summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--configure.ac36
-rw-r--r--includes/rts/storage/MBlock.h194
-rw-r--r--rts/Sparks.c1
-rw-r--r--rts/posix/OSMem.c200
-rw-r--r--rts/sm/BlockAlloc.c14
-rw-r--r--rts/sm/GC.h2
-rw-r--r--rts/sm/HeapAlloc.h224
-rw-r--r--rts/sm/MBlock.c399
-rw-r--r--rts/sm/OSMem.h41
-rw-r--r--rts/win32/OSMem.c77
-rw-r--r--testsuite/tests/rts/Makefile4
-rw-r--r--testsuite/tests/rts/all.T7
-rw-r--r--testsuite/tests/rts/outofmem.stderr-ws-642
-rw-r--r--testsuite/tests/rts/outofmem.stdout2
-rw-r--r--testsuite/tests/rts/testmblockalloc.c75
15 files changed, 1030 insertions, 248 deletions
diff --git a/configure.ac b/configure.ac
index 8d66f3f66a..d896c8bf48 100644
--- a/configure.ac
+++ b/configure.ac
@@ -968,6 +968,42 @@ else
fi
AC_SUBST(HavePapi)
+dnl large address space support (see includes/rts/storage/MBlock.h)
+dnl
+dnl Darwin has vm_allocate/vm_protect
+dnl Linux has mmap(MAP_NORESERVE)/madv(MADV_DONTNEED)
+dnl FreeBSD, Solaris and maybe other have MAP_NORESERVE/MADV_FREE
+dnl (They also have MADV_DONTNEED, but it means something else!)
+dnl
+dnl Windows has VirtualAlloc MEM_RESERVE/MEM_COMMIT, however
+dnl it counts page-table space as committed memory, and so quickly
+dnl runs out of paging file when we have multiple processes reserving
+dnl 1TB of address space, we get the following error:
+dnl VirtualAlloc MEM_RESERVE 1099512676352 bytes failed: The paging file is too small for this operation to complete.
+dnl
+use_large_address_space=no
+if test "$ac_cv_sizeof_void_p" -eq 8 ; then
+ if test "$ghc_host_os" = "darwin" ; then
+ use_large_address_space=yes
+ else
+ AC_CHECK_DECLS([MAP_NORESERVE, MADV_FREE, MADV_DONTNEED],[],[],
+[
+#include <unistd.h>
+#include <sys/types.h>
+#include <sys/mman.h>
+#include <fcntl.h>
+])
+ if test "$ac_cv_have_decl_MAP_NORESERVE" = "yes" &&
+ test "$ac_cv_have_decl_MADV_FREE" = "yes" ||
+ test "$ac_cv_have_decl_MADV_DONTNEED" = "yes" ; then
+ use_large_address_space=yes
+ fi
+ fi
+fi
+if test "$use_large_address_space" = "yes" ; then
+ AC_DEFINE([USE_LARGE_ADDRESS_SPACE], [1], [Enable single heap address space support])
+fi
+
if test "$HAVE_DOCBOOK_XSL" = "NO" ||
test "$XsltprocCmd" = ""
then
diff --git a/includes/rts/storage/MBlock.h b/includes/rts/storage/MBlock.h
index 29105cae93..046990eea9 100644
--- a/includes/rts/storage/MBlock.h
+++ b/includes/rts/storage/MBlock.h
@@ -19,203 +19,15 @@ extern void initMBlocks(void);
extern void * getMBlock(void);
extern void * getMBlocks(nat n);
extern void freeMBlocks(void *addr, nat n);
+extern void releaseFreeMemory(void);
extern void freeAllMBlocks(void);
-extern void *getFirstMBlock(void);
-extern void *getNextMBlock(void *mblock);
+extern void *getFirstMBlock(void **state);
+extern void *getNextMBlock(void **state, void *mblock);
#ifdef THREADED_RTS
// needed for HEAP_ALLOCED below
extern SpinLock gc_alloc_block_sync;
#endif
-/* -----------------------------------------------------------------------------
- The HEAP_ALLOCED() test.
-
- HEAP_ALLOCED is called FOR EVERY SINGLE CLOSURE during GC.
- It needs to be FAST.
-
- See wiki commentary at
- http://ghc.haskell.org/trac/ghc/wiki/Commentary/HeapAlloced
-
- Implementation of HEAP_ALLOCED
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-
- Since heap is allocated in chunks of megablocks (MBLOCK_SIZE), we
- can just use a table to record which megablocks in the address
- space belong to the heap. On a 32-bit machine, with 1Mb
- megablocks, using 8 bits for each entry in the table, the table
- requires 4k. Lookups during GC will be fast, because the table
- will be quickly cached (indeed, performance measurements showed no
- measurable difference between doing the table lookup and using a
- constant comparison).
-
- On 64-bit machines, we cache one 12-bit block map that describes
- 4096 megablocks or 4GB of memory. If HEAP_ALLOCED is called for
- an address that is not in the cache, it calls slowIsHeapAlloced
- (see MBlock.c) which will find the block map for the 4GB block in
- question.
- -------------------------------------------------------------------------- */
-
-#if SIZEOF_VOID_P == 4
-extern StgWord8 mblock_map[];
-
-/* On a 32-bit machine a 4KB table is always sufficient */
-# define MBLOCK_MAP_SIZE 4096
-# define MBLOCK_MAP_ENTRY(p) ((StgWord)(p) >> MBLOCK_SHIFT)
-# define HEAP_ALLOCED(p) mblock_map[MBLOCK_MAP_ENTRY(p)]
-# define HEAP_ALLOCED_GC(p) HEAP_ALLOCED(p)
-
-/* -----------------------------------------------------------------------------
- HEAP_ALLOCED for 64-bit machines.
-
- Here are some cache layout options:
-
- [1]
- 16KB cache of 16-bit entries, 1MB lines (capacity 8GB)
- mblock size = 20 bits
- entries = 8192 13 bits
- line size = 0 bits (1 bit of value)
- tag size = 15 bits
- = 48 bits
-
- [2]
- 32KB cache of 16-bit entries, 4MB lines (capacity 32GB)
- mblock size = 20 bits
- entries = 16384 14 bits
- line size = 2 bits (4 bits of value)
- tag size = 12 bits
- = 48 bits
-
- [3]
- 16KB cache of 16-bit entries, 2MB lines (capacity 16GB)
- mblock size = 20 bits
- entries = 8192 13 bits
- line size = 1 bits (2 bits of value)
- tag size = 14 bits
- = 48 bits
-
- [4]
- 4KB cache of 32-bit entries, 16MB lines (capacity 16GB)
- mblock size = 20 bits
- entries = 1024 10 bits
- line size = 4 bits (16 bits of value)
- tag size = 14 bits
- = 48 bits
-
- [5]
- 4KB cache of 64-bit entries, 32MB lines (capacity 16GB)
- mblock size = 20 bits
- entries = 512 9 bits
- line size = 5 bits (32 bits of value)
- tag size = 14 bits
- = 48 bits
-
- We actually use none of the above. After much experimentation it was
- found that optimising the lookup is the most important factor,
- followed by reducing the number of misses. To that end, we use a
- variant of [1] in which each cache entry is ((mblock << 1) + value)
- where value is 0 for non-heap and 1 for heap. The cache entries can
- be 32 bits, since the mblock number is 48-20 = 28 bits, and we need
- 1 bit for the value. The cache can be as big as we like, but
- currently we use 8k entries, giving us 8GB capacity.
-
- ---------------------------------------------------------------------------- */
-
-#elif SIZEOF_VOID_P == 8
-
-#define MBC_LINE_BITS 0
-#define MBC_TAG_BITS 15
-
-#if x86_64_HOST_ARCH
-// 32bits are enough for 'entry' as modern amd64 boxes have
-// only 48bit sized virtual addres.
-typedef StgWord32 MbcCacheLine;
-#else
-// 32bits is not enough here as some arches (like ia64) use
-// upper address bits to distinct memory areas.
-typedef StgWord64 MbcCacheLine;
-#endif
-
-typedef StgWord8 MBlockMapLine;
-
-#define MBLOCK_MAP_LINE(p) (((StgWord)p & 0xffffffff) >> (MBLOCK_SHIFT + MBC_LINE_BITS))
-
-#define MBC_LINE_SIZE (1<<MBC_LINE_BITS)
-#define MBC_SHIFT (48 - MBLOCK_SHIFT - MBC_LINE_BITS - MBC_TAG_BITS)
-#define MBC_ENTRIES (1<<MBC_SHIFT)
-
-extern MbcCacheLine mblock_cache[];
-
-#define MBC_LINE(p) ((StgWord)p >> (MBLOCK_SHIFT + MBC_LINE_BITS))
-
-#define MBLOCK_MAP_ENTRIES (1 << (32 - MBLOCK_SHIFT - MBC_LINE_BITS))
-
-typedef struct {
- StgWord32 addrHigh32;
- MBlockMapLine lines[MBLOCK_MAP_ENTRIES];
-} MBlockMap;
-
-extern W_ mpc_misses;
-
-StgBool HEAP_ALLOCED_miss(StgWord mblock, void *p);
-
-INLINE_HEADER
-StgBool HEAP_ALLOCED(void *p)
-{
- StgWord mblock;
- nat entry_no;
- MbcCacheLine entry, value;
-
- mblock = (StgWord)p >> MBLOCK_SHIFT;
- entry_no = mblock & (MBC_ENTRIES-1);
- entry = mblock_cache[entry_no];
- value = entry ^ (mblock << 1);
- // this formulation coaxes gcc into prioritising the value==1
- // case, which we expect to be the most common.
- // __builtin_expect() didn't have any useful effect (gcc-4.3.0).
- if (value == 1) {
- return 1;
- } else if (value == 0) {
- return 0;
- } else {
- // putting the rest out of line turned out to be a slight
- // performance improvement:
- return HEAP_ALLOCED_miss(mblock,p);
- }
-}
-
-// In the parallel GC, the cache itself is safe to *read*, and can be
-// updated atomically, but we need to place a lock around operations
-// that touch the MBlock map.
-INLINE_HEADER
-StgBool HEAP_ALLOCED_GC(void *p)
-{
- StgWord mblock;
- nat entry_no;
- MbcCacheLine entry, value;
- StgBool b;
-
- mblock = (StgWord)p >> MBLOCK_SHIFT;
- entry_no = mblock & (MBC_ENTRIES-1);
- entry = mblock_cache[entry_no];
- value = entry ^ (mblock << 1);
- if (value == 1) {
- return 1;
- } else if (value == 0) {
- return 0;
- } else {
- // putting the rest out of line turned out to be a slight
- // performance improvement:
- ACQUIRE_SPIN_LOCK(&gc_alloc_block_sync);
- b = HEAP_ALLOCED_miss(mblock,p);
- RELEASE_SPIN_LOCK(&gc_alloc_block_sync);
- return b;
- }
-}
-
-#else
-# error HEAP_ALLOCED not defined
-#endif
-
#endif /* RTS_STORAGE_MBLOCK_H */
diff --git a/rts/Sparks.c b/rts/Sparks.c
index ada2adfd3a..ec075805bf 100644
--- a/rts/Sparks.c
+++ b/rts/Sparks.c
@@ -14,6 +14,7 @@
#include "Trace.h"
#include "Prelude.h"
#include "Sparks.h"
+#include "sm/HeapAlloc.h"
#if defined(THREADED_RTS)
diff --git a/rts/posix/OSMem.c b/rts/posix/OSMem.c
index 359df7022b..125ae10367 100644
--- a/rts/posix/OSMem.c
+++ b/rts/posix/OSMem.c
@@ -13,6 +13,7 @@
#include "RtsUtils.h"
#include "sm/OSMem.h"
+#include "sm/HeapAlloc.h"
#ifdef HAVE_UNISTD_H
#include <unistd.h>
@@ -72,23 +73,67 @@ void osMemInit(void)
-------------------------------------------------------------------------- */
-// A wrapper around mmap(), to abstract away from OS differences in
-// the mmap() interface.
+/*
+ A wrapper around mmap(), to abstract away from OS differences in
+ the mmap() interface.
+
+ It supports the following operations:
+ - reserve: find a new chunk of available address space, and make it so
+ that we own it (no other library will get it), but don't actually
+ allocate memory for it
+ the addr is a hint for where to place the memory (and most
+ of the time the OS happily ignores!)
+ - commit: given a chunk of address space that we know we own, make sure
+ there is some memory backing it
+ the addr is not a hint, it must point into previously reserved
+ address space, or bad things happen
+ - reserve&commit: do both at the same time
+
+ The naming is chosen from the Win32 API (VirtualAlloc) which does the
+ same thing and has done so forever, while support for this in Unix systems
+ has only been added recently and is hidden in the posix portability mess.
+ It is confusing because to get the reserve behavior we need MAP_NORESERVE
+ (which tells the kernel not to allocate backing space), but heh...
+*/
+enum
+{
+ MEM_RESERVE = 1,
+ MEM_COMMIT = 2,
+ MEM_RESERVE_AND_COMMIT = MEM_RESERVE | MEM_COMMIT
+};
static void *
-my_mmap (void *addr, W_ size)
+my_mmap (void *addr, W_ size, int operation)
{
void *ret;
+ int prot, flags;
+
+ if (operation & MEM_COMMIT)
+ prot = PROT_READ | PROT_WRITE;
+ else
+ prot = PROT_NONE;
+ if (operation == MEM_RESERVE)
+ flags = MAP_NORESERVE;
+ else if (operation == MEM_COMMIT)
+ flags = MAP_FIXED;
+ else
+ flags = 0;
#if defined(solaris2_HOST_OS) || defined(irix_HOST_OS)
{
- int fd = open("/dev/zero",O_RDONLY);
- ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
- close(fd);
+ if (operation & MEM_RESERVE)
+ {
+ int fd = open("/dev/zero",O_RDONLY);
+ ret = mmap(addr, size, prot, flags | MAP_PRIVATE, fd, 0);
+ close(fd);
+ }
+ else
+ {
+ ret = mmap(addr, size, prot, flags | MAP_PRIVATE, -1, 0);
+ }
}
#elif hpux_HOST_OS
- ret = mmap(addr, size, PROT_READ | PROT_WRITE,
- MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
+ ret = mmap(addr, size, prot, flags | MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
#elif darwin_HOST_OS
// Without MAP_FIXED, Apple's mmap ignores addr.
// With MAP_FIXED, it overwrites already mapped regions, whic
@@ -100,10 +145,16 @@ my_mmap (void *addr, W_ size)
kern_return_t err = 0;
ret = addr;
- if(addr) // try to allocate at address
- err = vm_allocate(mach_task_self(),(vm_address_t*) &ret, size, FALSE);
- if(!addr || err) // try to allocate anywhere
- err = vm_allocate(mach_task_self(),(vm_address_t*) &ret, size, TRUE);
+
+ if(operation & MEM_RESERVE)
+ {
+ if(addr) // try to allocate at address
+ err = vm_allocate(mach_task_self(),(vm_address_t*) &ret,
+ size, FALSE);
+ if(!addr || err) // try to allocate anywhere
+ err = vm_allocate(mach_task_self(),(vm_address_t*) &ret,
+ size, TRUE);
+ }
if(err) {
// don't know what the error codes mean exactly, assume it's
@@ -111,23 +162,24 @@ my_mmap (void *addr, W_ size)
errorBelch("memory allocation failed (requested %" FMT_Word " bytes)",
size);
stg_exit(EXIT_FAILURE);
- } else {
+ }
+
+ if(operation & MEM_COMMIT) {
vm_protect(mach_task_self(), (vm_address_t)ret, size, FALSE,
VM_PROT_READ|VM_PROT_WRITE);
}
+
#elif linux_HOST_OS
- ret = mmap(addr, size, PROT_READ | PROT_WRITE,
- MAP_ANON | MAP_PRIVATE, -1, 0);
+ ret = mmap(addr, size, prot, flags | MAP_ANON | MAP_PRIVATE, -1, 0);
if (ret == (void *)-1 && errno == EPERM) {
// Linux may return EPERM if it tried to give us
// a chunk of address space below mmap_min_addr,
// See Trac #7500.
- if (addr != 0) {
+ if (addr != 0 && (operation & MEM_RESERVE)) {
// Try again with no hint address.
// It's not clear that this can ever actually help,
// but since our alternative is to abort, we may as well try.
- ret = mmap(0, size, PROT_READ | PROT_WRITE,
- MAP_ANON | MAP_PRIVATE, -1, 0);
+ ret = mmap(0, size, prot, flags | MAP_ANON | MAP_PRIVATE, -1, 0);
}
if (ret == (void *)-1 && errno == EPERM) {
// Linux is not willing to give us any mapping,
@@ -137,8 +189,7 @@ my_mmap (void *addr, W_ size)
}
}
#else
- ret = mmap(addr, size, PROT_READ | PROT_WRITE,
- MAP_ANON | MAP_PRIVATE, -1, 0);
+ ret = mmap(addr, size, prot, flags | MAP_ANON | MAP_PRIVATE, -1, 0);
#endif
if (ret == (void *)-1) {
@@ -168,7 +219,7 @@ gen_map_mblocks (W_ size)
// Try to map a larger block, and take the aligned portion from
// it (unmap the rest).
size += MBLOCK_SIZE;
- ret = my_mmap(0, size);
+ ret = my_mmap(0, size, MEM_RESERVE_AND_COMMIT);
// unmap the slop bits around the chunk we allocated
slop = (W_)ret & MBLOCK_MASK;
@@ -207,7 +258,7 @@ osGetMBlocks(nat n)
// use gen_map_mblocks the first time.
ret = gen_map_mblocks(size);
} else {
- ret = my_mmap(next_request, size);
+ ret = my_mmap(next_request, size, MEM_RESERVE_AND_COMMIT);
if (((W_)ret & MBLOCK_MASK) != 0) {
// misaligned block!
@@ -244,10 +295,11 @@ void osReleaseFreeMemory(void) {
void osFreeAllMBlocks(void)
{
void *mblock;
+ void *state;
- for (mblock = getFirstMBlock();
+ for (mblock = getFirstMBlock(&state);
mblock != NULL;
- mblock = getNextMBlock(mblock)) {
+ mblock = getNextMBlock(&state, mblock)) {
munmap(mblock, MBLOCK_SIZE);
}
}
@@ -318,3 +370,103 @@ void setExecutable (void *p, W_ len, rtsBool exec)
barf("setExecutable: failed to protect 0x%p\n", p);
}
}
+
+#ifdef USE_LARGE_ADDRESS_SPACE
+
+static void *
+osTryReserveHeapMemory (void *hint)
+{
+ void *base, *top;
+ void *start, *end;
+
+ /* We try to allocate MBLOCK_SPACE_SIZE + MBLOCK_SIZE,
+ because we need memory which is MBLOCK_SIZE aligned,
+ and then we discard what we don't need */
+
+ base = my_mmap(hint, MBLOCK_SPACE_SIZE + MBLOCK_SIZE, MEM_RESERVE);
+ top = (void*)((W_)base + MBLOCK_SPACE_SIZE + MBLOCK_SIZE);
+
+ if (((W_)base & MBLOCK_MASK) != 0) {
+ start = MBLOCK_ROUND_UP(base);
+ end = MBLOCK_ROUND_DOWN(top);
+ ASSERT(((W_)end - (W_)start) == MBLOCK_SPACE_SIZE);
+
+ if (munmap(base, (W_)start-(W_)base) < 0) {
+ sysErrorBelch("unable to release slop before heap");
+ }
+ if (munmap(end, (W_)top-(W_)end) < 0) {
+ sysErrorBelch("unable to release slop after heap");
+ }
+ } else {
+ start = base;
+ }
+
+ return start;
+}
+
+void *osReserveHeapMemory(void)
+{
+ int attempt;
+ void *at;
+
+ /* We want to ensure the heap starts at least 8 GB inside the address space,
+ to make sure that any dynamically loaded code will be close enough to the
+ original code so that short relocations will work. This is in particular
+ important on Darwin/Mach-O, because object files not compiled as shared
+ libraries are position independent but cannot be loaded about 4GB.
+
+ We do so with a hint to the mmap, and we verify the OS satisfied our
+ hint. We loop a few times in case there is already something allocated
+ there, but we bail if we cannot allocate at all.
+ */
+
+ attempt = 0;
+ do {
+ at = osTryReserveHeapMemory((void*)((W_)8 * (1 << 30) +
+ attempt * BLOCK_SIZE));
+ } while ((W_)at < ((W_)8 * (1 << 30)));
+
+ return at;
+}
+
+void osCommitMemory(void *at, W_ size)
+{
+ my_mmap(at, size, MEM_COMMIT);
+}
+
+void osDecommitMemory(void *at, W_ size)
+{
+ int r;
+
+ // First make the memory unaccessible (so that we get a segfault
+ // at the next attempt to touch it)
+ // We only do this in DEBUG because it forces the OS to remove
+ // all MMU entries for this page range, and there is no reason
+ // to do so unless there is memory pressure
+#ifdef DEBUG
+ r = mprotect(at, size, PROT_NONE);
+ if(r < 0)
+ sysErrorBelch("unable to make released memory unaccessible");
+#endif
+
+#ifdef MADV_FREE
+ // Try MADV_FREE first, FreeBSD has both and MADV_DONTNEED
+ // just swaps memory out
+ r = madvise(at, size, MADV_FREE);
+#else
+ r = madvise(at, size, MADV_DONTNEED);
+#endif
+ if(r < 0)
+ sysErrorBelch("unable to decommit memory");
+}
+
+void osReleaseHeapMemory(void)
+{
+ int r;
+
+ r = munmap((void*)mblock_address_space_begin, MBLOCK_SPACE_SIZE);
+ if(r < 0)
+ sysErrorBelch("unable to release address space");
+}
+
+#endif
diff --git a/rts/sm/BlockAlloc.c b/rts/sm/BlockAlloc.c
index c2a5913963..e721fb13b6 100644
--- a/rts/sm/BlockAlloc.c
+++ b/rts/sm/BlockAlloc.c
@@ -736,7 +736,14 @@ void returnMemoryToOS(nat n /* megablocks */)
}
free_mblock_list = bd;
- osReleaseFreeMemory();
+ // Ask the OS to release any address space portion
+ // that was associated with the just released MBlocks
+ //
+ // Historically, we used to ask the OS directly (via
+ // osReleaseFreeMemory()) - now the MBlock layer might
+ // have a reason to preserve the address space range,
+ // so we keep it
+ releaseFreeMemory();
IF_DEBUG(gc,
if (n != 0) {
@@ -869,11 +876,12 @@ void
reportUnmarkedBlocks (void)
{
void *mblock;
+ void *state;
bdescr *bd;
debugBelch("Unreachable blocks:\n");
- for (mblock = getFirstMBlock(); mblock != NULL;
- mblock = getNextMBlock(mblock)) {
+ for (mblock = getFirstMBlock(&state); mblock != NULL;
+ mblock = getNextMBlock(&state, mblock)) {
for (bd = FIRST_BDESCR(mblock); bd <= LAST_BDESCR(mblock); ) {
if (!(bd->flags & BF_KNOWN) && bd->free != (P_)-1) {
debugBelch(" %p\n",bd);
diff --git a/rts/sm/GC.h b/rts/sm/GC.h
index 571aa07110..5744eb95a8 100644
--- a/rts/sm/GC.h
+++ b/rts/sm/GC.h
@@ -16,6 +16,8 @@
#include "BeginPrivate.h"
+#include "HeapAlloc.h"
+
void GarbageCollect (rtsBool force_major_gc,
rtsBool do_heap_census,
nat gc_type, Capability *cap);
diff --git a/rts/sm/HeapAlloc.h b/rts/sm/HeapAlloc.h
new file mode 100644
index 0000000000..c914b5db40
--- /dev/null
+++ b/rts/sm/HeapAlloc.h
@@ -0,0 +1,224 @@
+/* -----------------------------------------------------------------------------
+ *
+ * (c) The University of Glasgow 2006-2008
+ *
+ * The HEAP_ALLOCED() test.
+ *
+ * ---------------------------------------------------------------------------*/
+
+#ifndef SM_HEAP_ALLOC_H
+#define SM_HEAP_ALLOC_H
+
+#include "BeginPrivate.h"
+
+/* -----------------------------------------------------------------------------
+ The HEAP_ALLOCED() test.
+
+ HEAP_ALLOCED is called FOR EVERY SINGLE CLOSURE during GC.
+ It needs to be FAST.
+
+ See wiki commentary at
+ http://ghc.haskell.org/trac/ghc/wiki/Commentary/HeapAlloced
+
+ Implementation of HEAP_ALLOCED
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+ Since heap is allocated in chunks of megablocks (MBLOCK_SIZE), we
+ can just use a table to record which megablocks in the address
+ space belong to the heap. On a 32-bit machine, with 1Mb
+ megablocks, using 8 bits for each entry in the table, the table
+ requires 4k. Lookups during GC will be fast, because the table
+ will be quickly cached (indeed, performance measurements showed no
+ measurable difference between doing the table lookup and using a
+ constant comparison).
+
+ On 64-bit machines, we have two possibilities. One is to request
+ a single chunk of address space that we deem "large enough"
+ (currently 1TB, could easily be extended to, say 16TB or more).
+ Memory from that chunk is GC memory, everything else is not. This
+ case is tricky in that it requires support from the OS to allocate
+ address space without allocating memory (in practice, all modern
+ OSes do this). It's also tricky in that it is the only case where
+ a successful HEAP_ALLOCED(p) check can trigger a segfault when
+ accessing p (and for debugging purposes, it will).
+
+ Alternatively, the older implementation caches one 12-bit block map
+ that describes 4096 megablocks or 4GB of memory. If HEAP_ALLOCED is
+ called for an address that is not in the cache, it calls
+ slowIsHeapAlloced (see MBlock.c) which will find the block map for
+ the 4GB block in question.
+ -------------------------------------------------------------------------- */
+
+#ifdef USE_LARGE_ADDRESS_SPACE
+
+extern W_ mblock_address_space_begin;
+# define MBLOCK_SPACE_SIZE ((StgWord)1 << 40) /* 1 TB */
+# define HEAP_ALLOCED(p) ((W_)(p) >= mblock_address_space_begin && \
+ (W_)(p) < (mblock_address_space_begin + \
+ MBLOCK_SPACE_SIZE))
+# define HEAP_ALLOCED_GC(p) HEAP_ALLOCED(p)
+
+#elif SIZEOF_VOID_P == 4
+extern StgWord8 mblock_map[];
+
+/* On a 32-bit machine a 4KB table is always sufficient */
+# define MBLOCK_MAP_SIZE 4096
+# define MBLOCK_MAP_ENTRY(p) ((StgWord)(p) >> MBLOCK_SHIFT)
+# define HEAP_ALLOCED(p) mblock_map[MBLOCK_MAP_ENTRY(p)]
+# define HEAP_ALLOCED_GC(p) HEAP_ALLOCED(p)
+
+/* -----------------------------------------------------------------------------
+ HEAP_ALLOCED for 64-bit machines (without LARGE_ADDRESS_SPACE).
+
+ Here are some cache layout options:
+
+ [1]
+ 16KB cache of 16-bit entries, 1MB lines (capacity 8GB)
+ mblock size = 20 bits
+ entries = 8192 13 bits
+ line size = 0 bits (1 bit of value)
+ tag size = 15 bits
+ = 48 bits
+
+ [2]
+ 32KB cache of 16-bit entries, 4MB lines (capacity 32GB)
+ mblock size = 20 bits
+ entries = 16384 14 bits
+ line size = 2 bits (4 bits of value)
+ tag size = 12 bits
+ = 48 bits
+
+ [3]
+ 16KB cache of 16-bit entries, 2MB lines (capacity 16GB)
+ mblock size = 20 bits
+ entries = 8192 13 bits
+ line size = 1 bits (2 bits of value)
+ tag size = 14 bits
+ = 48 bits
+
+ [4]
+ 4KB cache of 32-bit entries, 16MB lines (capacity 16GB)
+ mblock size = 20 bits
+ entries = 1024 10 bits
+ line size = 4 bits (16 bits of value)
+ tag size = 14 bits
+ = 48 bits
+
+ [5]
+ 4KB cache of 64-bit entries, 32MB lines (capacity 16GB)
+ mblock size = 20 bits
+ entries = 512 9 bits
+ line size = 5 bits (32 bits of value)
+ tag size = 14 bits
+ = 48 bits
+
+ We actually use none of the above. After much experimentation it was
+ found that optimising the lookup is the most important factor,
+ followed by reducing the number of misses. To that end, we use a
+ variant of [1] in which each cache entry is ((mblock << 1) + value)
+ where value is 0 for non-heap and 1 for heap. The cache entries can
+ be 32 bits, since the mblock number is 48-20 = 28 bits, and we need
+ 1 bit for the value. The cache can be as big as we like, but
+ currently we use 8k entries, giving us 8GB capacity.
+
+ ---------------------------------------------------------------------------- */
+
+#elif SIZEOF_VOID_P == 8
+
+#define MBC_LINE_BITS 0
+#define MBC_TAG_BITS 15
+
+#if x86_64_HOST_ARCH
+// 32bits are enough for 'entry' as modern amd64 boxes have
+// only 48bit sized virtual addres.
+typedef StgWord32 MbcCacheLine;
+#else
+// 32bits is not enough here as some arches (like ia64) use
+// upper address bits to distinct memory areas.
+typedef StgWord64 MbcCacheLine;
+#endif
+
+typedef StgWord8 MBlockMapLine;
+
+#define MBLOCK_MAP_LINE(p) (((StgWord)p & 0xffffffff) >> (MBLOCK_SHIFT + MBC_LINE_BITS))
+
+#define MBC_LINE_SIZE (1<<MBC_LINE_BITS)
+#define MBC_SHIFT (48 - MBLOCK_SHIFT - MBC_LINE_BITS - MBC_TAG_BITS)
+#define MBC_ENTRIES (1<<MBC_SHIFT)
+
+extern MbcCacheLine mblock_cache[];
+
+#define MBC_LINE(p) ((StgWord)p >> (MBLOCK_SHIFT + MBC_LINE_BITS))
+
+#define MBLOCK_MAP_ENTRIES (1 << (32 - MBLOCK_SHIFT - MBC_LINE_BITS))
+
+typedef struct {
+ StgWord32 addrHigh32;
+ MBlockMapLine lines[MBLOCK_MAP_ENTRIES];
+} MBlockMap;
+
+extern W_ mpc_misses;
+
+StgBool HEAP_ALLOCED_miss(StgWord mblock, void *p);
+
+INLINE_HEADER
+StgBool HEAP_ALLOCED(void *p)
+{
+ StgWord mblock;
+ nat entry_no;
+ MbcCacheLine entry, value;
+
+ mblock = (StgWord)p >> MBLOCK_SHIFT;
+ entry_no = mblock & (MBC_ENTRIES-1);
+ entry = mblock_cache[entry_no];
+ value = entry ^ (mblock << 1);
+ // this formulation coaxes gcc into prioritising the value==1
+ // case, which we expect to be the most common.
+ // __builtin_expect() didn't have any useful effect (gcc-4.3.0).
+ if (value == 1) {
+ return 1;
+ } else if (value == 0) {
+ return 0;
+ } else {
+ // putting the rest out of line turned out to be a slight
+ // performance improvement:
+ return HEAP_ALLOCED_miss(mblock,p);
+ }
+}
+
+// In the parallel GC, the cache itself is safe to *read*, and can be
+// updated atomically, but we need to place a lock around operations
+// that touch the MBlock map.
+INLINE_HEADER
+StgBool HEAP_ALLOCED_GC(void *p)
+{
+ StgWord mblock;
+ nat entry_no;
+ MbcCacheLine entry, value;
+ StgBool b;
+
+ mblock = (StgWord)p >> MBLOCK_SHIFT;
+ entry_no = mblock & (MBC_ENTRIES-1);
+ entry = mblock_cache[entry_no];
+ value = entry ^ (mblock << 1);
+ if (value == 1) {
+ return 1;
+ } else if (value == 0) {
+ return 0;
+ } else {
+ // putting the rest out of line turned out to be a slight
+ // performance improvement:
+ ACQUIRE_SPIN_LOCK(&gc_alloc_block_sync);
+ b = HEAP_ALLOCED_miss(mblock,p);
+ RELEASE_SPIN_LOCK(&gc_alloc_block_sync);
+ return b;
+ }
+}
+
+#else
+# error HEAP_ALLOCED not defined
+#endif
+
+#include "EndPrivate.h"
+
+#endif /* SM_HEAP_ALLOC_H */
diff --git a/rts/sm/MBlock.c b/rts/sm/MBlock.c
index f626e1f43b..c77a9e01fd 100644
--- a/rts/sm/MBlock.c
+++ b/rts/sm/MBlock.c
@@ -23,9 +23,320 @@ W_ mblocks_allocated = 0;
W_ mpc_misses = 0;
/* -----------------------------------------------------------------------------
- The MBlock Map: provides our implementation of HEAP_ALLOCED()
+ The MBlock Map: provides our implementation of HEAP_ALLOCED() and the
+ utilities to walk the really allocated (thus accessible without risk of
+ segfault) heap
-------------------------------------------------------------------------- */
+/*
+ There are two different cases here: either we use "large address
+ space" (which really means two-step allocation), so we have to
+ manage which memory is good (= accessible without fear of segfault)
+ and which is not owned by us, or we use the older method and get
+ good memory straight from the system.
+
+ Both code paths need to provide:
+
+ void *getFirstMBlock(void ** state)
+ return the first (lowest address) mblock
+ that was actually committed
+
+ void *getNextMBlock(void ** state, void * mblock)
+ return the first (lowest address) mblock
+ that was committed, after the given one
+
+ For both these calls, @state is an in-out parameter that points to
+ an opaque state threading the calls togheter. The calls should only
+ be used in an interation fashion. Pass NULL if @state is not
+ interesting,or pass a pointer to NULL if you don't have a state.
+
+ void *getCommittedMBlocks(nat n)
+ return @n new mblocks, ready to be used (reserved and committed)
+
+ void *decommitMBlocks(char *addr, nat n)
+ release memory for @n mblocks, starting at the given address
+
+ void releaseFreeMemory()
+ potentially release any address space that was associated
+ with recently decommitted blocks
+*/
+
+#ifdef USE_LARGE_ADDRESS_SPACE
+
+// Large address space means we use two-step allocation: reserve
+// something large upfront, and then commit as needed
+// (This is normally only useful on 64-bit, where we can assume
+// that reserving 1TB is possible)
+//
+// There is no block map in this case, but there is a free list
+// of blocks that were committed and decommitted at least once,
+// which we use to choose which block to commit next in the already
+// reserved space.
+//
+// We cannot let the OS choose it as we do in the
+// non large address space case, because the committing wants to
+// know the exact address upfront.
+//
+// The free list is coalesced and ordered, which means that
+// allocate and free are worst-case O(n), but benchmarks have shown
+// that this is not a significant problem, because large (>=2MB)
+// allocations are infrequent and their time is mostly insignificant
+// compared to the time to use that memory.
+//
+// The free list is stored in malloc()'d memory, unlike the other free
+// lists in BlockAlloc.c which are stored in block descriptors,
+// because we cannot touch the contents of decommitted mblocks.
+
+typedef struct free_list {
+ struct free_list *prev;
+ struct free_list *next;
+ W_ address;
+ W_ size;
+} free_list;
+
+static free_list *free_list_head;
+static W_ mblock_high_watermark;
+W_ mblock_address_space_begin = 0;
+
+static void *getAllocatedMBlock(free_list **start_iter, W_ startingAt)
+{
+ free_list *iter;
+ W_ p = startingAt;
+
+ for (iter = *start_iter; iter != NULL; iter = iter->next)
+ {
+ if (p < iter->address)
+ break;
+
+ if (p == iter->address)
+ p += iter->size;
+ }
+
+ *start_iter = iter;
+
+ if (p >= mblock_high_watermark)
+ return NULL;
+
+ return (void*)p;
+}
+
+void * getFirstMBlock(void **state)
+{
+ free_list *fake_state;
+ free_list **casted_state;
+
+ if (state)
+ casted_state = (free_list**)state;
+ else
+ casted_state = &fake_state;
+
+ *casted_state = free_list_head;
+ return getAllocatedMBlock(casted_state, mblock_address_space_begin);
+}
+
+void * getNextMBlock(void **state, void *mblock)
+{
+ free_list *fake_state = free_list_head;
+ free_list **casted_state;
+
+ if (state)
+ casted_state = (free_list**)state;
+ else
+ casted_state = &fake_state;
+
+ return getAllocatedMBlock(casted_state, (W_)mblock + MBLOCK_SIZE);
+}
+
+static void *getReusableMBlocks(nat n)
+{
+ struct free_list *iter;
+ W_ size = MBLOCK_SIZE * (W_)n;
+
+ for (iter = free_list_head; iter != NULL; iter = iter->next) {
+ void *addr;
+
+ if (iter->size < size)
+ continue;
+
+ addr = (void*)iter->address;
+ iter->address += size;
+ iter->size -= size;
+ if (iter->size == 0) {
+ struct free_list *prev, *next;
+
+ prev = iter->prev;
+ next = iter->next;
+ if (prev == NULL) {
+ ASSERT(free_list_head == iter);
+ free_list_head = next;
+ } else {
+ prev->next = next;
+ }
+ if (next != NULL) {
+ next->prev = prev;
+ }
+ stgFree(iter);
+ }
+
+ osCommitMemory(addr, size);
+ return addr;
+ }
+
+ return NULL;
+}
+
+static void *getFreshMBlocks(nat n)
+{
+ W_ size = MBLOCK_SIZE * (W_)n;
+ void *addr = (void*)mblock_high_watermark;
+
+ if (mblock_high_watermark + size >
+ mblock_address_space_begin + MBLOCK_SPACE_SIZE)
+ {
+ // whoa, 1 TB of heap?
+ errorBelch("out of memory");
+ stg_exit(EXIT_HEAPOVERFLOW);
+ }
+
+ osCommitMemory(addr, size);
+ mblock_high_watermark += size;
+ return addr;
+}
+
+static void *getCommittedMBlocks(nat n)
+{
+ void *p;
+
+ p = getReusableMBlocks(n);
+ if (p == NULL) {
+ p = getFreshMBlocks(n);
+ }
+
+ ASSERT(p != NULL && p != (void*)-1);
+ return p;
+}
+
+static void decommitMBlocks(char *addr, nat n)
+{
+ struct free_list *iter, *prev;
+ W_ size = MBLOCK_SIZE * (W_)n;
+ W_ address = (W_)addr;
+
+ osDecommitMemory(addr, size);
+
+ prev = NULL;
+ for (iter = free_list_head; iter != NULL; iter = iter->next)
+ {
+ prev = iter;
+
+ if (iter->address + iter->size < address)
+ continue;
+
+ if (iter->address + iter->size == address) {
+ iter->size += size;
+
+ if (address + size == mblock_high_watermark) {
+ mblock_high_watermark -= iter->size;
+ if (iter->prev) {
+ iter->prev->next = NULL;
+ } else {
+ ASSERT(iter == free_list_head);
+ free_list_head = NULL;
+ }
+ stgFree(iter);
+ return;
+ }
+
+ if (iter->next &&
+ iter->next->address == iter->address + iter->size) {
+ struct free_list *next;
+
+ next = iter->next;
+ iter->size += next->size;
+ iter->next = next->next;
+
+ if (iter->next) {
+ iter->next->prev = iter;
+
+ /* We don't need to consolidate more */
+ ASSERT(iter->next->address > iter->address + iter->size);
+ }
+
+ stgFree(next);
+ }
+ return;
+ } else if (address + size == iter->address) {
+ iter->address = address;
+ iter->size += size;
+
+ /* We don't need to consolidate backwards
+ (because otherwise it would have been handled by
+ the previous iteration) */
+ if (iter->prev) {
+ ASSERT(iter->prev->address + iter->prev->size < iter->address);
+ }
+ return;
+ } else {
+ struct free_list *new_iter;
+
+ /* All other cases have been handled */
+ ASSERT(iter->address > address + size);
+
+ new_iter = stgMallocBytes(sizeof(struct free_list), "freeMBlocks");
+ new_iter->address = address;
+ new_iter->size = size;
+ new_iter->next = iter;
+ new_iter->prev = iter->prev;
+ if (new_iter->prev) {
+ new_iter->prev->next = new_iter;
+ } else {
+ ASSERT(iter == free_list_head);
+ free_list_head = new_iter;
+ }
+ iter->prev = new_iter;
+ return;
+ }
+ }
+
+ /* We're past the last free list entry, so we must
+ be the highest allocation so far
+ */
+ ASSERT(address + size <= mblock_high_watermark);
+
+ /* Fast path the case of releasing high or all memory */
+ if (address + size == mblock_high_watermark) {
+ mblock_high_watermark -= size;
+ } else {
+ struct free_list *new_iter;
+
+ new_iter = stgMallocBytes(sizeof(struct free_list), "freeMBlocks");
+ new_iter->address = address;
+ new_iter->size = size;
+ new_iter->next = NULL;
+ new_iter->prev = prev;
+ if (new_iter->prev) {
+ ASSERT(new_iter->prev->next == NULL);
+ new_iter->prev->next = new_iter;
+ } else {
+ ASSERT(free_list_head == NULL);
+ free_list_head = new_iter;
+ }
+ }
+}
+
+void releaseFreeMemory(void)
+{
+ // This function exists for releasing address space
+ // on Windows 32 bit
+ //
+ // Do nothing if USE_LARGE_ADDRESS_SPACE, we never want
+ // to release address space
+
+ debugTrace(DEBUG_gc, "mblock_high_watermark: %p\n", mblock_high_watermark);
+}
+
+#else // !USE_LARGE_ADDRESS_SPACE
+
#if SIZEOF_VOID_P == 4
StgWord8 mblock_map[MBLOCK_MAP_SIZE]; // initially all zeros
@@ -108,6 +419,7 @@ setHeapAlloced(void *p, StgWord8 i)
mblock_cache[entry_no] = (mblock << 1) + i;
}
}
+
#endif
static void
@@ -130,7 +442,7 @@ void * mapEntryToMBlock(nat i)
return (void *)((StgWord)i << MBLOCK_SHIFT);
}
-void * getFirstMBlock(void)
+void * getFirstMBlock(void **)
{
nat i;
@@ -140,7 +452,7 @@ void * getFirstMBlock(void)
return NULL;
}
-void * getNextMBlock(void *mblock)
+void * getNextMBlock(void **, void *mblock)
{
nat i;
@@ -152,7 +464,7 @@ void * getNextMBlock(void *mblock)
#elif SIZEOF_VOID_P == 8
-void * getNextMBlock(void *p)
+void * getNextMBlock(void **, void *p)
{
MBlockMap *map;
nat off, j;
@@ -189,7 +501,7 @@ void * getNextMBlock(void *p)
return NULL;
}
-void * getFirstMBlock(void)
+void * getFirstMBlock(void **)
{
MBlockMap *map = mblock_maps[0];
nat line_no, off;
@@ -210,7 +522,38 @@ void * getFirstMBlock(void)
return NULL;
}
-#endif // SIZEOF_VOID_P
+#endif // SIZEOF_VOID_P == 8
+
+static void *getCommittedMBlocks(nat n)
+{
+ // The OS layer returns committed memory directly
+ void *ret = osGetMBlocks(n);
+ nat i;
+
+ // fill in the table
+ for (i = 0; i < n; i++) {
+ markHeapAlloced( (StgWord8*)ret + i * MBLOCK_SIZE );
+ }
+
+ return ret;
+}
+
+static void decommitMBlocks(void *p, nat n)
+{
+ osFreeMBlocks(p, n);
+ nat i;
+
+ for (i = 0; i < n; i++) {
+ markHeapUnalloced( (StgWord8*)p + i * MBLOCK_SIZE );
+ }
+}
+
+void releaseFreeMemory(void)
+{
+ osReleaseFreeMemory();
+}
+
+#endif /* !USE_LARGE_ADDRESS_SPACE */
/* -----------------------------------------------------------------------------
Allocate new mblock(s)
@@ -228,18 +571,12 @@ getMBlock(void)
void *
getMBlocks(nat n)
{
- nat i;
void *ret;
- ret = osGetMBlocks(n);
+ ret = getCommittedMBlocks(n);
debugTrace(DEBUG_gc, "allocated %d megablock(s) at %p",n,ret);
- // fill in the table
- for (i = 0; i < n; i++) {
- markHeapAlloced( (StgWord8*)ret + i * MBLOCK_SIZE );
- }
-
mblocks_allocated += n;
peak_mblocks_allocated = stg_max(peak_mblocks_allocated, mblocks_allocated);
@@ -249,17 +586,11 @@ getMBlocks(nat n)
void
freeMBlocks(void *addr, nat n)
{
- nat i;
-
debugTrace(DEBUG_gc, "freeing %d megablock(s) at %p",n,addr);
mblocks_allocated -= n;
- for (i = 0; i < n; i++) {
- markHeapUnalloced( (StgWord8*)addr + i * MBLOCK_SIZE );
- }
-
- osFreeMBlocks(addr, n);
+ decommitMBlocks(addr, n);
}
void
@@ -267,6 +598,22 @@ freeAllMBlocks(void)
{
debugTrace(DEBUG_gc, "freeing all megablocks");
+#ifdef USE_LARGE_ADDRESS_SPACE
+ {
+ struct free_list *iter, *next;
+
+ for (iter = free_list_head; iter != NULL; iter = next)
+ {
+ next = iter->next;
+ stgFree(iter);
+ }
+ }
+
+ osReleaseHeapMemory();
+
+ mblock_address_space_begin = (W_)-1;
+ mblock_high_watermark = (W_)-1;
+#else
osFreeAllMBlocks();
#if SIZEOF_VOID_P == 8
@@ -276,13 +623,23 @@ freeAllMBlocks(void)
}
stgFree(mblock_maps);
#endif
+
+#endif
}
void
initMBlocks(void)
{
osMemInit();
-#if SIZEOF_VOID_P == 8
+
+#ifdef USE_LARGE_ADDRESS_SPACE
+ {
+ void *addr = osReserveHeapMemory();
+
+ mblock_address_space_begin = (W_)addr;
+ mblock_high_watermark = (W_)addr;
+ }
+#elif SIZEOF_VOID_P == 8
memset(mblock_cache,0xff,sizeof(mblock_cache));
#endif
}
diff --git a/rts/sm/OSMem.h b/rts/sm/OSMem.h
index db704fc78b..9a6ccdd7ec 100644
--- a/rts/sm/OSMem.h
+++ b/rts/sm/OSMem.h
@@ -20,6 +20,47 @@ W_ getPageSize (void);
StgWord64 getPhysicalMemorySize (void);
void setExecutable (void *p, W_ len, rtsBool exec);
+#ifdef USE_LARGE_ADDRESS_SPACE
+
+/*
+ If "large address space" is enabled, we allocate memory in two
+ steps: first we request some address space, and then we request some
+ memory in it. This allows us to ask for much more address space that
+ we will ever need, which keeps everything nice and consecutive.
+*/
+
+// Reserve the large address space blob, and return the address that
+// the OS has chosen for it. It is not safe to access the memory
+// pointed to by the return value, until that memory is committed
+// using osCommitMemory().
+//
+// This function is called once when the block allocator is initialized.
+void *osReserveHeapMemory(void);
+
+// Commit (allocate memory for) a piece of address space, which must
+// be within the previously reserved space After this call, it is safe
+// to access @p up to @len bytes.
+//
+// There is no guarantee on the contents of the memory pointed to by
+// @p, in particular it must not be assumed to contain all zeros.
+void osCommitMemory(void *p, W_ len);
+
+// Decommit (release backing memory for) a piece of address space,
+// which must be within the previously reserve space and must have
+// been previously committed After this call, it is again unsafe to
+// access @p (up to @len bytes), but there is no guarantee that the
+// memory will be released to the system (as far as eg. RSS statistics
+// from top are concerned).
+void osDecommitMemory(void *p, W_ len);
+
+// Release the address space previously obtained and undo the effects of
+// osReserveHeapMemory
+//
+// This function is called once, when the block allocator is deinitialized
+// before the program terminates.
+void osReleaseHeapMemory(void);
+#endif
+
#include "EndPrivate.h"
#endif /* SM_OSMEM_H */
diff --git a/rts/win32/OSMem.c b/rts/win32/OSMem.c
index afa5113638..716171b3fc 100644
--- a/rts/win32/OSMem.c
+++ b/rts/win32/OSMem.c
@@ -8,6 +8,7 @@
#include "Rts.h"
#include "sm/OSMem.h"
+#include "sm/HeapAlloc.h"
#include "RtsUtils.h"
#if HAVE_WINDOWS_H
@@ -28,7 +29,11 @@ typedef struct block_rec_ {
/* allocs are kept in ascending order, and are the memory regions as
returned by the OS as we need to have matching VirtualAlloc and
- VirtualFree calls. */
+ VirtualFree calls.
+
+ If USE_LARGE_ADDRESS_SPACE is defined, this list will contain only
+ one element.
+*/
static alloc_rec* allocs = NULL;
/* free_blocks are kept in ascending order, and adjacent blocks are merged */
@@ -207,12 +212,9 @@ osGetMBlocks(nat n) {
return ret;
}
-void osFreeMBlocks(char *addr, nat n)
+static void decommitBlocks(char *addr, W_ nBytes)
{
alloc_rec *p;
- W_ nBytes = (W_)n * MBLOCK_SIZE;
-
- insertFree(addr, nBytes);
p = allocs;
while ((p != NULL) && (addr >= (p->base + p->size))) {
@@ -243,6 +245,14 @@ void osFreeMBlocks(char *addr, nat n)
}
}
+void osFreeMBlocks(char *addr, nat n)
+{
+ W_ nBytes = (W_)n * MBLOCK_SIZE;
+
+ insertFree(addr, nBytes);
+ decommitBlocks(addr, nBytes);
+}
+
void osReleaseFreeMemory(void)
{
alloc_rec *prev_a, *a;
@@ -414,3 +424,60 @@ void setExecutable (void *p, W_ len, rtsBool exec)
stg_exit(EXIT_FAILURE);
}
}
+
+#ifdef USE_LARGE_ADDRESS_SPACE
+
+static void* heap_base = NULL;
+
+void *osReserveHeapMemory (void)
+{
+ void *start;
+
+ heap_base = VirtualAlloc(NULL, MBLOCK_SPACE_SIZE + MBLOCK_SIZE,
+ MEM_RESERVE, PAGE_READWRITE);
+ if (heap_base == NULL) {
+ if (GetLastError() == ERROR_NOT_ENOUGH_MEMORY) {
+ errorBelch("out of memory");
+ } else {
+ sysErrorBelch(
+ "osReserveHeapMemory: VirtualAlloc MEM_RESERVE %llu bytes failed",
+ MBLOCK_SPACE_SIZE + MBLOCK_SIZE);
+ }
+ stg_exit(EXIT_FAILURE);
+ }
+
+ // VirtualFree MEM_RELEASE must always match a
+ // previous MEM_RESERVE call, in address and size
+ // so we necessarily leak some address space here,
+ // before and after the aligned area
+ // It is not a huge problem because we never commit
+ // that memory
+ start = MBLOCK_ROUND_UP(heap_base);
+
+ return start;
+}
+
+void osCommitMemory (void *at, W_ size)
+{
+ void *temp;
+ temp = VirtualAlloc(at, size, MEM_COMMIT, PAGE_READWRITE);
+ if (temp == NULL) {
+ sysErrorBelch("osCommitMemory: VirtualAlloc MEM_COMMIT failed");
+ stg_exit(EXIT_FAILURE);
+ }
+}
+
+void osDecommitMemory (void *at, W_ size)
+{
+ if (!VirtualFree(at, size, MEM_DECOMMIT)) {
+ sysErrorBelch("osDecommitMemory: VirtualFree MEM_DECOMMIT failed");
+ stg_exit(EXIT_FAILURE);
+ }
+}
+
+void osReleaseHeapMemory (void)
+{
+ VirtualFree(heap_base, 0, MEM_RELEASE);
+}
+
+#endif
diff --git a/testsuite/tests/rts/Makefile b/testsuite/tests/rts/Makefile
index 5e5782a3cb..52de19c876 100644
--- a/testsuite/tests/rts/Makefile
+++ b/testsuite/tests/rts/Makefile
@@ -7,14 +7,14 @@ outofmem-prep::
outofmem::
@$(MAKE) outofmem-prep
- @ulimit -v 10000000 2>/dev/null; ./outofmem || echo "exit($$?)"
+ @ulimit -m 10000000 2>/dev/null; ./outofmem || echo "exit($$?)"
outofmem2-prep::
'$(TEST_HC)' $(TEST_HC_OPTS) -v0 -rtsopts --make -fforce-recomp outofmem2.hs -o outofmem2
outofmem2::
@$(MAKE) outofmem2-prep
- @ulimit -v 1000000 2>/dev/null; ./outofmem2 +RTS -M5m -RTS || echo "exit($$?)"
+ @ulimit -m 1000000 2>/dev/null; ./outofmem2 +RTS -M5m -RTS || echo "exit($$?)"
T2615-prep:
$(RM) libfoo_T2615.so
diff --git a/testsuite/tests/rts/all.T b/testsuite/tests/rts/all.T
index 5be36349d0..0e891e8f1b 100644
--- a/testsuite/tests/rts/all.T
+++ b/testsuite/tests/rts/all.T
@@ -2,6 +2,13 @@ test('testblockalloc',
[c_src, only_ways(['normal','threaded1']), extra_run_opts('+RTS -I0')],
compile_and_run, [''])
+test('testmblockalloc',
+ [c_src, only_ways(['normal','threaded1']), extra_run_opts('+RTS -I0')],
+ compile_and_run, [''])
+# -I0 is important: the idle GC will run the memory leak detector,
+# which will crash because the mblocks we allocate are not in a state
+# the leak detector is expecting.
+
# See bug #101, test requires +RTS -c (or equivalently +RTS -M<something>)
# only GHCi triggers the bug, but we run the test all ways for completeness.
diff --git a/testsuite/tests/rts/outofmem.stderr-ws-64 b/testsuite/tests/rts/outofmem.stderr-ws-64
index 42a4696fcf..dca02c7ed8 100644
--- a/testsuite/tests/rts/outofmem.stderr-ws-64
+++ b/testsuite/tests/rts/outofmem.stderr-ws-64
@@ -1 +1 @@
-outofmem: out of memory (requested 2148532224 bytes)
+outofmem: out of memory
diff --git a/testsuite/tests/rts/outofmem.stdout b/testsuite/tests/rts/outofmem.stdout
index 63a3a6988c..1acdde769d 100644
--- a/testsuite/tests/rts/outofmem.stdout
+++ b/testsuite/tests/rts/outofmem.stdout
@@ -1 +1 @@
-exit(1)
+exit(251)
diff --git a/testsuite/tests/rts/testmblockalloc.c b/testsuite/tests/rts/testmblockalloc.c
new file mode 100644
index 0000000000..df03658387
--- /dev/null
+++ b/testsuite/tests/rts/testmblockalloc.c
@@ -0,0 +1,75 @@
+#include "Rts.h"
+
+#include <stdio.h>
+
+// 16 * 64 == max 1GB
+const int MAXALLOC = 16;
+const int ARRSIZE = 64;
+
+const int LOOPS = 1000;
+const int SEED = 0xf00f00;
+
+extern lnat mblocks_allocated;
+
+int main (int argc, char *argv[])
+{
+ int i, j, b;
+
+ void *a[ARRSIZE];
+ nat sizes[ARRSIZE];
+
+ srand(SEED);
+
+ {
+ RtsConfig conf = defaultRtsConfig;
+ conf.rts_opts_enabled = RtsOptsAll;
+ hs_init_ghc(&argc, &argv, conf);
+ }
+
+ // repeatedly sweep though the array, allocating new random-sized
+ // objects and deallocating the old ones.
+ for (i=0; i < LOOPS; i++)
+ {
+ for (j=0; j < ARRSIZE; j++)
+ {
+ if (i > 0)
+ {
+ freeMBlocks(a[j], sizes[j]);
+ }
+ b = (rand() % MAXALLOC) + 1;
+ a[j] = getMBlocks(b);
+ sizes[j] = b;
+ }
+ }
+
+ releaseFreeMemory();
+
+ for (j=0; j < ARRSIZE; j++)
+ {
+ freeMBlocks(a[j], sizes[j]);
+ }
+
+ releaseFreeMemory();
+
+ // this time, sweep forwards allocating new blocks, and then
+ // backwards deallocating them.
+ for (i=0; i < LOOPS; i++)
+ {
+ for (j=0; j < ARRSIZE; j++)
+ {
+ b = (rand() % MAXALLOC) + 1;
+ a[j] = getMBlocks(b);
+ sizes[j] = b;
+ }
+ for (j=ARRSIZE-1; j >= 0; j--)
+ {
+ freeMBlocks(a[j], sizes[j]);
+ }
+ }
+
+ releaseFreeMemory();
+
+ hs_exit(); // will do a memory leak test
+
+ exit(0);
+}