diff options
author | Vladislav Zavialov <vlad.z.4096@gmail.com> | 2018-06-14 15:02:36 -0400 |
---|---|---|
committer | Richard Eisenberg <rae@cs.brynmawr.edu> | 2018-06-14 15:05:32 -0400 |
commit | d650729f9a0f3b6aa5e6ef2d5fba337f6f70fa60 (patch) | |
tree | ac224609397d4b7ca7072fc87739d2522be7675b /testsuite/tests/polykinds/T11480b.hs | |
parent | 4672e2ebf040feffde4e7e2d79c479e4c0c3efaf (diff) | |
download | haskell-d650729f9a0f3b6aa5e6ef2d5fba337f6f70fa60.tar.gz |
Embrace -XTypeInType, add -XStarIsType
Summary:
Implement the "Embrace Type :: Type" GHC proposal,
.../ghc-proposals/blob/master/proposals/0020-no-type-in-type.rst
GHC 8.0 included a major change to GHC's type system: the Type :: Type
axiom. Though casual users were protected from this by hiding its
features behind the -XTypeInType extension, all programs written in GHC
8+ have the axiom behind the scenes. In order to preserve backward
compatibility, various legacy features were left unchanged. For example,
with -XDataKinds but not -XTypeInType, GADTs could not be used in types.
Now these restrictions are lifted and -XTypeInType becomes a redundant
flag that will be eventually deprecated.
* Incorporate the features currently in -XTypeInType into the
-XPolyKinds and -XDataKinds extensions.
* Introduce a new extension -XStarIsType to control how to parse * in
code and whether to print it in error messages.
Test Plan: Validate
Reviewers: goldfire, hvr, bgamari, alanz, simonpj
Reviewed By: goldfire, simonpj
Subscribers: rwbarton, thomie, mpickering, carter
GHC Trac Issues: #15195
Differential Revision: https://phabricator.haskell.org/D4748
Diffstat (limited to 'testsuite/tests/polykinds/T11480b.hs')
-rw-r--r-- | testsuite/tests/polykinds/T11480b.hs | 24 |
1 files changed, 15 insertions, 9 deletions
diff --git a/testsuite/tests/polykinds/T11480b.hs b/testsuite/tests/polykinds/T11480b.hs index 12802e8de3..2684c6de4e 100644 --- a/testsuite/tests/polykinds/T11480b.hs +++ b/testsuite/tests/polykinds/T11480b.hs @@ -21,25 +21,25 @@ module T11480b where -import GHC.Types (Constraint) +import Data.Kind (Constraint, Type) import Data.Type.Equality as Equality import Data.Type.Coercion as Coercion import qualified Prelude import Prelude (Either(..)) -newtype Y (p :: i -> j -> *) (a :: j) (b :: i) = Y { getY :: p b a } +newtype Y (p :: i -> j -> Type) (a :: j) (b :: i) = Y { getY :: p b a } -type family Op (p :: i -> j -> *) :: j -> i -> * where +type family Op (p :: i -> j -> Type) :: j -> i -> Type where Op (Y p) = p Op p = Y p -class Vacuous (p :: i -> i -> *) (a :: i) +class Vacuous (p :: i -> i -> Type) (a :: i) instance Vacuous p a data Dict (p :: Constraint) where Dict :: p => Dict p -class Functor (Op p) (Nat p (->)) p => Category (p :: i -> i -> *) where +class Functor (Op p) (Nat p (->)) p => Category (p :: i -> i -> Type) where type Ob p :: i -> Constraint type Ob p = Vacuous p @@ -62,11 +62,16 @@ class Functor (Op p) (Nat p (->)) p => Category (p :: i -> i -> *) where default unop :: Op p ~ Y p => Op p b a -> p a b unop = getY -class (Category p, Category q) => Functor (p :: i -> i -> *) (q :: j -> j -> *) (f :: i -> j) | f -> p q where +class (Category p, Category q) => + Functor (p :: i -> i -> Type) + (q :: j -> j -> Type) + (f :: i -> j) | f -> p q where fmap :: p a b -> q (f a) (f b) -data Nat (p :: i -> i -> *) (q :: j -> j -> *) (f :: i -> j) (g :: i -> j) where - Nat :: (Functor p q f, Functor p q g) => { runNat :: forall a. Ob p a => q (f a) (g a) } -> Nat p q f g +data Nat (p :: i -> i -> Type) + (q :: j -> j -> Type) (f :: i -> j) (g :: i -> j) where + Nat :: (Functor p q f, Functor p q g) => + { runNat :: forall a. Ob p a => q (f a) (g a) } -> Nat p q f g instance (Category p, Category q) => Category (Nat p q) where type Ob (Nat p q) = Functor p q @@ -80,7 +85,8 @@ instance (Category p, Category q) => Category (Nat p q) where ob :: forall p q f a. Functor p q f => Ob p a :- Ob q (f a) ob = Sub (case source (fmap (id :: p a a) :: q (f a) (f a)) of Dict -> Dict) -instance (Category p, Category q) => Functor (Y (Nat p q)) (Nat (Nat p q) (->)) (Nat p q) where +instance (Category p, Category q) => + Functor (Y (Nat p q)) (Nat (Nat p q) (->)) (Nat p q) where fmap (Y f) = Nat (. f) instance (Category p, Category q) => Functor (Nat p q) (->) (Nat p q f) where |