summaryrefslogtreecommitdiff
path: root/compiler/GHC/Tc/Gen/App.hs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/GHC/Tc/Gen/App.hs')
-rw-r--r--compiler/GHC/Tc/Gen/App.hs1083
1 files changed, 1083 insertions, 0 deletions
diff --git a/compiler/GHC/Tc/Gen/App.hs b/compiler/GHC/Tc/Gen/App.hs
new file mode 100644
index 0000000000..79749c70c7
--- /dev/null
+++ b/compiler/GHC/Tc/Gen/App.hs
@@ -0,0 +1,1083 @@
+{-
+%
+(c) The University of Glasgow 2006
+(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
+-}
+
+{-# LANGUAGE CPP, TupleSections, ScopedTypeVariables #-}
+{-# LANGUAGE FlexibleContexts #-}
+{-# LANGUAGE TypeFamilies, DataKinds, GADTs, TypeApplications #-}
+{-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow]
+
+{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
+
+module GHC.Tc.Gen.App
+ ( tcApp
+ , tcInferSigma
+ , tcValArg
+ , tcExprPrag ) where
+
+import {-# SOURCE #-} GHC.Tc.Gen.Expr( tcCheckPolyExprNC )
+
+import GHC.Tc.Gen.Head
+import GHC.Hs
+import GHC.Tc.Utils.Monad
+import GHC.Tc.Utils.Unify
+import GHC.Tc.Utils.Instantiate
+import GHC.Tc.Instance.Family ( tcGetFamInstEnvs, tcLookupDataFamInst_maybe )
+import GHC.Tc.Gen.HsType
+import GHC.Tc.Utils.TcMType
+import GHC.Tc.Types.Origin
+import GHC.Tc.Utils.TcType as TcType
+import GHC.Core.TyCon
+import GHC.Core.TyCo.Rep
+import GHC.Core.TyCo.Ppr
+import GHC.Core.TyCo.Subst (substTyWithInScope)
+import GHC.Core.TyCo.FVs( shallowTyCoVarsOfType )
+import GHC.Core.Type
+import GHC.Tc.Types.Evidence
+import GHC.Types.Var.Set
+import GHC.Builtin.PrimOps( tagToEnumKey )
+import GHC.Builtin.Names
+import GHC.Driver.Session
+import GHC.Types.SrcLoc
+import GHC.Types.Var.Env ( emptyTidyEnv, mkInScopeSet )
+import GHC.Data.Maybe
+import GHC.Utils.Misc
+import GHC.Utils.Outputable as Outputable
+import GHC.Utils.Panic
+import qualified GHC.LanguageExtensions as LangExt
+
+import Control.Monad
+import Data.Function
+
+#include "HsVersions.h"
+
+import GHC.Prelude
+
+{- *********************************************************************
+* *
+ Quick Look overview
+* *
+********************************************************************* -}
+
+{- Note [Quick Look]
+~~~~~~~~~~~~~~~~~~~~
+The implementation of Quick Look closely follows the QL paper
+ A quick look at impredicativity, Serrano et al, ICFP 2020
+ https://www.microsoft.com/en-us/research/publication/a-quick-look-at-impredicativity/
+
+All the moving parts are in this module, GHC.Tc.Gen.App, so named
+because it deal with n-ary application. The main workhorse is tcApp.
+
+Some notes relative to the paper
+
+* The "instantiation variables" of the paper are ordinary unification
+ variables. We keep track of which variables are instantiation variables
+ by keeping a set Delta of instantiation variables.
+
+* When we learn what an instantiation variable must be, we simply unify
+ it with that type; this is done in qlUnify, which is the function mgu_ql(t1,t2)
+ of the paper. This may fill in a (mutable) instantiation variable with
+ a polytype.
+
+* When QL is done, we don't need to turn the un-filled-in
+ instantiation variables into unification variables -- they already
+ are!
+
+ Moreover, all filled-in occurrences of instantiation variables
+ have been zonked away (see "Crucial step" in tcValArgs), and
+ so the rest of the type checker never sees a meta-type variable
+ filled in with a polytype. For the rest of the typechecker,
+ a meta type variable stands (only) for a monotype.
+
+* We cleverly avoid the quadratic cost of QL, alluded to in the paper.
+ See Note [Quick Look at value arguments]
+-}
+
+
+{- *********************************************************************
+* *
+ tcInferSigma
+* *
+********************************************************************* -}
+
+tcInferSigma :: Bool -> LHsExpr GhcRn -> TcM TcSigmaType
+-- Used only to implement :type; see GHC.Tc.Module.tcRnExpr
+-- True <=> instantiate -- return a rho-type
+-- False <=> don't instantiate -- return a sigma-type
+tcInferSigma inst (L loc rn_expr)
+ | (rn_fun, rn_args, _) <- splitHsApps rn_expr
+ = addExprCtxt rn_expr $
+ setSrcSpan loc $
+ do { do_ql <- wantQuickLook rn_fun
+ ; (tc_fun, fun_sigma) <- tcInferAppHead rn_fun rn_args Nothing
+ ; (_delta, inst_args, app_res_sigma) <- tcInstFun do_ql inst rn_fun fun_sigma rn_args
+ ; _tc_args <- tcValArgs do_ql tc_fun inst_args
+ ; return app_res_sigma }
+
+{- *********************************************************************
+* *
+ Typechecking n-ary applications
+* *
+********************************************************************* -}
+
+{- Note [Application chains and heads]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Quick Look treats application chains specially. What is an
+"application chain"? See Fig 2, of the QL paper: "A quick look at
+impredicativity" (ICFP'20). Here's the syntax:
+
+app :: head
+ | app expr -- HsApp: ordinary application
+ | app @type -- HsTypeApp: VTA
+ | expr `head` expr -- OpApp: infix applications
+ | ( app ) -- HsPar: parens
+ | {-# PRAGMA #-} app -- HsPragE: pragmas
+
+head ::= f -- HsVar: variables
+ | fld -- HsRecFld: record field selectors
+ | (expr :: ty) -- ExprWithTySig: expr with user type sig
+ | other_expr -- Other expressions
+
+When tcExpr sees something that starts an application chain (namely,
+any of the constructors in 'app' or 'head'), it invokes tcApp to
+typecheck it: see Note [tcApp: typechecking applications]. However,
+for HsPar and HsPragE, there is no tcWrapResult (which would
+instantiate types, bypassing Quick Look), so nothing is gained by
+using the application chain route, and we can just recurse to tcExpr.
+
+A "head" has three special cases (for which we can infer a polytype
+using tcInferAppHead_maybe); otherwise is just any old expression (for
+which we can infer a rho-type (via tcInfer).
+
+There is no special treatment for HsUnboundVar, HsOverLit etc, because
+we can't get a polytype from them.
+
+Left and right sections (e.g. (x +) and (+ x)) are not yet supported.
+Probably left sections (x +) would be esay to add, since x is the
+first arg of (+); but right sections are not so easy. For symmetry
+reasons I've left both unchanged, in GHC.Tc.Gen.Expr.
+
+It may not be immediately obvious why ExprWithTySig (e::ty) should be
+dealt with by tcApp, even when it is not applied to anything. Consider
+ f :: [forall a. a->a] -> Int
+ ...(f (undefined :: forall b. b))...
+Clearly this should work! But it will /only/ work because if we
+instantiate that (forall b. b) impredicatively! And that only happens
+in tcApp.
+
+Note [tcApp: typechecking applications]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+tcApp implements the APP-Downarrow/Uparrow rule of
+Fig 3, plus the modification in Fig 5, of the QL paper:
+"A quick look at impredicativity" (ICFP'20).
+
+It treats application chains (f e1 @ty e2) specially:
+
+* So we can report errors like "in the third arument of a call of f"
+
+* So we can do Visible Type Application (VTA), for which we must not
+ eagerly instantiate the function part of the application.
+
+* So that we can do Quick Look impredicativity.
+
+tcApp works like this:
+
+1. Use splitHsApps, which peels off
+ HsApp, HsTypeApp, HsPrag, HsPar
+ returning the function in the corner and the arguments
+
+ splitHsApps can deal with infix as well as prefix application,
+ and returns a Rebuilder to re-assemble the the application after
+ typechecking.
+
+ The "list of arguments" is [HsExprArg], described in Note [HsExprArg].
+ in GHC.Tc.Gen.Head
+
+2. Use tcInferAppHead to infer the type of the fuction,
+ as an (uninstantiated) TcSigmaType
+ There are special cases for
+ HsVar, HsRecFld, and ExprWithTySig
+ Otherwise, delegate back to tcExpr, which
+ infers an (instantiated) TcRhoType
+
+3. Use tcInstFun to instantiate the function, Quick-Looking as we go.
+ This implements the |-inst judgement in Fig 4, plus the
+ modification in Fig 5, of the QL paper:
+ "A quick look at impredicativity" (ICFP'20).
+
+ In tcInstFun we take a quick look at value arguments, using
+ quickLookArg. See Note [Quick Look at value arguments].
+
+4. Use quickLookResultType to take a quick look at the result type,
+ when in checking mode. This is the shaded part of APP-Downarrow
+ in Fig 5.
+
+5. Use tcValArgs to typecheck the value arguments
+
+6. After a gruesome special case for tagToEnum, rebuild the result.
+
+
+Some cases that /won't/ work:
+
+1. Consider this (which uses visible type application):
+
+ (let { f :: forall a. a -> a; f x = x } in f) @Int
+
+ Since 'let' is not among the special cases for tcInferAppHead,
+ we'll delegate back to tcExpr, which will instantiate f's type
+ and the type application to @Int will fail. Too bad!
+
+-}
+
+tcApp :: HsExpr GhcRn -> ExpRhoType -> TcM (HsExpr GhcTc)
+-- See Note [tcApp: typechecking applications]
+tcApp rn_expr exp_res_ty
+ | (rn_fun, rn_args, rebuild) <- splitHsApps rn_expr
+ = do { (tc_fun, fun_sigma) <- tcInferAppHead rn_fun rn_args
+ (checkingExpType_maybe exp_res_ty)
+
+ -- Instantiate
+ ; do_ql <- wantQuickLook rn_fun
+ ; (delta, inst_args, app_res_rho) <- tcInstFun do_ql True rn_fun fun_sigma rn_args
+
+ -- Quick look at result
+ ; quickLookResultType do_ql delta app_res_rho exp_res_ty
+
+ ; whenDOptM Opt_D_dump_tc_trace $
+ do { inst_args <- mapM zonkArg inst_args -- Only when tracing
+ ; traceTc "tcApp" (vcat [ text "rn_fun" <+> ppr rn_fun
+ , text "inst_args" <+> brackets (pprWithCommas pprHsExprArgTc inst_args)
+ , text "do_ql: " <+> ppr do_ql
+ , text "fun_sigma: " <+> ppr fun_sigma
+ , text "delta: " <+> ppr delta
+ , text "app_res_rho:" <+> ppr app_res_rho
+ , text "exp_res_ty:" <+> ppr exp_res_ty
+ , text "rn_expr:" <+> ppr rn_expr ]) }
+
+ -- Typecheck the value arguments
+ ; tc_args <- tcValArgs do_ql tc_fun inst_args
+
+ -- Special case for tagToEnum#
+ ; if isTagToEnum rn_fun
+ then tcTagToEnum rn_expr tc_fun tc_args app_res_rho exp_res_ty
+ else
+
+ do { -- Reconstruct
+ ; let tc_expr = rebuild tc_fun tc_args
+
+ -- Wrap the result
+ -- NB: app_res_ty may be a polytype, via zonkQuickLook
+ ; addFunResCtxt tc_fun tc_args app_res_rho exp_res_ty $
+ tcWrapResult rn_expr tc_expr app_res_rho exp_res_ty } }
+
+--------------------
+-- zonkArg is used *only* during debug-tracing, to make it easier to
+-- see what is going on. For that reason, it is not a full zonk: add
+-- more if you need it.
+zonkArg :: HsExprArg 'TcpInst -> TcM (HsExprArg 'TcpInst)
+zonkArg eva@(EValArg { eva_arg_ty = Scaled m ty })
+ = do { ty' <- zonkTcType ty
+ ; return (eva { eva_arg_ty = Scaled m ty' }) }
+zonkArg arg = return arg
+
+
+wantQuickLook :: HsExpr GhcRn -> TcM Bool
+-- GHC switches on impredicativity all the time for ($)
+wantQuickLook (HsVar _ f) | unLoc f `hasKey` dollarIdKey = return True
+wantQuickLook _ = xoptM LangExt.ImpredicativeTypes
+
+
+----------------
+tcValArgs :: Bool -- Quick-look on?
+ -> HsExpr GhcTc -- The function (for error messages)
+ -> [HsExprArg 'TcpInst] -- Actual argument
+ -> TcM [HsExprArg 'TcpTc] -- Resulting argument
+tcValArgs quick_look fun args
+ = go 1 args
+ where
+ go _ [] = return []
+ go n (arg:args) = do { (n',arg') <- tc_arg n arg
+ ; args' <- go n' args
+ ; return (arg' : args') }
+
+ tc_arg :: Int -> HsExprArg 'TcpInst -> TcM (Int, HsExprArg 'TcpTc)
+ tc_arg n (EPar l) = return (n, EPar l)
+ tc_arg n (EPrag l p) = return (n, EPrag l (tcExprPrag p))
+ tc_arg n (EWrap wrap) = return (n, EWrap wrap)
+ tc_arg n (ETypeArg l hs_ty ty) = return (n+1, ETypeArg l hs_ty ty)
+
+ tc_arg n eva@(EValArg { eva_arg = arg, eva_arg_ty = Scaled mult arg_ty })
+ = do { -- Crucial step: expose QL results before checking arg_ty
+ -- So far as the paper is concerned, this step applies
+ -- the poly-substitution Theta, learned by QL, so that we
+ -- "see" the polymorphism in that argument type. E.g.
+ -- (:) e ids, where ids :: [forall a. a->a]
+ -- (:) :: forall p. p->[p]->[p]
+ -- Then Theta = [p :-> forall a. a->a], and we want
+ -- to check 'e' with expected type (forall a. a->a)
+ arg_ty <- if quick_look then zonkTcType arg_ty
+ else return arg_ty
+
+ -- Now check the argument
+ ; arg' <- addErrCtxt (funAppCtxt fun (eValArgExpr arg) n) $
+ tcScalingUsage mult $
+ do { traceTc "tcEValArg" $
+ vcat [ ppr n <+> text "of" <+> ppr fun
+ , text "arg type:" <+> ppr arg_ty
+ , text "arg:" <+> ppr arg ]
+ ; tcEValArg arg arg_ty }
+
+ ; return (n+1, eva { eva_arg = ValArg arg'
+ , eva_arg_ty = Scaled mult arg_ty }) }
+
+tcEValArg :: EValArg 'TcpInst -> TcSigmaType -> TcM (LHsExpr GhcTc)
+-- Typecheck one value argument of a function call
+tcEValArg (ValArg arg) exp_arg_sigma
+ = tcCheckPolyExprNC arg exp_arg_sigma
+
+tcEValArg (ValArgQL { va_expr = L loc _, va_fun = fun, va_args = args
+ , va_ty = app_res_rho, va_rebuild = rebuild }) exp_arg_sigma
+ = setSrcSpan loc $
+ do { traceTc "tcEValArg {" (vcat [ ppr fun <+> ppr args ])
+ ; tc_args <- tcValArgs True fun args
+ ; co <- unifyType Nothing app_res_rho exp_arg_sigma
+ ; traceTc "tcEValArg }" empty
+ ; return (L loc $ mkHsWrapCo co $ rebuild fun tc_args) }
+
+----------------
+tcValArg :: HsExpr GhcRn -- The function (for error messages)
+ -> LHsExpr GhcRn -- Actual argument
+ -> Scaled TcSigmaType -- expected arg type
+ -> Int -- # of argument
+ -> TcM (LHsExpr GhcTc) -- Resulting argument
+-- tcValArg is called only from Gen.Expr, dealing with left and right sections
+tcValArg fun arg (Scaled mult arg_ty) arg_no
+ = addErrCtxt (funAppCtxt fun arg arg_no) $
+ tcScalingUsage mult $
+ do { traceTc "tcValArg" $
+ vcat [ ppr arg_no <+> text "of" <+> ppr fun
+ , text "arg type:" <+> ppr arg_ty
+ , text "arg:" <+> ppr arg ]
+ ; tcCheckPolyExprNC arg arg_ty }
+
+
+{- *********************************************************************
+* *
+ Instantiating the call
+* *
+********************************************************************* -}
+
+type Delta = TcTyVarSet -- Set of instantiation variables,
+ -- written \kappa in the QL paper
+ -- Just a set of ordinary unification variables,
+ -- but ones that QL may fill in with polytypes
+
+tcInstFun :: Bool -- True <=> Do quick-look
+ -> Bool -- False <=> Instantiate only /inferred/ variables at the end
+ -- so may return a sigma-typex
+ -- True <=> Instantiate all type variables at the end:
+ -- return a rho-type
+ -- The /only/ call site that passes in False is the one
+ -- in tcInferSigma, which is used only to implement :type
+ -- Otherwise we do eager instantiation; in Fig 5 of the paper
+ -- |-inst returns a rho-type
+ -> HsExpr GhcRn -> TcSigmaType -> [HsExprArg 'TcpRn]
+ -> TcM ( Delta
+ , [HsExprArg 'TcpInst]
+ , TcSigmaType )
+-- This function implements the |-inst judgement in Fig 4, plus the
+-- modification in Fig 5, of the QL paper:
+-- "A quick look at impredicativity" (ICFP'20).
+tcInstFun do_ql inst_final rn_fun fun_sigma rn_args
+ = do { traceTc "tcInstFun" (ppr rn_fun $$ ppr rn_args $$ text "do_ql" <+> ppr do_ql)
+ ; go emptyVarSet [] [] fun_sigma rn_args }
+ where
+ fun_orig = exprCtOrigin rn_fun
+ herald = sep [ text "The function" <+> quotes (ppr rn_fun)
+ , text "is applied to"]
+
+ -- Count value args only when complaining about a function
+ -- applied to too many value args
+ -- See Note [Herald for matchExpectedFunTys] in GHC.Tc.Utils.Unify.
+ n_val_args = count isHsValArg rn_args
+
+ fun_is_out_of_scope -- See Note [VTA for out-of-scope functions]
+ = case rn_fun of
+ HsUnboundVar {} -> True
+ _ -> False
+
+ inst_all :: ArgFlag -> Bool
+ inst_all (Invisible {}) = True
+ inst_all Required = False
+
+ inst_inferred :: ArgFlag -> Bool
+ inst_inferred (Invisible InferredSpec) = True
+ inst_inferred (Invisible SpecifiedSpec) = False
+ inst_inferred Required = False
+
+ inst_fun :: [HsExprArg 'TcpRn] -> ArgFlag -> Bool
+ inst_fun [] | inst_final = inst_all
+ | otherwise = inst_inferred
+ inst_fun (EValArg {} : _) = inst_all
+ inst_fun _ = inst_inferred
+
+ -----------
+ go, go1 :: Delta
+ -> [HsExprArg 'TcpInst] -- Accumulator, reversed
+ -> [Scaled TcSigmaType] -- Value args to which applied so far
+ -> TcSigmaType -> [HsExprArg 'TcpRn]
+ -> TcM (Delta, [HsExprArg 'TcpInst], TcSigmaType)
+
+ -- go: If fun_ty=kappa, look it up in Theta
+ go delta acc so_far fun_ty args
+ | Just kappa <- tcGetTyVar_maybe fun_ty
+ , kappa `elemVarSet` delta
+ = do { cts <- readMetaTyVar kappa
+ ; case cts of
+ Indirect fun_ty' -> go delta acc so_far fun_ty' args
+ Flexi -> go1 delta acc so_far fun_ty args }
+ | otherwise
+ = go1 delta acc so_far fun_ty args
+
+ -- go1: fun_ty is not filled-in instantiation variable
+ -- ('go' dealt with that case)
+
+ -- Rule IALL from Fig 4 of the QL paper
+ go1 delta acc so_far fun_ty args
+ | (tvs, body1) <- tcSplitSomeForAllTys (inst_fun args) fun_ty
+ , (theta, body2) <- tcSplitPhiTy body1
+ , not (null tvs && null theta)
+ = do { (inst_tvs, wrap, fun_rho) <- setSrcSpanFromArgs rn_args $
+ instantiateSigma fun_orig tvs theta body2
+ -- setSrcSpanFromArgs: important for the class constraints
+ -- that may be emitted from instantiating fun_sigma
+ ; go (delta `extendVarSetList` inst_tvs)
+ (addArgWrap wrap acc) so_far fun_rho args }
+ -- Going around again means we deal easily with
+ -- nested forall a. Eq a => forall b. Show b => blah
+
+ -- Rule IRESULT from Fig 4 of the QL paper
+ go1 delta acc _ fun_ty []
+ = do { traceTc "tcInstFun:ret" (ppr fun_ty)
+ ; return (delta, reverse acc, fun_ty) }
+
+ go1 delta acc so_far fun_ty (EPar sp : args)
+ = go1 delta (EPar sp : acc) so_far fun_ty args
+
+ go1 delta acc so_far fun_ty (EPrag sp prag : args)
+ = go1 delta (EPrag sp prag : acc) so_far fun_ty args
+
+ -- Rule ITYARG from Fig 4 of the QL paper
+ go1 delta acc so_far fun_ty ( ETypeArg { eva_loc = loc, eva_hs_ty = hs_ty }
+ : rest_args )
+ | fun_is_out_of_scope -- See Note [VTA for out-of-scope functions]
+ = go delta acc so_far fun_ty rest_args
+
+ | otherwise
+ = do { (ty_arg, inst_ty) <- tcVTA fun_ty hs_ty
+ ; let arg' = ETypeArg { eva_loc = loc, eva_hs_ty = hs_ty, eva_ty = ty_arg }
+ ; go delta (arg' : acc) so_far inst_ty rest_args }
+
+ -- Rule IVAR from Fig 4 of the QL paper:
+ go1 delta acc so_far fun_ty args@(EValArg {} : _)
+ | Just kappa <- tcGetTyVar_maybe fun_ty
+ , kappa `elemVarSet` delta
+ = -- Function type was of form f :: forall a b. t1 -> t2 -> b
+ -- with 'b', one of the quantified type variables, in the corner
+ -- but the call applies it to three or more value args.
+ -- Suppose b is instantiated by kappa. Then we want to make fresh
+ -- instantiation variables nu1, nu2, and set kappa := nu1 -> nu2
+ --
+ -- In principle what is happening here is not unlike matchActualFunTysRho
+ -- but there are many small differences:
+ -- - We know that the function type in unfilled meta-tyvar
+ -- matchActualFunTysRho is much more general, has a loop, etc.
+ -- - We must be sure to actually update the variable right now,
+ -- not defer in any way, because this is a QL instantiation variable.
+ -- - We need the freshly allocated unification variables, to extend
+ -- delta with.
+ -- It's easier just to do the job directly here.
+ do { arg_nus <- replicateM (countLeadingValArgs args) newOpenFlexiTyVar
+ ; res_nu <- newOpenFlexiTyVar
+ ; kind_co <- unifyKind Nothing liftedTypeKind (tyVarKind kappa)
+ ; let delta' = delta `extendVarSetList` (res_nu:arg_nus)
+ arg_tys = mkTyVarTys arg_nus
+ res_ty = mkTyVarTy res_nu
+ fun_ty' = mkVisFunTysMany arg_tys res_ty
+ co_wrap = mkWpCastN (mkTcGReflLeftCo Nominal fun_ty' kind_co)
+ acc' = addArgWrap co_wrap acc
+ -- Suppose kappa :: kk
+ -- Then fun_ty :: kk, fun_ty' :: Type, kind_co :: Type ~ kk
+ -- co_wrap :: (fun_ty' |> kind_co) ~ fun_ty'
+ ; writeMetaTyVar kappa (mkCastTy fun_ty' kind_co)
+ -- kappa is uninstantiated ('go' already checked that)
+ ; go delta' acc' so_far fun_ty' args }
+
+ -- Rule IARG from Fig 4 of the QL paper:
+ go1 delta acc so_far fun_ty
+ (eva@(EValArg { eva_arg = ValArg arg }) : rest_args)
+ = do { (wrap, arg_ty, res_ty) <- matchActualFunTySigma herald
+ (Just (ppr rn_fun))
+ (n_val_args, so_far) fun_ty
+ ; let arg_no = 1 + count isVisibleArg acc
+ -- We could cache this in a pair with acc; but
+ -- it's only evaluated if there's a type error
+ ; (delta', arg') <- if do_ql
+ then addErrCtxt (funAppCtxt rn_fun arg arg_no) $
+ -- Context needed for constraints
+ -- generated by calls in arg
+ quickLookArg delta arg arg_ty
+ else return (delta, ValArg arg)
+ ; let acc' = eva { eva_arg = arg', eva_arg_ty = arg_ty }
+ : addArgWrap wrap acc
+ ; go delta' acc' (arg_ty:so_far) res_ty rest_args }
+
+
+
+{- *********************************************************************
+* *
+ Visible type application
+* *
+********************************************************************* -}
+
+tcVTA :: TcType -- Function type
+ -> LHsWcType GhcRn -- Argument type
+ -> TcM (TcType, TcType)
+-- Deal with a visible type application
+-- The function type has already had its Inferred binders instantiated
+tcVTA fun_ty hs_ty
+ | Just (tvb, inner_ty) <- tcSplitForAllTy_maybe fun_ty
+ , binderArgFlag tvb == Specified
+ -- It really can't be Inferred, because we've just
+ -- instantiated those. But, oddly, it might just be Required.
+ -- See Note [Required quantifiers in the type of a term]
+ = do { let tv = binderVar tvb
+ kind = tyVarKind tv
+ ; ty_arg <- tcHsTypeApp hs_ty kind
+
+ ; inner_ty <- zonkTcType inner_ty
+ -- See Note [Visible type application zonk]
+
+ ; let in_scope = mkInScopeSet (tyCoVarsOfTypes [fun_ty, ty_arg])
+ insted_ty = substTyWithInScope in_scope [tv] [ty_arg] inner_ty
+ -- NB: tv and ty_arg have the same kind, so this
+ -- substitution is kind-respecting
+ ; traceTc "VTA" (vcat [ppr tv, debugPprType kind
+ , debugPprType ty_arg
+ , debugPprType (tcTypeKind ty_arg)
+ , debugPprType inner_ty
+ , debugPprType insted_ty ])
+ ; return (ty_arg, insted_ty) }
+
+ | otherwise
+ = do { (_, fun_ty) <- zonkTidyTcType emptyTidyEnv fun_ty
+ ; failWith $
+ text "Cannot apply expression of type" <+> quotes (ppr fun_ty) $$
+ text "to a visible type argument" <+> quotes (ppr hs_ty) }
+
+{- Note [Required quantifiers in the type of a term]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Consider (#15859)
+
+ data A k :: k -> Type -- A :: forall k -> k -> Type
+ type KindOf (a :: k) = k -- KindOf :: forall k. k -> Type
+ a = (undefind :: KindOf A) @Int
+
+With ImpredicativeTypes (thin ice, I know), we instantiate
+KindOf at type (forall k -> k -> Type), so
+ KindOf A = forall k -> k -> Type
+whose first argument is Required
+
+We want to reject this type application to Int, but in earlier
+GHCs we had an ASSERT that Required could not occur here.
+
+The ice is thin; c.f. Note [No Required TyCoBinder in terms]
+in GHC.Core.TyCo.Rep.
+
+Note [VTA for out-of-scope functions]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Suppose 'wurble' is not in scope, and we have
+ (wurble @Int @Bool True 'x')
+
+Then the renamer will make (HsUnboundVar "wurble) for 'wurble',
+and the typechecker will typecheck it with tcUnboundId, giving it
+a type 'alpha', and emitting a deferred Hole constraint, to
+be reported later.
+
+But then comes the visible type application. If we do nothing, we'll
+generate an immediate failure (in tc_app_err), saying that a function
+of type 'alpha' can't be applied to Bool. That's insane! And indeed
+users complain bitterly (#13834, #17150.)
+
+The right error is the Hole, which has /already/ been emitted by
+tcUnboundId. It later reports 'wurble' as out of scope, and tries to
+give its type.
+
+Fortunately in tcInstFun we still have access to the function, so we
+can check if it is a HsUnboundVar. We use this info to simply skip
+over any visible type arguments. We've already inferred the type of
+the function (in tcInferAppHead), so we'll /already/ have emitted a
+Hole constraint; failing preserves that constraint.
+
+We do /not/ want to fail altogether in this case (via failM) becuase
+that may abandon an entire instance decl, which (in the presence of
+-fdefer-type-errors) leads to leading to #17792.
+
+Downside; the typechecked term has lost its visible type arguments; we
+don't even kind-check them. But let's jump that bridge if we come to
+it. Meanwhile, let's not crash!
+
+
+Note [Visible type application zonk]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+* Substitutions should be kind-preserving, so we need kind(tv) = kind(ty_arg).
+
+* tcHsTypeApp only guarantees that
+ - ty_arg is zonked
+ - kind(zonk(tv)) = kind(ty_arg)
+ (checkExpectedKind zonks as it goes).
+
+So we must zonk inner_ty as well, to guarantee consistency between zonk(tv)
+and inner_ty. Otherwise we can build an ill-kinded type. An example was
+#14158, where we had:
+ id :: forall k. forall (cat :: k -> k -> *). forall (a :: k). cat a a
+and we had the visible type application
+ id @(->)
+
+* We instantiated k := kappa, yielding
+ forall (cat :: kappa -> kappa -> *). forall (a :: kappa). cat a a
+* Then we called tcHsTypeApp (->) with expected kind (kappa -> kappa -> *).
+* That instantiated (->) as ((->) q1 q1), and unified kappa := q1,
+ Here q1 :: RuntimeRep
+* Now we substitute
+ cat :-> (->) q1 q1 :: TYPE q1 -> TYPE q1 -> *
+ but we must first zonk the inner_ty to get
+ forall (a :: TYPE q1). cat a a
+ so that the result of substitution is well-kinded
+ Failing to do so led to #14158.
+
+-}
+
+{- *********************************************************************
+* *
+ Quick Look
+* *
+********************************************************************* -}
+
+{- Note [Quick Look at value arguments]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+The function quickLookArg implements the "QL argument" judgement of
+the QL paper, in Fig 5 of "A quick look at impredicativity" (ICFP 2020),
+rather directly.
+
+Wrinkles:
+
+* We avoid zonking, so quickLookArg thereby sees the argument type /before/
+ the QL substitution Theta is applied to it. So we achieve argument-order
+ independence for free (see 5.7 in the paper).
+
+* When we quick-look at an argument, we save the work done, by returning
+ an EValArg with a ValArgQL inside it. (It started life with a ValArg
+ inside.) The ValArgQL remembers all the work that QL did (notably,
+ decomposing the argument and instantiating) so that tcValArgs does
+ not need to repeat it. Rather neat, and remarkably easy.
+-}
+
+----------------
+quickLookArg :: Delta
+ -> LHsExpr GhcRn -- Argument
+ -> Scaled TcSigmaType -- Type expected by the function
+ -> TcM (Delta, EValArg 'TcpInst)
+-- See Note [Quick Look at value arguments]
+--
+-- The returned Delta is a superset of the one passed in
+-- with added instantiation variables from
+-- (a) the call itself
+-- (b) the arguments of the call
+quickLookArg delta larg (Scaled _ arg_ty)
+ | isEmptyVarSet delta = skipQuickLook delta larg
+ | otherwise = go arg_ty
+ where
+ guarded = isGuardedTy arg_ty
+ -- NB: guardedness is computed based on the original,
+ -- unzonked arg_ty, so we deliberately do not exploit
+ -- guardedness that emerges a result of QL on earlier args
+
+ go arg_ty | not (isRhoTy arg_ty)
+ = skipQuickLook delta larg
+
+ -- This top-level zonk step, which is the reason
+ -- we need a local 'go' loop, is subtle
+ -- See Section 9 of the QL paper
+ | Just kappa <- tcGetTyVar_maybe arg_ty
+ , kappa `elemVarSet` delta
+ = do { info <- readMetaTyVar kappa
+ ; case info of
+ Indirect arg_ty' -> go arg_ty'
+ Flexi -> quickLookArg1 guarded delta larg arg_ty }
+
+ | otherwise
+ = quickLookArg1 guarded delta larg arg_ty
+
+isGuardedTy :: TcType -> Bool
+isGuardedTy ty
+ | Just (tc,_) <- tcSplitTyConApp_maybe ty = isGenerativeTyCon tc Nominal
+ | Just {} <- tcSplitAppTy_maybe ty = True
+ | otherwise = False
+
+quickLookArg1 :: Bool -> Delta -> LHsExpr GhcRn -> TcSigmaType
+ -> TcM (Delta, EValArg 'TcpInst)
+quickLookArg1 guarded delta larg@(L loc arg) arg_ty
+ = setSrcSpan loc $
+ do { let (rn_fun,rn_args,rebuild) = splitHsApps arg
+ ; mb_fun_ty <- tcInferAppHead_maybe rn_fun rn_args (Just arg_ty)
+ ; traceTc "quickLookArg 1" $
+ vcat [ text "arg:" <+> ppr arg
+ , text "head:" <+> ppr rn_fun <+> dcolon <+> ppr mb_fun_ty
+ , text "args:" <+> ppr rn_args ]
+
+ ; case mb_fun_ty of {
+ Nothing -> -- fun is too complicated
+ skipQuickLook delta larg ;
+ Just (fun', fun_sigma) ->
+
+ do { let no_free_kappas = findNoQuantVars fun_sigma rn_args
+ ; traceTc "quickLookArg 2" $
+ vcat [ text "no_free_kappas:" <+> ppr no_free_kappas
+ , text "guarded:" <+> ppr guarded ]
+ ; if not (guarded || no_free_kappas)
+ then skipQuickLook delta larg
+ else
+ do { do_ql <- wantQuickLook rn_fun
+ ; (delta_app, inst_args, app_res_rho)
+ <- tcInstFun do_ql True rn_fun fun_sigma rn_args
+ ; traceTc "quickLookArg" $
+ vcat [ text "arg:" <+> ppr arg
+ , text "delta:" <+> ppr delta
+ , text "delta_app:" <+> ppr delta_app
+ , text "arg_ty:" <+> ppr arg_ty
+ , text "app_res_rho:" <+> ppr app_res_rho ]
+
+ -- Do quick-look unification
+ -- NB: arg_ty may not be zonked, but that's ok
+ ; let delta' = delta `unionVarSet` delta_app
+ ; qlUnify delta' arg_ty app_res_rho
+
+ ; let ql_arg = ValArgQL { va_expr = larg, va_fun = fun'
+ , va_args = inst_args
+ , va_ty = app_res_rho
+ , va_rebuild = rebuild }
+ ; return (delta', ql_arg) } } } }
+
+skipQuickLook :: Delta -> LHsExpr GhcRn -> TcM (Delta, EValArg 'TcpInst)
+skipQuickLook delta larg = return (delta, ValArg larg)
+
+----------------
+quickLookResultType :: Bool -> Delta -> TcRhoType -> ExpRhoType -> TcM ()
+-- This function implements the shaded bit of rule APP-Downarrow in
+-- Fig 5 of the QL paper: "A quick look at impredicativity" (ICFP'20).
+
+quickLookResultType do_ql delta app_res_rho exp_res_ty
+ | do_ql
+ , not (isEmptyVarSet delta) -- Optimisation only
+ , Just exp_rho <- checkingExpType_maybe exp_res_ty
+ -- In checking mode only
+ = qlUnify delta app_res_rho exp_rho
+ | otherwise
+ = return ()
+
+---------------------
+qlUnify :: Delta -> TcType -> TcType -> TcM ()
+-- Unify ty1 with ty2, unifying only variables in delta
+qlUnify delta ty1 ty2
+ = do { traceTc "qlUnify" (ppr delta $$ ppr ty1 $$ ppr ty2)
+ ; go (emptyVarSet,emptyVarSet) ty1 ty2 }
+ where
+ go :: (TyVarSet, TcTyVarSet)
+ -> TcType -> TcType
+ -> TcM ()
+ -- The TyVarSets give the variables bound by enclosing foralls
+ -- for the corresponding type. Don't unify with these.
+ go bvs (TyVarTy tv) ty2
+ | tv `elemVarSet` delta = go_kappa bvs tv ty2
+
+ go (bvs1, bvs2) ty1 (TyVarTy tv)
+ | tv `elemVarSet` delta = go_kappa (bvs2,bvs1) tv ty1
+
+ go bvs (CastTy ty1 _) ty2 = go bvs ty1 ty2
+ go bvs ty1 (CastTy ty2 _) = go bvs ty1 ty2
+
+ go _ (TyConApp tc1 []) (TyConApp tc2 [])
+ | tc1 == tc2 -- See GHC.Tc.Utils.Unify
+ = return () -- Note [Expanding synonyms during unification]
+
+ -- Now, and only now, expand synonyms
+ go bvs rho1 rho2
+ | Just rho1 <- tcView rho1 = go bvs rho1 rho2
+ | Just rho2 <- tcView rho2 = go bvs rho1 rho2
+
+ go bvs (TyConApp tc1 tys1) (TyConApp tc2 tys2)
+ | tc1 == tc2
+ , not (isTypeFamilyTyCon tc1)
+ , tys1 `equalLength` tys2
+ = zipWithM_ (go bvs) tys1 tys2
+
+ -- Decompose (arg1 -> res1) ~ (arg2 -> res2)
+ -- and (c1 => res1) ~ (c2 => res2)
+ -- But for the latter we only learn instantiation info from t1~t2
+ -- We look at the multiplicity too, although the chances of getting
+ -- impredicative instantiation info from there seems...remote.
+ go bvs (FunTy { ft_af = af1, ft_arg = arg1, ft_res = res1, ft_mult = mult1 })
+ (FunTy { ft_af = af2, ft_arg = arg2, ft_res = res2, ft_mult = mult2 })
+ | af1 == af2
+ = do { when (af1 == VisArg) $
+ do { go bvs arg1 arg2; go bvs mult1 mult2 }
+ ; go bvs res1 res2 }
+
+ -- ToDo: c.f. Tc.Utils.unify.uType,
+ -- which does not split FunTy here
+ -- Also NB tcRepSplitAppTy here, which does not split (c => t)
+ go bvs (AppTy t1a t1b) ty2
+ | Just (t2a, t2b) <- tcRepSplitAppTy_maybe ty2
+ = do { go bvs t1a t2a; go bvs t1b t2b }
+
+ go bvs ty1 (AppTy t2a t2b)
+ | Just (t1a, t1b) <- tcRepSplitAppTy_maybe ty1
+ = do { go bvs t1a t2a; go bvs t1b t2b }
+
+ go (bvs1, bvs2) (ForAllTy bv1 ty1) (ForAllTy bv2 ty2)
+ = go (bvs1',bvs2') ty1 ty2
+ where
+ bvs1' = bvs1 `extendVarSet` binderVar bv1
+ bvs2' = bvs2 `extendVarSet` binderVar bv2
+
+ go _ _ _ = return ()
+
+
+ ----------------
+ go_kappa bvs kappa ty2
+ = ASSERT2( isMetaTyVar kappa, ppr kappa )
+ do { info <- readMetaTyVar kappa
+ ; case info of
+ Indirect ty1 -> go bvs ty1 ty2
+ Flexi -> do { ty2 <- zonkTcType ty2
+ ; go_flexi bvs kappa ty2 } }
+
+ ----------------
+ go_flexi (_,bvs2) kappa ty2 -- ty2 is zonked
+ | -- See Note [Actual unification in qlUnify]
+ let ty2_tvs = shallowTyCoVarsOfType ty2
+ , not (ty2_tvs `intersectsVarSet` bvs2)
+ -- Can't instantiate a delta-varto a forall-bound variable
+ , Just ty2 <- occCheckExpand [kappa] ty2
+ -- Passes the occurs check
+ = do { let ty2_kind = typeKind ty2
+ kappa_kind = tyVarKind kappa
+ ; co <- unifyKind (Just (ppr ty2)) ty2_kind kappa_kind
+ -- unifyKind: see Note [Actual unification in qlUnify]
+
+ ; traceTc "qlUnify:update" $
+ vcat [ hang (ppr kappa <+> dcolon <+> ppr kappa_kind)
+ 2 (text ":=" <+> ppr ty2 <+> dcolon <+> ppr ty2_kind)
+ , text "co:" <+> ppr co ]
+ ; writeMetaTyVar kappa (mkCastTy ty2 co) }
+
+ | otherwise
+ = return () -- Occurs-check or forall-bound varialbe
+
+
+{- Note [Actual unification in qlUnify]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+In qlUnify, if we find (kappa ~ ty), we are going to update kappa := ty.
+That is the entire point of qlUnify! Wrinkles:
+
+* We must not unify with anything bound by an enclosing forall; e.g.
+ (forall a. kappa -> Int) ~ forall a. a -> Int)
+ That's tracked by the 'bvs' arg of 'go'.
+
+* We must not make an occurs-check; we use occCheckExpand for that.
+
+* metaTyVarUpdateOK also checks for various other things, including
+ - foralls, and predicate types (which we want to allow here)
+ - type families (relates to a very specific and exotic performance
+ question, that is unlikely to bite here)
+ - blocking coercion holes
+ After some thought we believe that none of these are relevant
+ here
+
+* What if kappa and ty have different kinds? We solve that problem by
+ calling unifyKind, producing a coercion perhaps emitting some deferred
+ equality constraints. That is /different/ from the approach we use in
+ the main constraint solver for herterogeneous equalities; see Note
+ [Equalities with incompatible kinds] in Solver.Canonical
+
+ Why different? Because:
+ - We can't use qlUnify to solve the kind constraint because qlUnify
+ won't unify ordinary (non-instantiation) unification variables.
+ (It would have to worry about lots of things like untouchability
+ if it did.)
+ - qlUnify can't give up if the kinds look un-equal because that would
+ mean that it might succeed some times (when the eager unifier
+ has already unified those kinds) but not others -- order
+ dependence.
+ - We can't use the ordinary unifier/constraint solver instead,
+ because it doesn't unify polykinds, and has all kinds of other
+ magic. qlUnify is very focused.
+
+ TL;DR Calling unifyKind seems like the lesser evil.
+ -}
+
+{- *********************************************************************
+* *
+ Guardedness
+* *
+********************************************************************* -}
+
+findNoQuantVars :: TcSigmaType -> [HsExprArg 'TcpRn] -> Bool
+-- True <=> there are no free quantified variables
+-- in the result of the call
+-- E.g. in the call (f e1 e2), if
+-- f :: forall a b. a -> b -> Int return True
+-- f :: forall a b. a -> b -> b return False (b is free)
+findNoQuantVars fun_ty args
+ = go emptyVarSet fun_ty args
+ where
+ need_instantiation [] = True
+ need_instantiation (EValArg {} : _) = True
+ need_instantiation _ = False
+
+ go :: TyVarSet -> TcSigmaType -> [HsExprArg 'TcpRn] -> Bool
+ go bvs fun_ty args
+ | need_instantiation args
+ , (tvs, theta, rho) <- tcSplitSigmaTy fun_ty
+ , not (null tvs && null theta)
+ = go (bvs `extendVarSetList` tvs) rho args
+
+ go bvs fun_ty [] = tyCoVarsOfType fun_ty `disjointVarSet` bvs
+
+ go bvs fun_ty (EPar {} : args) = go bvs fun_ty args
+ go bvs fun_ty (EPrag {} : args) = go bvs fun_ty args
+
+ go bvs fun_ty args@(ETypeArg {} : rest_args)
+ | (tvs, body1) <- tcSplitSomeForAllTys (== Inferred) fun_ty
+ , (theta, body2) <- tcSplitPhiTy body1
+ , not (null tvs && null theta)
+ = go (bvs `extendVarSetList` tvs) body2 args
+ | Just (_tv, res_ty) <- tcSplitForAllTy_maybe fun_ty
+ = go bvs res_ty rest_args
+ | otherwise
+ = False -- E.g. head ids @Int
+
+ go bvs fun_ty (EValArg {} : rest_args)
+ | Just (_, res_ty) <- tcSplitFunTy_maybe fun_ty
+ = go bvs res_ty rest_args
+ | otherwise
+ = False -- E.g. head id 'x'
+
+
+{- *********************************************************************
+* *
+ tagToEnum#
+* *
+********************************************************************* -}
+
+{- Note [tagToEnum#]
+~~~~~~~~~~~~~~~~~~~~
+Nasty check to ensure that tagToEnum# is applied to a type that is an
+enumeration TyCon. Unification may refine the type later, but this
+check won't see that, alas. It's crude, because it relies on our
+knowing *now* that the type is ok, which in turn relies on the
+eager-unification part of the type checker pushing enough information
+here. In theory the Right Thing to do is to have a new form of
+constraint but I definitely cannot face that! And it works ok as-is.
+
+Here's are two cases that should fail
+ f :: forall a. a
+ f = tagToEnum# 0 -- Can't do tagToEnum# at a type variable
+
+ g :: Int
+ g = tagToEnum# 0 -- Int is not an enumeration
+
+When data type families are involved it's a bit more complicated.
+ data family F a
+ data instance F [Int] = A | B | C
+Then we want to generate something like
+ tagToEnum# R:FListInt 3# |> co :: R:FListInt ~ F [Int]
+Usually that coercion is hidden inside the wrappers for
+constructors of F [Int] but here we have to do it explicitly.
+
+It's all grotesquely complicated.
+-}
+
+isTagToEnum :: HsExpr GhcRn -> Bool
+isTagToEnum (HsVar _ (L _ fun_id)) = fun_id `hasKey` tagToEnumKey
+isTagToEnum _ = False
+
+tcTagToEnum :: HsExpr GhcRn -> HsExpr GhcTc -> [HsExprArg 'TcpTc]
+ -> TcRhoType -> ExpRhoType
+ -> TcM (HsExpr GhcTc)
+-- tagToEnum# :: forall a. Int# -> a
+-- See Note [tagToEnum#] Urgh!
+tcTagToEnum expr fun args app_res_ty res_ty
+ | null val_args
+ = failWithTc (text "tagToEnum# must appear applied to one argument")
+
+ | otherwise
+ = do { res_ty <- readExpType res_ty
+ ; ty' <- zonkTcType res_ty
+
+ -- Check that the type is algebraic
+ ; case tcSplitTyConApp_maybe ty' of {
+ Nothing -> do { addErrTc (mk_error ty' doc1)
+ ; vanilla_result } ;
+ Just (tc, tc_args) ->
+
+ do { -- Look through any type family
+ ; fam_envs <- tcGetFamInstEnvs
+ ; case tcLookupDataFamInst_maybe fam_envs tc tc_args of {
+ Nothing -> do { check_enumeration ty' tc
+ ; vanilla_result } ;
+ Just (rep_tc, rep_args, coi) ->
+
+ do { -- coi :: tc tc_args ~R rep_tc rep_args
+ check_enumeration ty' rep_tc
+ ; let rep_ty = mkTyConApp rep_tc rep_args
+ fun' = mkHsWrap (WpTyApp rep_ty) fun
+ expr' = rebuildPrefixApps fun' val_args
+ df_wrap = mkWpCastR (mkTcSymCo coi)
+ ; return (mkHsWrap df_wrap expr') }}}}}
+
+ where
+ val_args = dropWhile (not . isHsValArg) args
+
+ vanilla_result
+ = do { let expr' = rebuildPrefixApps fun args
+ ; tcWrapResult expr expr' app_res_ty res_ty }
+
+ check_enumeration ty' tc
+ | isEnumerationTyCon tc = return ()
+ | otherwise = addErrTc (mk_error ty' doc2)
+
+ doc1 = vcat [ text "Specify the type by giving a type signature"
+ , text "e.g. (tagToEnum# x) :: Bool" ]
+ doc2 = text "Result type must be an enumeration type"
+
+ mk_error :: TcType -> SDoc -> SDoc
+ mk_error ty what
+ = hang (text "Bad call to tagToEnum#"
+ <+> text "at type" <+> ppr ty)
+ 2 what
+
+
+{- *********************************************************************
+* *
+ Pragmas on expressions
+* *
+********************************************************************* -}
+
+tcExprPrag :: HsPragE GhcRn -> HsPragE GhcTc
+tcExprPrag (HsPragSCC x1 src ann) = HsPragSCC x1 src ann
+
+