summaryrefslogtreecommitdiff
path: root/testsuite/tests/concurrent
diff options
context:
space:
mode:
authorSimon Marlow <marlowsd@gmail.com>2015-06-19 15:12:24 +0100
committerSimon Marlow <marlowsd@gmail.com>2015-06-26 09:32:23 +0100
commit111ba4beda4ffc48381723da12e5b237d7f9ac59 (patch)
tree84ec683a20ea340bd60877daa8ab962e5eebaa2e /testsuite/tests/concurrent
parentbe0ce8718ea40b091e69dd48fe6bc62b6b551154 (diff)
downloadhaskell-111ba4beda4ffc48381723da12e5b237d7f9ac59.tar.gz
Fix deadlock (#10545)
yieldCapability() was not prepared to be called by a Task that is not either a worker or a bound Task. This could happen if we ended up in yieldCapability via this call stack: performGC() scheduleDoGC() requestSync() yieldCapability() and there were a few other ways this could happen via requestSync. The fix is to handle this case in yieldCapability(): when the Task is not a worker or a bound Task, we put it on the returning_workers queue, where it will be woken up again. Summary of changes: * `yieldCapability`: factored out subroutine waitForWorkerCapability` * `waitForReturnCapability` renamed to `waitForCapability`, and factored out subroutine `waitForReturnCapability` * `releaseCapabilityAndQueue` worker renamed to `enqueueWorker`, does not take a lock and no longer tests if `!isBoundTask()` * `yieldCapability` adjusted for refactorings, only change in behavior is when it is not a worker or bound task. Test Plan: * new test concurrent/should_run/performGC * validate Reviewers: niteria, austin, ezyang, bgamari Subscribers: thomie, bgamari Differential Revision: https://phabricator.haskell.org/D997 GHC Trac Issues: #10545
Diffstat (limited to 'testsuite/tests/concurrent')
-rw-r--r--testsuite/tests/concurrent/should_run/RandomPGC.hs597
-rw-r--r--testsuite/tests/concurrent/should_run/all.T4
-rw-r--r--testsuite/tests/concurrent/should_run/performGC.hs24
-rw-r--r--testsuite/tests/concurrent/should_run/performGC.stdout400
4 files changed, 1025 insertions, 0 deletions
diff --git a/testsuite/tests/concurrent/should_run/RandomPGC.hs b/testsuite/tests/concurrent/should_run/RandomPGC.hs
new file mode 100644
index 0000000000..df4c58d48d
--- /dev/null
+++ b/testsuite/tests/concurrent/should_run/RandomPGC.hs
@@ -0,0 +1,597 @@
+{-# LANGUAGE CPP #-}
+#if __GLASGOW_HASKELL__ >= 701
+{-# LANGUAGE Trustworthy #-}
+#endif
+
+-----------------------------------------------------------------------------
+-- |
+-- Module : System.Random
+-- Copyright : (c) The University of Glasgow 2001
+-- License : BSD-style (see the file LICENSE in the 'random' repository)
+--
+-- Maintainer : libraries@haskell.org
+-- Stability : stable
+-- Portability : portable
+--
+-- This library deals with the common task of pseudo-random number
+-- generation. The library makes it possible to generate repeatable
+-- results, by starting with a specified initial random number generator,
+-- or to get different results on each run by using the system-initialised
+-- generator or by supplying a seed from some other source.
+--
+-- The library is split into two layers:
+--
+-- * A core /random number generator/ provides a supply of bits.
+-- The class 'RandomGen' provides a common interface to such generators.
+-- The library provides one instance of 'RandomGen', the abstract
+-- data type 'StdGen'. Programmers may, of course, supply their own
+-- instances of 'RandomGen'.
+--
+-- * The class 'Random' provides a way to extract values of a particular
+-- type from a random number generator. For example, the 'Float'
+-- instance of 'Random' allows one to generate random values of type
+-- 'Float'.
+--
+-- This implementation uses the Portable Combined Generator of L'Ecuyer
+-- ["System.Random\#LEcuyer"] for 32-bit computers, transliterated by
+-- Lennart Augustsson. It has a period of roughly 2.30584e18.
+--
+-----------------------------------------------------------------------------
+
+#include "MachDeps.h"
+
+module RandomPGC
+ (
+
+ -- $intro
+
+ -- * Random number generators
+
+#ifdef ENABLE_SPLITTABLEGEN
+ RandomGen(next, genRange)
+ , SplittableGen(split)
+#else
+ RandomGen(next, genRange, split)
+#endif
+ -- ** Standard random number generators
+ , StdGen
+ , mkStdGen
+
+ -- ** The global random number generator
+
+ -- $globalrng
+
+ , getStdRandom
+ , getStdGen
+ , setStdGen
+ , newStdGen
+
+ -- * Random values of various types
+ , Random ( random, randomR,
+ randoms, randomRs,
+ randomIO, randomRIO )
+
+ -- * References
+ -- $references
+
+ ) where
+
+import Prelude
+
+import Data.Bits
+import Data.Int
+import Data.Word
+import Foreign.C.Types
+
+#ifdef __NHC__
+import CPUTime ( getCPUTime )
+import Foreign.Ptr ( Ptr, nullPtr )
+import Foreign.C ( CTime, CUInt )
+#else
+import System.CPUTime ( getCPUTime )
+import Data.Time ( getCurrentTime, UTCTime(..) )
+import Data.Ratio ( numerator, denominator )
+#endif
+import Data.Char ( isSpace, chr, ord )
+import System.IO.Unsafe ( unsafePerformIO )
+import Data.IORef ( IORef, newIORef, readIORef, writeIORef )
+import Data.IORef ( atomicModifyIORef' )
+import Numeric ( readDec )
+
+#ifdef __GLASGOW_HASKELL__
+import GHC.Exts ( build )
+#else
+-- | A dummy variant of build without fusion.
+{-# INLINE build #-}
+build :: ((a -> [a] -> [a]) -> [a] -> [a]) -> [a]
+build g = g (:) []
+#endif
+
+-- The standard nhc98 implementation of Time.ClockTime does not match
+-- the extended one expected in this module, so we lash-up a quick
+-- replacement here.
+#ifdef __NHC__
+foreign import ccall "time.h time" readtime :: Ptr CTime -> IO CTime
+getTime :: IO (Integer, Integer)
+getTime = do CTime t <- readtime nullPtr; return (toInteger t, 0)
+#else
+getTime :: IO (Integer, Integer)
+getTime = do
+ utc <- getCurrentTime
+ let daytime = toRational $ utctDayTime utc
+ return $ quotRem (numerator daytime) (denominator daytime)
+#endif
+
+-- | The class 'RandomGen' provides a common interface to random number
+-- generators.
+--
+#ifdef ENABLE_SPLITTABLEGEN
+-- Minimal complete definition: 'next'.
+#else
+-- Minimal complete definition: 'next' and 'split'.
+#endif
+
+class RandomGen g where
+
+ -- |The 'next' operation returns an 'Int' that is uniformly distributed
+ -- in the range returned by 'genRange' (including both end points),
+ -- and a new generator.
+ next :: g -> (Int, g)
+
+ -- |The 'genRange' operation yields the range of values returned by
+ -- the generator.
+ --
+ -- It is required that:
+ --
+ -- * If @(a,b) = 'genRange' g@, then @a < b@.
+ --
+ -- * 'genRange' always returns a pair of defined 'Int's.
+ --
+ -- The second condition ensures that 'genRange' cannot examine its
+ -- argument, and hence the value it returns can be determined only by the
+ -- instance of 'RandomGen'. That in turn allows an implementation to make
+ -- a single call to 'genRange' to establish a generator's range, without
+ -- being concerned that the generator returned by (say) 'next' might have
+ -- a different range to the generator passed to 'next'.
+ --
+ -- The default definition spans the full range of 'Int'.
+ genRange :: g -> (Int,Int)
+
+ -- default method
+ genRange _ = (minBound, maxBound)
+
+#ifdef ENABLE_SPLITTABLEGEN
+-- | The class 'SplittableGen' proivides a way to specify a random number
+-- generator that can be split into two new generators.
+class SplittableGen g where
+#endif
+ -- |The 'split' operation allows one to obtain two distinct random number
+ -- generators. This is very useful in functional programs (for example, when
+ -- passing a random number generator down to recursive calls), but very
+ -- little work has been done on statistically robust implementations of
+ -- 'split' (["System.Random\#Burton", "System.Random\#Hellekalek"]
+ -- are the only examples we know of).
+ split :: g -> (g, g)
+
+{- |
+The 'StdGen' instance of 'RandomGen' has a 'genRange' of at least 30 bits.
+
+The result of repeatedly using 'next' should be at least as statistically
+robust as the /Minimal Standard Random Number Generator/ described by
+["System.Random\#Park", "System.Random\#Carta"].
+Until more is known about implementations of 'split', all we require is
+that 'split' deliver generators that are (a) not identical and
+(b) independently robust in the sense just given.
+
+The 'Show' and 'Read' instances of 'StdGen' provide a primitive way to save the
+state of a random number generator.
+It is required that @'read' ('show' g) == g@.
+
+In addition, 'reads' may be used to map an arbitrary string (not necessarily one
+produced by 'show') onto a value of type 'StdGen'. In general, the 'Read'
+instance of 'StdGen' has the following properties:
+
+* It guarantees to succeed on any string.
+
+* It guarantees to consume only a finite portion of the string.
+
+* Different argument strings are likely to result in different results.
+
+-}
+
+data StdGen
+ = StdGen !Int32 !Int32
+
+instance RandomGen StdGen where
+ next = stdNext
+ genRange _ = stdRange
+
+#ifdef ENABLE_SPLITTABLEGEN
+instance SplittableGen StdGen where
+#endif
+ split = stdSplit
+
+instance Show StdGen where
+ showsPrec p (StdGen s1 s2) =
+ showsPrec p s1 .
+ showChar ' ' .
+ showsPrec p s2
+
+instance Read StdGen where
+ readsPrec _p = \ r ->
+ case try_read r of
+ r'@[_] -> r'
+ _ -> [stdFromString r] -- because it shouldn't ever fail.
+ where
+ try_read r = do
+ (s1, r1) <- readDec (dropWhile isSpace r)
+ (s2, r2) <- readDec (dropWhile isSpace r1)
+ return (StdGen s1 s2, r2)
+
+{-
+ If we cannot unravel the StdGen from a string, create
+ one based on the string given.
+-}
+stdFromString :: String -> (StdGen, String)
+stdFromString s = (mkStdGen num, rest)
+ where (cs, rest) = splitAt 6 s
+ num = foldl (\a x -> x + 3 * a) 1 (map ord cs)
+
+
+{- |
+The function 'mkStdGen' provides an alternative way of producing an initial
+generator, by mapping an 'Int' into a generator. Again, distinct arguments
+should be likely to produce distinct generators.
+-}
+mkStdGen :: Int -> StdGen -- why not Integer ?
+mkStdGen s = mkStdGen32 $ fromIntegral s
+
+{-
+From ["System.Random\#LEcuyer"]: "The integer variables s1 and s2 ... must be
+initialized to values in the range [1, 2147483562] and [1, 2147483398]
+respectively."
+-}
+mkStdGen32 :: Int32 -> StdGen
+mkStdGen32 sMaybeNegative = StdGen (s1+1) (s2+1)
+ where
+ -- We want a non-negative number, but we can't just take the abs
+ -- of sMaybeNegative as -minBound == minBound.
+ s = sMaybeNegative .&. maxBound
+ (q, s1) = s `divMod` 2147483562
+ s2 = q `mod` 2147483398
+
+createStdGen :: Integer -> StdGen
+createStdGen s = mkStdGen32 $ fromIntegral s
+
+{- |
+With a source of random number supply in hand, the 'Random' class allows the
+programmer to extract random values of a variety of types.
+
+Minimal complete definition: 'randomR' and 'random'.
+
+-}
+
+class Random a where
+ -- | Takes a range /(lo,hi)/ and a random number generator
+ -- /g/, and returns a random value uniformly distributed in the closed
+ -- interval /[lo,hi]/, together with a new generator. It is unspecified
+ -- what happens if /lo>hi/. For continuous types there is no requirement
+ -- that the values /lo/ and /hi/ are ever produced, but they may be,
+ -- depending on the implementation and the interval.
+ randomR :: RandomGen g => (a,a) -> g -> (a,g)
+
+ -- | The same as 'randomR', but using a default range determined by the type:
+ --
+ -- * For bounded types (instances of 'Bounded', such as 'Char'),
+ -- the range is normally the whole type.
+ --
+ -- * For fractional types, the range is normally the semi-closed interval
+ -- @[0,1)@.
+ --
+ -- * For 'Integer', the range is (arbitrarily) the range of 'Int'.
+ random :: RandomGen g => g -> (a, g)
+
+ -- | Plural variant of 'randomR', producing an infinite list of
+ -- random values instead of returning a new generator.
+ {-# INLINE randomRs #-}
+ randomRs :: RandomGen g => (a,a) -> g -> [a]
+ randomRs ival g = build (\cons _nil -> buildRandoms cons (randomR ival) g)
+
+ -- | Plural variant of 'random', producing an infinite list of
+ -- random values instead of returning a new generator.
+ {-# INLINE randoms #-}
+ randoms :: RandomGen g => g -> [a]
+ randoms g = build (\cons _nil -> buildRandoms cons random g)
+
+ -- | A variant of 'randomR' that uses the global random number generator
+ -- (see "System.Random#globalrng").
+ randomRIO :: (a,a) -> IO a
+ randomRIO range = getStdRandom (randomR range)
+
+ -- | A variant of 'random' that uses the global random number generator
+ -- (see "System.Random#globalrng").
+ randomIO :: IO a
+ randomIO = getStdRandom random
+
+-- | Produce an infinite list-equivalent of random values.
+{-# INLINE buildRandoms #-}
+buildRandoms :: RandomGen g
+ => (a -> as -> as) -- ^ E.g. '(:)' but subject to fusion
+ -> (g -> (a,g)) -- ^ E.g. 'random'
+ -> g -- ^ A 'RandomGen' instance
+ -> as
+buildRandoms cons rand = go
+ where
+ -- The seq fixes part of #4218 and also makes fused Core simpler.
+ go g = x `seq` (x `cons` go g') where (x,g') = rand g
+
+
+instance Random Integer where
+ randomR ival g = randomIvalInteger ival g
+ random g = randomR (toInteger (minBound::Int), toInteger (maxBound::Int)) g
+
+instance Random Int where randomR = randomIvalIntegral; random = randomBounded
+instance Random Int8 where randomR = randomIvalIntegral; random = randomBounded
+instance Random Int16 where randomR = randomIvalIntegral; random = randomBounded
+instance Random Int32 where randomR = randomIvalIntegral; random = randomBounded
+instance Random Int64 where randomR = randomIvalIntegral; random = randomBounded
+
+#ifndef __NHC__
+-- Word is a type synonym in nhc98.
+instance Random Word where randomR = randomIvalIntegral; random = randomBounded
+#endif
+instance Random Word8 where randomR = randomIvalIntegral; random = randomBounded
+instance Random Word16 where randomR = randomIvalIntegral; random = randomBounded
+instance Random Word32 where randomR = randomIvalIntegral; random = randomBounded
+instance Random Word64 where randomR = randomIvalIntegral; random = randomBounded
+
+instance Random CChar where randomR = randomIvalIntegral; random = randomBounded
+instance Random CSChar where randomR = randomIvalIntegral; random = randomBounded
+instance Random CUChar where randomR = randomIvalIntegral; random = randomBounded
+instance Random CShort where randomR = randomIvalIntegral; random = randomBounded
+instance Random CUShort where randomR = randomIvalIntegral; random = randomBounded
+instance Random CInt where randomR = randomIvalIntegral; random = randomBounded
+instance Random CUInt where randomR = randomIvalIntegral; random = randomBounded
+instance Random CLong where randomR = randomIvalIntegral; random = randomBounded
+instance Random CULong where randomR = randomIvalIntegral; random = randomBounded
+instance Random CPtrdiff where randomR = randomIvalIntegral; random = randomBounded
+instance Random CSize where randomR = randomIvalIntegral; random = randomBounded
+instance Random CWchar where randomR = randomIvalIntegral; random = randomBounded
+instance Random CSigAtomic where randomR = randomIvalIntegral; random = randomBounded
+instance Random CLLong where randomR = randomIvalIntegral; random = randomBounded
+instance Random CULLong where randomR = randomIvalIntegral; random = randomBounded
+instance Random CIntPtr where randomR = randomIvalIntegral; random = randomBounded
+instance Random CUIntPtr where randomR = randomIvalIntegral; random = randomBounded
+instance Random CIntMax where randomR = randomIvalIntegral; random = randomBounded
+instance Random CUIntMax where randomR = randomIvalIntegral; random = randomBounded
+
+instance Random Char where
+ randomR (a,b) g =
+ case (randomIvalInteger (toInteger (ord a), toInteger (ord b)) g) of
+ (x,g') -> (chr x, g')
+ random g = randomR (minBound,maxBound) g
+
+instance Random Bool where
+ randomR (a,b) g =
+ case (randomIvalInteger (bool2Int a, bool2Int b) g) of
+ (x, g') -> (int2Bool x, g')
+ where
+ bool2Int :: Bool -> Integer
+ bool2Int False = 0
+ bool2Int True = 1
+
+ int2Bool :: Int -> Bool
+ int2Bool 0 = False
+ int2Bool _ = True
+
+ random g = randomR (minBound,maxBound) g
+
+{-# INLINE randomRFloating #-}
+randomRFloating :: (Fractional a, Num a, Ord a, Random a, RandomGen g) => (a, a) -> g -> (a, g)
+randomRFloating (l,h) g
+ | l>h = randomRFloating (h,l) g
+ | otherwise = let (coef,g') = random g in
+ (2.0 * (0.5*l + coef * (0.5*h - 0.5*l)), g') -- avoid overflow
+
+instance Random Double where
+ randomR = randomRFloating
+ random rng =
+ case random rng of
+ (x,rng') ->
+ -- We use 53 bits of randomness corresponding to the 53 bit significand:
+ ((fromIntegral (mask53 .&. (x::Int64)) :: Double)
+ / fromIntegral twoto53, rng')
+ where
+ twoto53 = (2::Int64) ^ (53::Int64)
+ mask53 = twoto53 - 1
+
+instance Random Float where
+ randomR = randomRFloating
+ random rng =
+ -- TODO: Faster to just use 'next' IF it generates enough bits of randomness.
+ case random rng of
+ (x,rng') ->
+ -- We use 24 bits of randomness corresponding to the 24 bit significand:
+ ((fromIntegral (mask24 .&. (x::Int32)) :: Float)
+ / fromIntegral twoto24, rng')
+ -- Note, encodeFloat is another option, but I'm not seeing slightly
+ -- worse performance with the following [2011.06.25]:
+-- (encodeFloat rand (-24), rng')
+ where
+ mask24 = twoto24 - 1
+ twoto24 = (2::Int32) ^ (24::Int32)
+
+-- CFloat/CDouble are basically the same as a Float/Double:
+instance Random CFloat where
+ randomR = randomRFloating
+ random rng = case random rng of
+ (x,rng') -> (realToFrac (x::Float), rng')
+
+instance Random CDouble where
+ randomR = randomRFloating
+ -- A MYSTERY:
+ -- Presently, this is showing better performance than the Double instance:
+ -- (And yet, if the Double instance uses randomFrac then its performance is much worse!)
+ random = randomFrac
+ -- random rng = case random rng of
+ -- (x,rng') -> (realToFrac (x::Double), rng')
+
+mkStdRNG :: Integer -> IO StdGen
+mkStdRNG o = do
+ ct <- getCPUTime
+ (sec, psec) <- getTime
+ return (createStdGen (sec * 12345 + psec + ct + o))
+
+randomBounded :: (RandomGen g, Random a, Bounded a) => g -> (a, g)
+randomBounded = randomR (minBound, maxBound)
+
+-- The two integer functions below take an [inclusive,inclusive] range.
+randomIvalIntegral :: (RandomGen g, Integral a) => (a, a) -> g -> (a, g)
+randomIvalIntegral (l,h) = randomIvalInteger (toInteger l, toInteger h)
+
+{-# SPECIALIZE randomIvalInteger :: (Num a) =>
+ (Integer, Integer) -> StdGen -> (a, StdGen) #-}
+
+randomIvalInteger :: (RandomGen g, Num a) => (Integer, Integer) -> g -> (a, g)
+randomIvalInteger (l,h) rng
+ | l > h = randomIvalInteger (h,l) rng
+ | otherwise = case (f 1 0 rng) of (v, rng') -> (fromInteger (l + v `mod` k), rng')
+ where
+ (genlo, genhi) = genRange rng
+ b = fromIntegral genhi - fromIntegral genlo + 1
+
+ -- Probabilities of the most likely and least likely result
+ -- will differ at most by a factor of (1 +- 1/q). Assuming the RandomGen
+ -- is uniform, of course
+
+ -- On average, log q / log b more random values will be generated
+ -- than the minimum
+ q = 1000
+ k = h - l + 1
+ magtgt = k * q
+
+ -- generate random values until we exceed the target magnitude
+ f mag v g | mag >= magtgt = (v, g)
+ | otherwise = v' `seq`f (mag*b) v' g' where
+ (x,g') = next g
+ v' = (v * b + (fromIntegral x - fromIntegral genlo))
+
+
+-- The continuous functions on the other hand take an [inclusive,exclusive) range.
+randomFrac :: (RandomGen g, Fractional a) => g -> (a, g)
+randomFrac = randomIvalDouble (0::Double,1) realToFrac
+
+randomIvalDouble :: (RandomGen g, Fractional a) => (Double, Double) -> (Double -> a) -> g -> (a, g)
+randomIvalDouble (l,h) fromDouble rng
+ | l > h = randomIvalDouble (h,l) fromDouble rng
+ | otherwise =
+ case (randomIvalInteger (toInteger (minBound::Int32), toInteger (maxBound::Int32)) rng) of
+ (x, rng') ->
+ let
+ scaled_x =
+ fromDouble (0.5*l + 0.5*h) + -- previously (l+h)/2, overflowed
+ fromDouble ((0.5*h - 0.5*l) / (0.5 * realToFrac int32Count)) * -- avoid overflow
+ fromIntegral (x::Int32)
+ in
+ (scaled_x, rng')
+
+int32Count :: Integer
+int32Count = toInteger (maxBound::Int32) - toInteger (minBound::Int32) + 1 -- GHC ticket #3982
+
+stdRange :: (Int,Int)
+stdRange = (1, 2147483562)
+
+stdNext :: StdGen -> (Int, StdGen)
+-- Returns values in the range stdRange
+stdNext (StdGen s1 s2) = (fromIntegral z', StdGen s1'' s2'')
+ where z' = if z < 1 then z + 2147483562 else z
+ z = s1'' - s2''
+
+ k = s1 `quot` 53668
+ s1' = 40014 * (s1 - k * 53668) - k * 12211
+ s1'' = if s1' < 0 then s1' + 2147483563 else s1'
+
+ k' = s2 `quot` 52774
+ s2' = 40692 * (s2 - k' * 52774) - k' * 3791
+ s2'' = if s2' < 0 then s2' + 2147483399 else s2'
+
+stdSplit :: StdGen -> (StdGen, StdGen)
+stdSplit std@(StdGen s1 s2)
+ = (left, right)
+ where
+ -- no statistical foundation for this!
+ left = StdGen new_s1 t2
+ right = StdGen t1 new_s2
+
+ new_s1 | s1 == 2147483562 = 1
+ | otherwise = s1 + 1
+
+ new_s2 | s2 == 1 = 2147483398
+ | otherwise = s2 - 1
+
+ StdGen t1 t2 = snd (next std)
+
+-- The global random number generator
+
+{- $globalrng #globalrng#
+
+There is a single, implicit, global random number generator of type
+'StdGen', held in some global variable maintained by the 'IO' monad. It is
+initialised automatically in some system-dependent fashion, for example, by
+using the time of day, or Linux's kernel random number generator. To get
+deterministic behaviour, use 'setStdGen'.
+-}
+
+-- |Sets the global random number generator.
+setStdGen :: StdGen -> IO ()
+setStdGen sgen = writeIORef theStdGen sgen
+
+-- |Gets the global random number generator.
+getStdGen :: IO StdGen
+getStdGen = readIORef theStdGen
+
+theStdGen :: IORef StdGen
+theStdGen = unsafePerformIO $ do
+ rng <- mkStdRNG 0
+ newIORef rng
+
+-- |Applies 'split' to the current global random generator,
+-- updates it with one of the results, and returns the other.
+newStdGen :: IO StdGen
+newStdGen = atomicModifyIORef' theStdGen split
+
+{- |Uses the supplied function to get a value from the current global
+random generator, and updates the global generator with the new generator
+returned by the function. For example, @rollDice@ gets a random integer
+between 1 and 6:
+
+> rollDice :: IO Int
+> rollDice = getStdRandom (randomR (1,6))
+
+-}
+
+getStdRandom :: (StdGen -> (a,StdGen)) -> IO a
+getStdRandom f = atomicModifyIORef' theStdGen (swap . f)
+ where swap (v,g) = (g,v)
+
+{- $references
+
+1. FW #Burton# Burton and RL Page, /Distributed random number generation/,
+Journal of Functional Programming, 2(2):203-212, April 1992.
+
+2. SK #Park# Park, and KW Miller, /Random number generators -
+good ones are hard to find/, Comm ACM 31(10), Oct 1988, pp1192-1201.
+
+3. DG #Carta# Carta, /Two fast implementations of the minimal standard
+random number generator/, Comm ACM, 33(1), Jan 1990, pp87-88.
+
+4. P #Hellekalek# Hellekalek, /Don\'t trust parallel Monte Carlo/,
+Department of Mathematics, University of Salzburg,
+<http://random.mat.sbg.ac.at/~peter/pads98.ps>, 1998.
+
+5. Pierre #LEcuyer# L'Ecuyer, /Efficient and portable combined random
+number generators/, Comm ACM, 31(6), Jun 1988, pp742-749.
+
+The Web site <http://random.mat.sbg.ac.at/> is a great source of information.
+
+-}
diff --git a/testsuite/tests/concurrent/should_run/all.T b/testsuite/tests/concurrent/should_run/all.T
index 3d059bdcf7..17d32ea0a4 100644
--- a/testsuite/tests/concurrent/should_run/all.T
+++ b/testsuite/tests/concurrent/should_run/all.T
@@ -104,6 +104,10 @@ test('allocLimit4', [ extra_run_opts('+RTS -xq300k -RTS'),
omit_ways(['ghci']) ],
compile_and_run, [''])
+test('performGC', [ only_ways(['threaded1','threaded2'])
+ , extra_run_opts('400 +RTS -qg -RTS') ],
+ compile_and_run, [''])
+
# -----------------------------------------------------------------------------
# These tests we only do for a full run
diff --git a/testsuite/tests/concurrent/should_run/performGC.hs b/testsuite/tests/concurrent/should_run/performGC.hs
new file mode 100644
index 0000000000..87a32711ca
--- /dev/null
+++ b/testsuite/tests/concurrent/should_run/performGC.hs
@@ -0,0 +1,24 @@
+module Main (main) where
+
+-- Test for #10545
+
+import System.Environment
+import Control.Concurrent
+import Control.Exception
+import Control.Monad
+import RandomPGC
+import System.Mem
+import qualified Data.Set as Set
+
+main = do
+ [n] <- getArgs
+ forkIO $ doSomeWork
+ forM [1..read n] $ \n -> do print n; threadDelay 1000; performMinorGC
+
+doSomeWork :: IO ()
+doSomeWork = forever $ do
+ ns <- replicateM 10000 randomIO :: IO [Int]
+ ms <- replicateM 1000 randomIO
+ let set = Set.fromList ns
+ elems = filter (`Set.member` set) ms
+ evaluate $ sum elems
diff --git a/testsuite/tests/concurrent/should_run/performGC.stdout b/testsuite/tests/concurrent/should_run/performGC.stdout
new file mode 100644
index 0000000000..7b5d34d5cf
--- /dev/null
+++ b/testsuite/tests/concurrent/should_run/performGC.stdout
@@ -0,0 +1,400 @@
+1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
+29
+30
+31
+32
+33
+34
+35
+36
+37
+38
+39
+40
+41
+42
+43
+44
+45
+46
+47
+48
+49
+50
+51
+52
+53
+54
+55
+56
+57
+58
+59
+60
+61
+62
+63
+64
+65
+66
+67
+68
+69
+70
+71
+72
+73
+74
+75
+76
+77
+78
+79
+80
+81
+82
+83
+84
+85
+86
+87
+88
+89
+90
+91
+92
+93
+94
+95
+96
+97
+98
+99
+100
+101
+102
+103
+104
+105
+106
+107
+108
+109
+110
+111
+112
+113
+114
+115
+116
+117
+118
+119
+120
+121
+122
+123
+124
+125
+126
+127
+128
+129
+130
+131
+132
+133
+134
+135
+136
+137
+138
+139
+140
+141
+142
+143
+144
+145
+146
+147
+148
+149
+150
+151
+152
+153
+154
+155
+156
+157
+158
+159
+160
+161
+162
+163
+164
+165
+166
+167
+168
+169
+170
+171
+172
+173
+174
+175
+176
+177
+178
+179
+180
+181
+182
+183
+184
+185
+186
+187
+188
+189
+190
+191
+192
+193
+194
+195
+196
+197
+198
+199
+200
+201
+202
+203
+204
+205
+206
+207
+208
+209
+210
+211
+212
+213
+214
+215
+216
+217
+218
+219
+220
+221
+222
+223
+224
+225
+226
+227
+228
+229
+230
+231
+232
+233
+234
+235
+236
+237
+238
+239
+240
+241
+242
+243
+244
+245
+246
+247
+248
+249
+250
+251
+252
+253
+254
+255
+256
+257
+258
+259
+260
+261
+262
+263
+264
+265
+266
+267
+268
+269
+270
+271
+272
+273
+274
+275
+276
+277
+278
+279
+280
+281
+282
+283
+284
+285
+286
+287
+288
+289
+290
+291
+292
+293
+294
+295
+296
+297
+298
+299
+300
+301
+302
+303
+304
+305
+306
+307
+308
+309
+310
+311
+312
+313
+314
+315
+316
+317
+318
+319
+320
+321
+322
+323
+324
+325
+326
+327
+328
+329
+330
+331
+332
+333
+334
+335
+336
+337
+338
+339
+340
+341
+342
+343
+344
+345
+346
+347
+348
+349
+350
+351
+352
+353
+354
+355
+356
+357
+358
+359
+360
+361
+362
+363
+364
+365
+366
+367
+368
+369
+370
+371
+372
+373
+374
+375
+376
+377
+378
+379
+380
+381
+382
+383
+384
+385
+386
+387
+388
+389
+390
+391
+392
+393
+394
+395
+396
+397
+398
+399
+400