
+[1,1,3,3,3,6,6,8]
+[1,1,3,3,3,6,6,8]
diff --git a/testsuite/tests/arrows/should_run/arrowrun004.hs b/testsuite/tests/arrows/should_run/arrowrun004.hs
new file mode 100644
index 0000000000..c0275065f2
--- /dev/null
+++ b/testsuite/tests/arrows/should_run/arrowrun004.hs
@@ -0,0 +1,128 @@
+{-# LANGUAGE Arrows, MultiParamTypeClasses, FlexibleInstances #-}
+
+-- Simple expression parser
+-- (uses do-notation and operators)
+
+module Main(main) where
+
+import Control.Arrow
+import Control.Category
+import Data.Char
+import Prelude hiding (id, (.))
+
+-- Parsers
+
+class (Eq s, Show s, ArrowPlus a) => ArrowParser s a where
+ symbol :: s -> a b String
+
+data Sym s = Sym { token :: s, value :: String }
+
+-- Simple backtracking instance
+
+newtype BTParser s a b = BTParser (a -> [Sym s] -> [(b, [Sym s])])
+
+instance Category (BTParser s) where
+ id = BTParser $ \a ss -> [(a, ss)]
+ BTParser f . BTParser g = BTParser $ \b ss ->
+ [(d, ss'') | (c, ss') <- g b ss, (d, ss'') <- f c ss']
+
+instance Arrow (BTParser s) where
+ arr f = BTParser $ \a ss -> [(f a, ss)]
+ first (BTParser f) = BTParser $ \(b,d) ss ->
+ [((c,d), ss') | (c,ss') <- f b ss]
+
+instance ArrowZero (BTParser s) where
+ zeroArrow = BTParser $ \b ss -> []
+
+instance ArrowPlus (BTParser s) where
+ BTParser f <+> BTParser g = BTParser $ \b ss -> f b ss ++ g b ss
+
+instance (Eq s, Show s) => ArrowParser s (BTParser s) where
+ symbol s = BTParser $ \b ss ->
+ case ss of
+ Sym s' v:ss' | s' == s -> [(v, ss')]
+ _ -> []
+
+runBTParser :: BTParser s () c -> [Sym s] -> c
+runBTParser (BTParser parser) syms =
+ head [c | (c, []) <- parser () syms]
+
+-- Expressions
+
+data ESym = LPar | RPar | Plus | Minus | Mult | Div | Number | Unknown
+ deriving (Show, Eq, Ord)
+
+type ExprParser = BTParser ESym
+type ExprSym = Sym ESym
+
+-- The grammar
+
+expr :: ExprParser () Int
+expr = proc () -> do
+ x <- term -< ()
+ expr' -< x
+
+expr' :: ExprParser Int Int
+expr' = proc x -> do
+ returnA -< x
+ <+> do
+ (|(symbol Plus)|)
+ y <- term -< ()
+ expr' -< x + y
+ <+> do
+ (|(symbol Minus)|)
+ y <- term -< ()
+ expr' -< x - y
+
+term :: ExprParser () Int
+term = proc () -> do
+ x <- factor -< ()
+ term' -< x
+
+term' :: ExprParser Int Int
+term' = proc x -> do
+ returnA -< x
+ <+> do
+ (|(symbol Mult)|)
+ y <- factor -< ()
+ term' -< x * y
+ <+> do
+ (|(symbol Div)|)
+ y <- factor -< ()
+ term' -< x `div` y
+
+factor :: ExprParser () Int
+factor = proc () -> do
+ v <- (|(symbol Number)|)
+ returnA -< read v::Int
+ <+> do
+ (|(symbol Minus)|)
+ v <- factor -< ()
+ returnA -< -v
+ <+> do
+ (|(symbol LPar)|)
+ v <- expr -< ()
+ (|(symbol RPar)|)
+ returnA -< v
+
+-- Lexical analysis
+
+lexer :: String -> [ExprSym]
+lexer [] = []
+lexer ('(':cs) = Sym LPar "(":lexer cs
+lexer (')':cs) = Sym RPar ")":lexer cs
+lexer ('+':cs) = Sym Plus "+":lexer cs
+lexer ('-':cs) = Sym Minus "-":lexer cs
+lexer ('*':cs) = Sym Mult "*":lexer cs
+lexer ('/':cs) = Sym Div "/":lexer cs
+lexer (c:cs)
+ | isSpace c = lexer cs
+ | isDigit c = Sym Number (c:w):lexer cs'
+ | otherwise = Sym Unknown [c]:lexer cs
+ where (w,cs') = span isDigit cs
+
+parse = runBTParser expr . lexer
+
+main = do
+ print (parse "1+2*(3+4)")
+ print (parse "3*5-17/3+4")
diff --git a/testsuite/tests/arrows/should_run/arrowrun004.stdout b/testsuite/tests/arrows/should_run/arrowrun004.stdout
new file mode 100644
index 0000000000..cbb71fdd82
--- /dev/null
+++ b/testsuite/tests/arrows/should_run/arrowrun004.stdout
@@ -0,0 +1,2 @@
+15
+14