summaryrefslogtreecommitdiff
path: root/compiler/GHC/Tc/Gen/HsType.hs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/GHC/Tc/Gen/HsType.hs')
-rw-r--r--compiler/GHC/Tc/Gen/HsType.hs831
1 files changed, 515 insertions, 316 deletions
diff --git a/compiler/GHC/Tc/Gen/HsType.hs b/compiler/GHC/Tc/Gen/HsType.hs
index cdbaab115b..1cd4e27c8d 100644
--- a/compiler/GHC/Tc/Gen/HsType.hs
+++ b/compiler/GHC/Tc/Gen/HsType.hs
@@ -31,8 +31,8 @@ module GHC.Tc.Gen.HsType (
bindExplicitTKBndrs_Q_Tv, bindExplicitTKBndrs_Q_Skol,
ContextKind(..),
- -- Type checking type and class decls
- bindTyClTyVars,
+ -- Type checking type and class decls, and instances thereof
+ bindTyClTyVars, tcFamTyPats,
etaExpandAlgTyCon, tcbVisibilities,
-- tyvars
@@ -46,13 +46,11 @@ module GHC.Tc.Gen.HsType (
tcNamedWildCardBinders,
tcHsLiftedType, tcHsOpenType,
tcHsLiftedTypeNC, tcHsOpenTypeNC,
- tcLHsType, tcLHsTypeUnsaturated, tcCheckLHsType,
- tcHsMbContext, tcHsContext, tcLHsPredType, tcInferApps,
+ tcInferLHsType, tcInferLHsTypeUnsaturated, tcCheckLHsType,
+ tcHsMbContext, tcHsContext, tcLHsPredType,
failIfEmitsConstraints,
solveEqualities, -- useful re-export
- typeLevelMode, kindLevelMode,
-
kindGeneralizeAll, kindGeneralizeSome, kindGeneralizeNone,
-- Sort-checking kinds
@@ -115,6 +113,7 @@ import GHC.Driver.Session
import qualified GHC.LanguageExtensions as LangExt
import GHC.Data.Maybe
+import GHC.Data.Bag( unitBag )
import Data.List ( find )
import Control.Monad
@@ -159,6 +158,91 @@ checking until step (3).
Check types AND do validity checking
* *
************************************************************************
+
+Note [Keeping implicitly quantified variables in order]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+When the user implicitly quantifies over variables (say, in a type
+signature), we need to come up with some ordering on these variables.
+This is done by bumping the TcLevel, bringing the tyvars into scope,
+and then type-checking the thing_inside. The constraints are all
+wrapped in an implication, which is then solved. Finally, we can
+zonk all the binders and then order them with scopedSort.
+
+It's critical to solve before zonking and ordering in order to uncover
+any unifications. You might worry that this eager solving could cause
+trouble elsewhere. I don't think it will. Because it will solve only
+in an increased TcLevel, it can't unify anything that was mentioned
+elsewhere. Additionally, we require that the order of implicitly
+quantified variables is manifest by the scope of these variables, so
+we're not going to learn more information later that will help order
+these variables.
+
+Note [Recipe for checking a signature]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Checking a user-written signature requires several steps:
+
+ 1. Generate constraints.
+ 2. Solve constraints.
+ 3. Promote tyvars and/or kind-generalize.
+ 4. Zonk.
+ 5. Check validity.
+
+There may be some surprises in here:
+
+Step 2 is necessary for two reasons: most signatures also bring
+implicitly quantified variables into scope, and solving is necessary
+to get these in the right order (see Note [Keeping implicitly
+quantified variables in order]). Additionally, solving is necessary in
+order to kind-generalize correctly: otherwise, we do not know which
+metavariables are left unsolved.
+
+Step 3 is done by a call to candidateQTyVarsOfType, followed by a call to
+kindGeneralize{All,Some,None}. Here, we have to deal with the fact that
+metatyvars generated in the type may have a bumped TcLevel, because explicit
+foralls raise the TcLevel. To avoid these variables from ever being visible in
+the surrounding context, we must obey the following dictum:
+
+ Every metavariable in a type must either be
+ (A) generalized, or
+ (B) promoted, or See Note [Promotion in signatures]
+ (C) a cause to error See Note [Naughty quantification candidates] in GHC.Tc.Utils.TcMType
+
+The kindGeneralize functions do not require pre-zonking; they zonk as they
+go.
+
+If you are actually doing kind-generalization, you need to bump the level
+before generating constraints, as we will only generalize variables with
+a TcLevel higher than the ambient one.
+
+After promoting/generalizing, we need to zonk again because both
+promoting and generalizing fill in metavariables.
+
+Note [Promotion in signatures]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+If an unsolved metavariable in a signature is not generalized
+(because we're not generalizing the construct -- e.g., pattern
+sig -- or because the metavars are constrained -- see kindGeneralizeSome)
+we need to promote to maintain (WantedTvInv) of Note [TcLevel and untouchable type variables]
+in GHC.Tc.Utils.TcType. Note that promotion is identical in effect to generalizing
+and the reinstantiating with a fresh metavariable at the current level.
+So in some sense, we generalize *all* variables, but then re-instantiate
+some of them.
+
+Here is an example of why we must promote:
+ foo (x :: forall a. a -> Proxy b) = ...
+
+In the pattern signature, `b` is unbound, and will thus be brought into
+scope. We do not know its kind: it will be assigned kappa[2]. Note that
+kappa is at TcLevel 2, because it is invented under a forall. (A priori,
+the kind kappa might depend on `a`, so kappa rightly has a higher TcLevel
+than the surrounding context.) This kappa cannot be solved for while checking
+the pattern signature (which is not kind-generalized). When we are checking
+the *body* of foo, though, we need to unify the type of x with the argument
+type of bar. At this point, the ambient TcLevel is 1, and spotting a
+matavariable with level 2 would violate the (WantedTvInv) invariant of
+Note [TcLevel and untouchable type variables]. So, instead of kind-generalizing,
+we promote the metavariable to level 1. This is all done in kindGeneralizeNone.
+
-}
funsSigCtxt :: [Located Name] -> UserTypeCtxt
@@ -213,19 +297,21 @@ kcClassSigType skol_info names (HsIB { hsib_ext = sig_vars
<- pushTcLevelM $
solveLocalEqualitiesX "kcClassSigType" $
bindImplicitTKBndrs_Skol sig_vars $
- tc_lhs_type typeLevelMode hs_ty liftedTypeKind
+ tcLHsType hs_ty liftedTypeKind
- ; emitResidualTvConstraint skol_info Nothing spec_tkvs
- tc_lvl wanted }
+ ; emitResidualTvConstraint skol_info spec_tkvs tc_lvl wanted }
tcClassSigType :: SkolemInfo -> [Located Name] -> LHsSigType GhcRn -> TcM Type
-- Does not do validity checking
tcClassSigType skol_info names sig_ty
= addSigCtxt (funsSigCtxt names) (hsSigType sig_ty) $
- snd <$> tc_hs_sig_type skol_info sig_ty (TheKind liftedTypeKind)
+ do { (implic, ty) <- tc_hs_sig_type skol_info sig_ty (TheKind liftedTypeKind)
+ ; emitImplication implic
+ ; return ty }
-- Do not zonk-to-Type, nor perform a validity check
-- We are in a knot with the class and associated types
-- Zonking and validity checking is done by tcClassDecl
+ --
-- No need to fail here if the type has an error:
-- If we're in the kind-checking phase, the solveEqualities
-- in kcTyClGroup catches the error
@@ -247,46 +333,36 @@ tcHsSigType ctxt sig_ty
do { traceTc "tcHsSigType {" (ppr sig_ty)
-- Generalise here: see Note [Kind generalisation]
- ; (insol, ty) <- tc_hs_sig_type skol_info sig_ty
- (expectedKindInCtxt ctxt)
- ; ty <- zonkTcType ty
+ ; (implic, ty) <- tc_hs_sig_type skol_info sig_ty (expectedKindInCtxt ctxt)
- ; when insol failM
- -- See Note [Fail fast if there are insoluble kind equalities] in GHC.Tc.Solver
+ -- Spit out the implication (and perhaps fail fast)
+ -- See Note [Failure in local type signatures] in GHC.Tc.Solver
+ ; emitFlatConstraints (mkImplicWC (unitBag implic))
+ ; ty <- zonkTcType ty
; checkValidType ctxt ty
; traceTc "end tcHsSigType }" (ppr ty)
; return ty }
where
skol_info = SigTypeSkol ctxt
--- Does validity checking and zonking.
-tcStandaloneKindSig :: LStandaloneKindSig GhcRn -> TcM (Name, Kind)
-tcStandaloneKindSig (L _ kisig) = case kisig of
- StandaloneKindSig _ (L _ name) ksig ->
- let ctxt = StandaloneKindSigCtxt name in
- addSigCtxt ctxt (hsSigType ksig) $
- do { kind <- tcTopLHsType kindLevelMode ksig (expectedKindInCtxt ctxt)
- ; checkValidType ctxt kind
- ; return (name, kind) }
-
tc_hs_sig_type :: SkolemInfo -> LHsSigType GhcRn
- -> ContextKind -> TcM (Bool, TcType)
+ -> ContextKind -> TcM (Implication, TcType)
-- Kind-checks/desugars an 'LHsSigType',
-- solve equalities,
-- and then kind-generalizes.
-- This will never emit constraints, as it uses solveEqualities internally.
-- No validity checking or zonking
--- Returns also a Bool indicating whether the type induced an insoluble constraint;
--- True <=> constraint is insoluble
+-- Returns also an implication for the unsolved constraints
tc_hs_sig_type skol_info hs_sig_type ctxt_kind
| HsIB { hsib_ext = sig_vars, hsib_body = hs_ty } <- hs_sig_type
= do { (tc_lvl, (wanted, (spec_tkvs, ty)))
<- pushTcLevelM $
solveLocalEqualitiesX "tc_hs_sig_type" $
+ -- See Note [Failure in local type signatures]
bindImplicitTKBndrs_Skol sig_vars $
do { kind <- newExpectedKind ctxt_kind
- ; tc_lhs_type typeLevelMode hs_ty kind }
+ ; tcLHsType hs_ty kind }
-- Any remaining variables (unsolved in the solveLocalEqualities)
-- should be in the global tyvars, and therefore won't be quantified
@@ -301,18 +377,67 @@ tc_hs_sig_type skol_info hs_sig_type ctxt_kind
; let should_gen = not . (`elemVarSet` constrained)
; kvs <- kindGeneralizeSome should_gen ty1
- ; emitResidualTvConstraint skol_info Nothing (kvs ++ spec_tkvs)
- tc_lvl wanted
- ; return (insolubleWC wanted, mkInfForAllTys kvs ty1) }
+ -- Build an implication for any as-yet-unsolved kind equalities
+ -- See Note [Skolem escape in type signatures]
+ ; implic <- buildTvImplication skol_info (kvs ++ spec_tkvs) tc_lvl wanted
+
+ ; return (implic, mkInfForAllTys kvs ty1) }
+
+{- Note [Skolem escape in type signatures]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+tcHsSigType is tricky. Consider (T11142)
+ foo :: forall b. (forall k (a :: k). SameKind a b) -> ()
+This is ill-kinded becuase of a nested skolem-escape.
+
+That will show up as an un-solvable constraint in the implication
+returned by buildTvImplication in tc_hs_sig_type. See Note [Skolem
+escape prevention] in GHC.Tc.Utils.TcType for why it is unsolvable
+(the unification variable for b's kind is untouchable).
+
+Then, in GHC.Tc.Solver.emitFlatConstraints (called from tcHsSigType)
+we'll try to float out the constraint, be unable to do so, and fail.
+See GHC.Tc.Solver Note [Failure in local type signatures] for more
+detail on this.
+
+The separation between tcHsSigType and tc_hs_sig_type is because
+tcClassSigType wants to use the latter, but *not* fail fast, because
+there are skolems from the class decl which are in scope; but it's fine
+not to because tcClassDecl1 has a solveEqualities wrapped around all
+the tcClassSigType calls.
+
+That's why tcHsSigType does emitFlatConstraints (which fails fast) but
+tcClassSigType just does emitImplication (which does not). Ugh.
+
+c.f. see also Note [Skolem escape and forall-types]. The difference
+is that we don't need to simplify at a forall type, only at the
+top level of a signature.
+-}
+
+-- Does validity checking and zonking.
+tcStandaloneKindSig :: LStandaloneKindSig GhcRn -> TcM (Name, Kind)
+tcStandaloneKindSig (L _ kisig) = case kisig of
+ StandaloneKindSig _ (L _ name) ksig ->
+ let ctxt = StandaloneKindSigCtxt name in
+ addSigCtxt ctxt (hsSigType ksig) $
+ do { let mode = mkMode KindLevel
+ ; kind <- tc_top_lhs_type mode ksig (expectedKindInCtxt ctxt)
+ ; checkValidType ctxt kind
+ ; return (name, kind) }
+
-tcTopLHsType :: TcTyMode -> LHsSigType GhcRn -> ContextKind -> TcM Type
+tcTopLHsType :: LHsSigType GhcRn -> ContextKind -> TcM Type
+tcTopLHsType hs_ty ctxt_kind
+ = tc_top_lhs_type (mkMode TypeLevel) hs_ty ctxt_kind
+
+tc_top_lhs_type :: TcTyMode -> LHsSigType GhcRn -> ContextKind -> TcM Type
-- tcTopLHsType is used for kind-checking top-level HsType where
-- we want to fully solve /all/ equalities, and report errors
-- Does zonking, but not validity checking because it's used
-- for things (like deriving and instances) that aren't
-- ordinary types
-tcTopLHsType mode hs_sig_type ctxt_kind
+-- Used for both types and kinds
+tc_top_lhs_type mode hs_sig_type ctxt_kind
| HsIB { hsib_ext = sig_vars, hsib_body = hs_ty } <- hs_sig_type
= do { traceTc "tcTopLHsType {" (ppr hs_ty)
; (spec_tkvs, ty)
@@ -340,7 +465,7 @@ tcHsDeriv :: LHsSigType GhcRn -> TcM ([TyVar], Class, [Type], [Kind])
tcHsDeriv hs_ty
= do { ty <- checkNoErrs $ -- Avoid redundant error report
-- with "illegal deriving", below
- tcTopLHsType typeLevelMode hs_ty AnyKind
+ tcTopLHsType hs_ty AnyKind
; let (tvs, pred) = splitForAllTys ty
(kind_args, _) = splitFunTys (tcTypeKind pred)
; case getClassPredTys_maybe pred of
@@ -369,7 +494,7 @@ tcDerivStrategy mb_lds
tc_deriv_strategy AnyclassStrategy = boring_case AnyclassStrategy
tc_deriv_strategy NewtypeStrategy = boring_case NewtypeStrategy
tc_deriv_strategy (ViaStrategy ty) = do
- ty' <- checkNoErrs $ tcTopLHsType typeLevelMode ty AnyKind
+ ty' <- checkNoErrs $ tcTopLHsType ty AnyKind
let (via_tvs, via_pred) = splitForAllTys ty'
pure (ViaStrategy via_pred, via_tvs)
@@ -387,7 +512,7 @@ tcHsClsInstType user_ctxt hs_inst_ty
-- eagerly avoids follow-on errors when checkValidInstance
-- sees an unsolved coercion hole
inst_ty <- checkNoErrs $
- tcTopLHsType typeLevelMode hs_inst_ty (TheKind constraintKind)
+ tcTopLHsType hs_inst_ty (TheKind constraintKind)
; checkValidInstance user_ctxt hs_inst_ty inst_ty
; return inst_ty }
@@ -397,14 +522,15 @@ tcHsTypeApp :: LHsWcType GhcRn -> Kind -> TcM Type
-- See Note [Recipe for checking a signature] in GHC.Tc.Gen.HsType
tcHsTypeApp wc_ty kind
| HsWC { hswc_ext = sig_wcs, hswc_body = hs_ty } <- wc_ty
- = do { ty <- solveLocalEqualities "tcHsTypeApp" $
+ = do { mode <- mkHoleMode TypeLevel HM_VTA
+ -- HM_VTA: See Note [Wildcards in visible type application]
+ ; ty <- addTypeCtxt hs_ty $
+ solveLocalEqualities "tcHsTypeApp" $
-- We are looking at a user-written type, very like a
-- signature so we want to solve its equalities right now
- unsetWOptM Opt_WarnPartialTypeSignatures $
- setXOptM LangExt.PartialTypeSignatures $
- -- See Note [Wildcards in visible type application]
tcNamedWildCardBinders sig_wcs $ \ _ ->
- tcCheckLHsType hs_ty (TheKind kind)
+ tc_lhs_type mode hs_ty kind
+
-- We do not kind-generalize type applications: we just
-- instantiate with exactly what the user says.
-- See Note [No generalization in type application]
@@ -448,6 +574,31 @@ There is also the possibility of mentioning a wildcard
-}
+tcFamTyPats :: TyCon
+ -> HsTyPats GhcRn -- Patterns
+ -> TcM (TcType, TcKind) -- (lhs_type, lhs_kind)
+-- Check the LHS of a type/data family instance
+-- e.g. type instance F ty1 .. tyn = ...
+-- Used for both type and data families
+tcFamTyPats fam_tc hs_pats
+ = do { traceTc "tcFamTyPats {" $
+ vcat [ ppr fam_tc, text "arity:" <+> ppr fam_arity ]
+
+ ; mode <- mkHoleMode TypeLevel HM_FamPat
+ -- HM_FamPat: See Note [Wildcards in family instances] in
+ -- GHC.Rename.Module
+ ; let fun_ty = mkTyConApp fam_tc []
+ ; (fam_app, res_kind) <- tcInferTyApps mode lhs_fun fun_ty hs_pats
+
+ ; traceTc "End tcFamTyPats }" $
+ vcat [ ppr fam_tc, text "res_kind:" <+> ppr res_kind ]
+
+ ; return (fam_app, res_kind) }
+ where
+ fam_name = tyConName fam_tc
+ fam_arity = tyConArity fam_tc
+ lhs_fun = noLoc (HsTyVar noExtField NotPromoted (noLoc fam_name))
+
{-
************************************************************************
* *
@@ -465,38 +616,38 @@ tcHsOpenType ty = addTypeCtxt ty $ tcHsOpenTypeNC ty
tcHsLiftedType ty = addTypeCtxt ty $ tcHsLiftedTypeNC ty
tcHsOpenTypeNC ty = do { ek <- newOpenTypeKind
- ; tc_lhs_type typeLevelMode ty ek }
-tcHsLiftedTypeNC ty = tc_lhs_type typeLevelMode ty liftedTypeKind
+ ; tcLHsType ty ek }
+tcHsLiftedTypeNC ty = tcLHsType ty liftedTypeKind
-- Like tcHsType, but takes an expected kind
tcCheckLHsType :: LHsType GhcRn -> ContextKind -> TcM TcType
tcCheckLHsType hs_ty exp_kind
= addTypeCtxt hs_ty $
do { ek <- newExpectedKind exp_kind
- ; tc_lhs_type typeLevelMode hs_ty ek }
+ ; tcLHsType hs_ty ek }
-tcLHsType :: LHsType GhcRn -> TcM (TcType, TcKind)
+tcInferLHsType :: LHsType GhcRn -> TcM TcType
-- Called from outside: set the context
-tcLHsType ty = addTypeCtxt ty (tc_infer_lhs_type typeLevelMode ty)
-
--- Like tcLHsType, but use it in a context where type synonyms and type families
--- do not need to be saturated, like in a GHCi :kind call
-tcLHsTypeUnsaturated :: LHsType GhcRn -> TcM (TcType, TcKind)
-tcLHsTypeUnsaturated hs_ty
- | Just (hs_fun_ty, hs_args) <- splitHsAppTys (unLoc hs_ty)
+tcInferLHsType hs_ty
= addTypeCtxt hs_ty $
- do { (fun_ty, _ki) <- tcInferAppHead mode hs_fun_ty
- ; tcInferApps_nosat mode hs_fun_ty fun_ty hs_args }
- -- Notice the 'nosat'; do not instantiate trailing
- -- invisible arguments of a type family.
- -- See Note [Dealing with :kind]
+ do { (ty, _kind) <- tc_infer_lhs_type (mkMode TypeLevel) hs_ty
+ ; return ty }
- | otherwise
+-- Used to check the argument of GHCi :kind
+-- Allow and report wildcards, e.g. :kind T _
+-- Do not saturate family applications: see Note [Dealing with :kind]
+tcInferLHsTypeUnsaturated :: LHsType GhcRn -> TcM (TcType, TcKind)
+tcInferLHsTypeUnsaturated hs_ty
= addTypeCtxt hs_ty $
- tc_infer_lhs_type mode hs_ty
-
- where
- mode = typeLevelMode
+ do { mode <- mkHoleMode TypeLevel HM_Sig -- Allow and report holes
+ ; case splitHsAppTys (unLoc hs_ty) of
+ Just (hs_fun_ty, hs_args)
+ -> do { (fun_ty, _ki) <- tcInferTyAppHead mode hs_fun_ty
+ ; tcInferTyApps_nosat mode hs_fun_ty fun_ty hs_args }
+ -- Notice the 'nosat'; do not instantiate trailing
+ -- invisible arguments of a type family.
+ -- See Note [Dealing with :kind]
+ Nothing -> tc_infer_lhs_type mode hs_ty }
{- Note [Dealing with :kind]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -507,7 +658,7 @@ Consider this GHCi command
We will only get the 'forall' if we /refrain/ from saturating those
invisible binders. But generally we /do/ saturate those invisible
-binders (see tcInferApps), and we want to do so for nested application
+binders (see tcInferTyApps), and we want to do so for nested application
even in GHCi. Consider for example (#16287)
ghci> type family F :: k
ghci> data T :: (forall k. k) -> Type
@@ -515,7 +666,7 @@ even in GHCi. Consider for example (#16287)
We want to reject this. It's just at the very top level that we want
to switch off saturation.
-So tcLHsTypeUnsaturated does a little special case for top level
+So tcInferLHsTypeUnsaturated does a little special case for top level
applications. Actually the common case is a bare variable, as above.
@@ -538,21 +689,46 @@ concern things that the renamer can't handle.
-- grow, at least to include the distinction between patterns and
-- not-patterns.
--
--- To find out where the mode is used, search for 'mode_level'
-data TcTyMode = TcTyMode { mode_level :: TypeOrKind }
-
-typeLevelMode :: TcTyMode
-typeLevelMode = TcTyMode { mode_level = TypeLevel }
-
-kindLevelMode :: TcTyMode
-kindLevelMode = TcTyMode { mode_level = KindLevel }
+-- To find out where the mode is used, search for 'mode_tyki'
+--
+-- This data type is purely local, not exported from this module
+data TcTyMode
+ = TcTyMode { mode_tyki :: TypeOrKind
+
+ -- See Note [Levels for wildcards]
+ -- Nothing <=> no wildcards expected
+ , mode_holes :: Maybe (TcLevel, HoleMode)
+ }
+
+-- HoleMode says how to treat the occurrences
+-- of anonymous wildcards; see tcAnonWildCardOcc
+data HoleMode = HM_Sig -- Partial type signatures: f :: _ -> Int
+ | HM_FamPat -- Family instances: F _ Int = Bool
+ | HM_VTA -- Visible type and kind application:
+ -- f @(Maybe _)
+ -- Maybe @(_ -> _)
+
+mkMode :: TypeOrKind -> TcTyMode
+mkMode tyki = TcTyMode { mode_tyki = tyki, mode_holes = Nothing }
+
+mkHoleMode :: TypeOrKind -> HoleMode -> TcM TcTyMode
+mkHoleMode tyki hm
+ = do { lvl <- getTcLevel
+ ; return (TcTyMode { mode_tyki = tyki
+ , mode_holes = Just (lvl,hm) }) }
--- switch to kind level
kindLevel :: TcTyMode -> TcTyMode
-kindLevel mode = mode { mode_level = KindLevel }
+kindLevel mode = mode { mode_tyki = KindLevel }
+
+instance Outputable HoleMode where
+ ppr HM_Sig = text "HM_Sig"
+ ppr HM_FamPat = text "HM_FamPat"
+ ppr HM_VTA = text "HM_VTA"
instance Outputable TcTyMode where
- ppr = ppr . mode_level
+ ppr (TcTyMode { mode_tyki = tyki, mode_holes = hm })
+ = text "TcTyMode" <+> braces (sep [ ppr tyki <> comma
+ , ppr hm ])
{-
Note [Bidirectional type checking]
@@ -627,11 +803,12 @@ tc_infer_hs_type mode (HsParTy _ t)
tc_infer_hs_type mode ty
| Just (hs_fun_ty, hs_args) <- splitHsAppTys ty
- = do { (fun_ty, _ki) <- tcInferAppHead mode hs_fun_ty
- ; tcInferApps mode hs_fun_ty fun_ty hs_args }
+ = do { (fun_ty, _ki) <- tcInferTyAppHead mode hs_fun_ty
+ ; tcInferTyApps mode hs_fun_ty fun_ty hs_args }
tc_infer_hs_type mode (HsKindSig _ ty sig)
- = do { sig' <- tcLHsKindSig KindSigCtxt sig
+ = do { let mode' = mode { mode_tyki = KindLevel }
+ ; sig' <- tc_lhs_kind_sig mode' KindSigCtxt sig
-- We must typecheck the kind signature, and solve all
-- its equalities etc; from this point on we may do
-- things like instantiate its foralls, so it needs
@@ -665,6 +842,10 @@ tc_infer_hs_type mode other_ty
; return (ty', kv) }
------------------------------------------
+tcLHsType :: LHsType GhcRn -> TcKind -> TcM TcType
+tcLHsType hs_ty exp_kind
+ = tc_lhs_type (mkMode TypeLevel) hs_ty exp_kind
+
tc_lhs_type :: TcTyMode -> LHsType GhcRn -> TcKind -> TcM TcType
tc_lhs_type mode (L span ty) exp_kind
= setSrcSpan span $
@@ -718,18 +899,25 @@ tc_hs_type mode (HsOpTy _ ty1 (L _ op) ty2) exp_kind
tc_hs_type mode forall@(HsForAllTy { hst_fvf = fvf, hst_bndrs = hs_tvs
, hst_body = ty }) exp_kind
= do { (tclvl, wanted, (inv_tv_bndrs, ty'))
- <- pushLevelAndCaptureConstraints $
- bindExplicitTKBndrs_Skol hs_tvs $
+ <- pushLevelAndCaptureConstraints $
+ bindExplicitTKBndrs_Skol_M mode hs_tvs $
+ -- The _M variant passes on the mode from the type, to
+ -- any wildards in kind signatures on the forall'd variables
+ -- e.g. f :: _ -> Int -> forall (a :: _). blah
tc_lhs_type mode ty exp_kind
- -- Do not kind-generalise here! See Note [Kind generalisation]
- -- Why exp_kind? See Note [Body kind of HsForAllTy]
- ; let skol_info = ForAllSkol (ppr forall)
- m_telescope = Just (sep (map ppr hs_tvs))
+ -- Why exp_kind? See Note [Body kind of HsForAllTy]
- ; tv_bndrs <- mapM construct_bndr inv_tv_bndrs
+ -- Do not kind-generalise here! See Note [Kind generalisation]
- ; emitResidualTvConstraint skol_info m_telescope (binderVars tv_bndrs) tclvl wanted
+ ; let skol_info = ForAllSkol (ppr forall) (sep (map ppr hs_tvs))
+ skol_tvs = binderVars inv_tv_bndrs
+ ; implic <- buildTvImplication skol_info skol_tvs tclvl wanted
+ ; emitImplication implic
+ -- /Always/ emit this implication even if wanted is empty
+ -- We need the implication so that we check for a bad telescope
+ -- See Note [Skolem escape and forall-types]
+ ; tv_bndrs <- mapM construct_bndr inv_tv_bndrs
; return (mkForAllTys tv_bndrs ty') }
where
construct_bndr :: TcInvisTVBinder -> TcM TcTyVarBinder
@@ -846,7 +1034,7 @@ tc_hs_type mode rn_ty@(HsExplicitTupleTy _ tys) exp_kind
--------- Constraint types
tc_hs_type mode rn_ty@(HsIParamTy _ (L _ n) ty) exp_kind
- = do { MASSERT( isTypeLevel (mode_level mode) )
+ = do { MASSERT( isTypeLevel (mode_tyki mode) )
; ty' <- tc_lhs_type mode ty liftedTypeKind
; let n' = mkStrLitTy $ hsIPNameFS n
; ipClass <- tcLookupClass ipClassName
@@ -875,7 +1063,7 @@ tc_hs_type mode ty@(HsAppKindTy{}) ek = tc_infer_hs_type_ek mode ty ek
tc_hs_type mode ty@(HsOpTy {}) ek = tc_infer_hs_type_ek mode ty ek
tc_hs_type mode ty@(HsKindSig {}) ek = tc_infer_hs_type_ek mode ty ek
tc_hs_type mode ty@(XHsType (NHsCoreTy{})) ek = tc_infer_hs_type_ek mode ty ek
-tc_hs_type _ wc@(HsWildCardTy _) ek = tcAnonWildCardOcc wc ek
+tc_hs_type mode ty@(HsWildCardTy _) ek = tcAnonWildCardOcc mode ty ek
{-
Note [Variable Specificity and Forall Visibility]
@@ -903,7 +1091,7 @@ Note [VarBndrs, TyCoVarBinders, TyConBinders, and visibility] in TyCoRep.
------------------------------------------
tc_fun_type :: TcTyMode -> LHsType GhcRn -> LHsType GhcRn -> TcKind
-> TcM TcType
-tc_fun_type mode ty1 ty2 exp_kind = case mode_level mode of
+tc_fun_type mode ty1 ty2 exp_kind = case mode_tyki mode of
TypeLevel ->
do { arg_k <- newOpenTypeKind
; res_k <- newOpenTypeKind
@@ -917,46 +1105,10 @@ tc_fun_type mode ty1 ty2 exp_kind = case mode_level mode of
; checkExpectedKind (HsFunTy noExtField ty1 ty2) (mkVisFunTy ty1' ty2')
liftedTypeKind exp_kind }
----------------------------
-tcAnonWildCardOcc :: HsType GhcRn -> Kind -> TcM TcType
-tcAnonWildCardOcc wc exp_kind
- = do { wc_tv <- newWildTyVar -- The wildcard's kind will be an un-filled-in meta tyvar
-
- ; part_tysig <- xoptM LangExt.PartialTypeSignatures
- ; warning <- woptM Opt_WarnPartialTypeSignatures
-
- ; unless (part_tysig && not warning) $
- emitAnonTypeHole wc_tv
- -- Why the 'unless' guard?
- -- See Note [Wildcards in visible kind application]
-
- ; checkExpectedKind wc (mkTyVarTy wc_tv)
- (tyVarKind wc_tv) exp_kind }
-
-{- Note [Wildcards in visible kind application]
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-There are cases where users might want to pass in a wildcard as a visible kind
-argument, for instance:
-
-data T :: forall k1 k2. k1 → k2 → Type where
- MkT :: T a b
-x :: T @_ @Nat False n
-x = MkT
-
-So we should allow '@_' without emitting any hole constraints, and
-regardless of whether PartialTypeSignatures is enabled or not. But how would
-the typechecker know which '_' is being used in VKA and which is not when it
-calls emitNamedTypeHole in tcHsPartialSigType on all HsWildCardBndrs?
-The solution then is to neither rename nor include unnamed wildcards in HsWildCardBndrs,
-but instead give every anonymous wildcard a fresh wild tyvar in tcAnonWildCardOcc.
-And whenever we see a '@', we automatically turn on PartialTypeSignatures and
-turn off hole constraint warnings, and do not call emitAnonTypeHole
-under these conditions.
-See related Note [Wildcards in visible type application] here and
-Note [The wildcard story for types] in GHC.Hs.Type
+{- Note [Skolem escape and forall-types]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+See also Note [Checking telescopes].
-Note [Skolem escape and forall-types]
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
f :: forall a. (forall kb (b :: kb). Proxy '[a, b]) -> ()
@@ -970,11 +1122,19 @@ unification variable, because it would be untouchable inside
this inner implication.
That's what the pushLevelAndCaptureConstraints, plus subsequent
-emitResidualTvConstraint is all about, when kind-checking
+buildTvImplication/emitImplication is all about, when kind-checking
HsForAllTy.
-Note that we don't need to /simplify/ the constraints here
-because we aren't generalising. We just capture them.
+Note that
+
+* We don't need to /simplify/ the constraints here
+ because we aren't generalising. We just capture them.
+
+* We can't use emitResidualTvConstraint, because that has a fast-path
+ for empty constraints. We can't take that fast path here, because
+ we must do the bad-telescope check even if there are no inner wanted
+ constraints. See Note [Checking telescopes] in
+ GHC.Tc.Types.Constraint. Lacking this check led to #16247.
-}
{- *********************************************************************
@@ -1117,14 +1277,14 @@ splitHsAppTys hs_ty
go f as = (f, as)
---------------------------
-tcInferAppHead :: TcTyMode -> LHsType GhcRn -> TcM (TcType, TcKind)
+tcInferTyAppHead :: TcTyMode -> LHsType GhcRn -> TcM (TcType, TcKind)
-- Version of tc_infer_lhs_type specialised for the head of an
-- application. In particular, for a HsTyVar (which includes type
--- constructors, it does not zoom off into tcInferApps and family
+-- constructors, it does not zoom off into tcInferTyApps and family
-- saturation
-tcInferAppHead mode (L _ (HsTyVar _ _ (L _ tv)))
+tcInferTyAppHead mode (L _ (HsTyVar _ _ (L _ tv)))
= tcTyVar mode tv
-tcInferAppHead mode ty
+tcInferTyAppHead mode ty
= tc_infer_lhs_type mode ty
---------------------------
@@ -1135,24 +1295,24 @@ tcInferAppHead mode ty
-- These kinds should be used to instantiate invisible kind variables;
-- they come from an enclosing class for an associated type/data family.
--
--- tcInferApps also arranges to saturate any trailing invisible arguments
+-- tcInferTyApps also arranges to saturate any trailing invisible arguments
-- of a type-family application, which is usually the right thing to do
--- tcInferApps_nosat does not do this saturation; it is used only
+-- tcInferTyApps_nosat does not do this saturation; it is used only
-- by ":kind" in GHCi
-tcInferApps, tcInferApps_nosat
+tcInferTyApps, tcInferTyApps_nosat
:: TcTyMode
-> LHsType GhcRn -- ^ Function (for printing only)
-> TcType -- ^ Function
-> [LHsTypeArg GhcRn] -- ^ Args
-> TcM (TcType, TcKind) -- ^ (f args, args, result kind)
-tcInferApps mode hs_ty fun hs_args
- = do { (f_args, res_k) <- tcInferApps_nosat mode hs_ty fun hs_args
+tcInferTyApps mode hs_ty fun hs_args
+ = do { (f_args, res_k) <- tcInferTyApps_nosat mode hs_ty fun hs_args
; saturateFamApp f_args res_k }
-tcInferApps_nosat mode orig_hs_ty fun orig_hs_args
- = do { traceTc "tcInferApps {" (ppr orig_hs_ty $$ ppr orig_hs_args)
+tcInferTyApps_nosat mode orig_hs_ty fun orig_hs_args
+ = do { traceTc "tcInferTyApps {" (ppr orig_hs_ty $$ ppr orig_hs_args)
; (f_args, res_k) <- go_init 1 fun orig_hs_args
- ; traceTc "tcInferApps }" (ppr f_args <+> dcolon <+> ppr res_k)
+ ; traceTc "tcInferTyApps }" (ppr f_args <+> dcolon <+> ppr res_k)
; return (f_args, res_k) }
where
@@ -1205,21 +1365,18 @@ tcInferApps_nosat mode orig_hs_ty fun orig_hs_args
Anon InvisArg _ -> instantiate ki_binder inner_ki
Named (Bndr _ Specified) -> -- Visible kind application
- do { traceTc "tcInferApps (vis kind app)"
+ do { traceTc "tcInferTyApps (vis kind app)"
(vcat [ ppr ki_binder, ppr hs_ki_arg
, ppr (tyBinderType ki_binder)
, ppr subst ])
; let exp_kind = substTy subst $ tyBinderType ki_binder
-
+ ; arg_mode <- mkHoleMode KindLevel HM_VTA
+ -- HM_VKA: see Note [Wildcards in visible kind application]
; ki_arg <- addErrCtxt (funAppCtxt orig_hs_ty hs_ki_arg n) $
- unsetWOptM Opt_WarnPartialTypeSignatures $
- setXOptM LangExt.PartialTypeSignatures $
- -- Urgh! see Note [Wildcards in visible kind application]
- -- ToDo: must kill this ridiculous messing with DynFlags
- tc_lhs_type (kindLevel mode) hs_ki_arg exp_kind
+ tc_lhs_type arg_mode hs_ki_arg exp_kind
- ; traceTc "tcInferApps (vis kind app)" (ppr exp_kind)
+ ; traceTc "tcInferTyApps (vis kind app)" (ppr exp_kind)
; (subst', fun') <- mkAppTyM subst fun ki_binder ki_arg
; go (n+1) fun' subst' inner_ki hs_args }
@@ -1241,7 +1398,7 @@ tcInferApps_nosat mode orig_hs_ty fun orig_hs_args
-- "normal" case
| otherwise
- -> do { traceTc "tcInferApps (vis normal app)"
+ -> do { traceTc "tcInferTyApps (vis normal app)"
(vcat [ ppr ki_binder
, ppr arg
, ppr (tyBinderType ki_binder)
@@ -1249,7 +1406,7 @@ tcInferApps_nosat mode orig_hs_ty fun orig_hs_args
; let exp_kind = substTy subst $ tyBinderType ki_binder
; arg' <- addErrCtxt (funAppCtxt orig_hs_ty arg n) $
tc_lhs_type mode arg exp_kind
- ; traceTc "tcInferApps (vis normal app) 2" (ppr exp_kind)
+ ; traceTc "tcInferTyApps (vis normal app) 2" (ppr exp_kind)
; (subst', fun') <- mkAppTyM subst fun ki_binder arg'
; go (n+1) fun' subst' inner_ki args }
@@ -1263,7 +1420,7 @@ tcInferApps_nosat mode orig_hs_ty fun orig_hs_args
-- This zonk is essential, to expose the fruits
-- of matchExpectedFunKind to the 'go' loop
- ; traceTc "tcInferApps (no binder)" $
+ ; traceTc "tcInferTyApps (no binder)" $
vcat [ ppr fun <+> dcolon <+> ppr fun_ki
, ppr arrows_needed
, ppr co
@@ -1272,7 +1429,7 @@ tcInferApps_nosat mode orig_hs_ty fun orig_hs_args
-- Use go_init to establish go's INVARIANT
where
instantiate ki_binder inner_ki
- = do { traceTc "tcInferApps (need to instantiate)"
+ = do { traceTc "tcInferTyApps (need to instantiate)"
(vcat [ ppr ki_binder, ppr subst])
; (subst', arg') <- tcInstInvisibleTyBinder subst ki_binder
; go n (mkAppTy fun arg') subst' inner_ki all_args }
@@ -1375,7 +1532,7 @@ The way in which tcTypeKind can crash is in applications
if 'a' is a type variable whose kind doesn't have enough arrows
or foralls. (The crash is in piResultTys.)
-The loop in tcInferApps has to be very careful to maintain the (PKTI).
+The loop in tcInferTyApps has to be very careful to maintain the (PKTI).
For example, suppose
kappa is a unification variable
We have already unified kappa := Type
@@ -1387,7 +1544,7 @@ If we call tcTypeKind on that, we'll crash, because the (un-zonked)
kind of 'a' is just kappa, not an arrow kind. So we must zonk first.
So the type inference engine is very careful when building applications.
-This happens in tcInferApps. Suppose we are kind-checking the type (a Int),
+This happens in tcInferTyApps. Suppose we are kind-checking the type (a Int),
where (a :: kappa). Then in tcInferApps we'll run out of binders on
a's kind, so we'll call matchExpectedFunKind, and unify
kappa := kappa1 -> kappa2, with evidence co :: kappa ~ (kappa1 ~ kappa2)
@@ -1530,10 +1687,10 @@ tcHsMbContext Nothing = return []
tcHsMbContext (Just cxt) = tcHsContext cxt
tcHsContext :: LHsContext GhcRn -> TcM [PredType]
-tcHsContext = tc_hs_context typeLevelMode
+tcHsContext cxt = tc_hs_context (mkMode TypeLevel) cxt
tcLHsPredType :: LHsType GhcRn -> TcM PredType
-tcLHsPredType = tc_lhs_pred typeLevelMode
+tcLHsPredType pred = tc_lhs_pred (mkMode TypeLevel) pred
tc_hs_context :: TcTyMode -> LHsContext GhcRn -> TcM [PredType]
tc_hs_context mode ctxt = mapM (tc_lhs_pred mode) (unLoc ctxt)
@@ -1553,7 +1710,7 @@ tcTyVar mode name -- Could be a tyvar, a tycon, or a datacon
ATcTyCon tc_tc
-> do { -- See Note [GADT kind self-reference]
- unless (isTypeLevel (mode_level mode))
+ unless (isTypeLevel (mode_tyki mode))
(promotionErr name TyConPE)
; check_tc tc_tc
; return (mkTyConTy tc_tc, tyConKind tc_tc) }
@@ -1584,7 +1741,7 @@ tcTyVar mode name -- Could be a tyvar, a tycon, or a datacon
where
check_tc :: TyCon -> TcM ()
check_tc tc = do { data_kinds <- xoptM LangExt.DataKinds
- ; unless (isTypeLevel (mode_level mode) ||
+ ; unless (isTypeLevel (mode_tyki mode) ||
data_kinds ||
isKindTyCon tc) $
promotionErr name NoDataKindsTC }
@@ -1731,8 +1888,6 @@ in the e2 example, we'll desugar the type, zonking the kind unification
variables as we go. When we encounter the unconstrained kappa, we
want to default it to '*', not to (Any *).
-Help functions for type applications
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-}
addTypeCtxt :: LHsType GhcRn -> TcM a -> TcM a
@@ -1744,98 +1899,12 @@ addTypeCtxt (L _ ty) thing
where
doc = text "In the type" <+> quotes (ppr ty)
-{-
-************************************************************************
+
+{- *********************************************************************
* *
Type-variable binders
-%* *
-%************************************************************************
-
-Note [Keeping implicitly quantified variables in order]
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-When the user implicitly quantifies over variables (say, in a type
-signature), we need to come up with some ordering on these variables.
-This is done by bumping the TcLevel, bringing the tyvars into scope,
-and then type-checking the thing_inside. The constraints are all
-wrapped in an implication, which is then solved. Finally, we can
-zonk all the binders and then order them with scopedSort.
-
-It's critical to solve before zonking and ordering in order to uncover
-any unifications. You might worry that this eager solving could cause
-trouble elsewhere. I don't think it will. Because it will solve only
-in an increased TcLevel, it can't unify anything that was mentioned
-elsewhere. Additionally, we require that the order of implicitly
-quantified variables is manifest by the scope of these variables, so
-we're not going to learn more information later that will help order
-these variables.
-
-Note [Recipe for checking a signature]
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Checking a user-written signature requires several steps:
-
- 1. Generate constraints.
- 2. Solve constraints.
- 3. Promote tyvars and/or kind-generalize.
- 4. Zonk.
- 5. Check validity.
-
-There may be some surprises in here:
-
-Step 2 is necessary for two reasons: most signatures also bring
-implicitly quantified variables into scope, and solving is necessary
-to get these in the right order (see Note [Keeping implicitly
-quantified variables in order]). Additionally, solving is necessary in
-order to kind-generalize correctly: otherwise, we do not know which
-metavariables are left unsolved.
-
-Step 3 is done by a call to candidateQTyVarsOfType, followed by a call to
-kindGeneralize{All,Some,None}. Here, we have to deal with the fact that
-metatyvars generated in the type may have a bumped TcLevel, because explicit
-foralls raise the TcLevel. To avoid these variables from ever being visible in
-the surrounding context, we must obey the following dictum:
-
- Every metavariable in a type must either be
- (A) generalized, or
- (B) promoted, or See Note [Promotion in signatures]
- (C) a cause to error See Note [Naughty quantification candidates] in GHC.Tc.Utils.TcMType
-
-The kindGeneralize functions do not require pre-zonking; they zonk as they
-go.
-
-If you are actually doing kind-generalization, you need to bump the level
-before generating constraints, as we will only generalize variables with
-a TcLevel higher than the ambient one.
-
-After promoting/generalizing, we need to zonk again because both
-promoting and generalizing fill in metavariables.
-
-Note [Promotion in signatures]
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-If an unsolved metavariable in a signature is not generalized
-(because we're not generalizing the construct -- e.g., pattern
-sig -- or because the metavars are constrained -- see kindGeneralizeSome)
-we need to promote to maintain (WantedTvInv) of Note [TcLevel and untouchable type variables]
-in GHC.Tc.Utils.TcType. Note that promotion is identical in effect to generalizing
-and the reinstantiating with a fresh metavariable at the current level.
-So in some sense, we generalize *all* variables, but then re-instantiate
-some of them.
-
-Here is an example of why we must promote:
- foo (x :: forall a. a -> Proxy b) = ...
-
-In the pattern signature, `b` is unbound, and will thus be brought into
-scope. We do not know its kind: it will be assigned kappa[2]. Note that
-kappa is at TcLevel 2, because it is invented under a forall. (A priori,
-the kind kappa might depend on `a`, so kappa rightly has a higher TcLevel
-than the surrounding context.) This kappa cannot be solved for while checking
-the pattern signature (which is not kind-generalized). When we are checking
-the *body* of foo, though, we need to unify the type of x with the argument
-type of bar. At this point, the ambient TcLevel is 1, and spotting a
-matavariable with level 2 would violate the (WantedTvInv) invariant of
-Note [TcLevel and untouchable type variables]. So, instead of kind-generalizing,
-we promote the metavariable to level 1. This is all done in kindGeneralizeNone.
-
--}
+* *
+********************************************************************* -}
tcNamedWildCardBinders :: [Name]
-> ([(Name, TcTyVar)] -> TcM a)
@@ -1844,22 +1913,119 @@ tcNamedWildCardBinders :: [Name]
-- plain wildcards _ are anonymous and dealt with by HsWildCardTy
-- Soe Note [The wildcard story for types] in GHC.Hs.Type
tcNamedWildCardBinders wc_names thing_inside
- = do { wcs <- mapM (const newWildTyVar) wc_names
+ = do { wcs <- mapM newNamedWildTyVar wc_names
; let wc_prs = wc_names `zip` wcs
; tcExtendNameTyVarEnv wc_prs $
thing_inside wc_prs }
-newWildTyVar :: TcM TcTyVar
+newNamedWildTyVar :: Name -> TcM TcTyVar
-- ^ New unification variable '_' for a wildcard
-newWildTyVar
+newNamedWildTyVar _name -- Currently ignoring the "_x" wildcard name used in the type
= do { kind <- newMetaKindVar
- ; uniq <- newUnique
; details <- newMetaDetails TauTv
- ; let name = mkSysTvName uniq (fsLit "_")
- tyvar = mkTcTyVar name kind details
+ ; wc_name <- newMetaTyVarName (fsLit "w") -- See Note [Wildcard names]
+ ; let tyvar = mkTcTyVar wc_name kind details
; traceTc "newWildTyVar" (ppr tyvar)
; return tyvar }
+---------------------------
+tcAnonWildCardOcc :: TcTyMode -> HsType GhcRn -> Kind -> TcM TcType
+tcAnonWildCardOcc (TcTyMode { mode_holes = Just (hole_lvl, hole_mode) })
+ ty exp_kind
+ -- hole_lvl: see Note [Checking partial type signatures]
+ -- esp the bullet on nested forall types
+ = do { kv_details <- newTauTvDetailsAtLevel hole_lvl
+ ; kv_name <- newMetaTyVarName (fsLit "k")
+ ; wc_details <- newTauTvDetailsAtLevel hole_lvl
+ ; wc_name <- newMetaTyVarName (fsLit wc_nm)
+ ; let kv = mkTcTyVar kv_name liftedTypeKind kv_details
+ wc_kind = mkTyVarTy kv
+ wc_tv = mkTcTyVar wc_name wc_kind wc_details
+
+ ; traceTc "tcAnonWildCardOcc" (ppr hole_lvl <+> ppr emit_holes)
+ ; when emit_holes $
+ emitAnonTypeHole wc_tv
+ -- Why the 'when' guard?
+ -- See Note [Wildcards in visible kind application]
+
+ -- You might think that this would always just unify
+ -- wc_kind with exp_kind, so we could avoid even creating kv
+ -- But the level numbers might not allow that unification,
+ -- so we have to do it properly (T14140a)
+ ; checkExpectedKind ty (mkTyVarTy wc_tv) wc_kind exp_kind }
+ where
+ -- See Note [Wildcard names]
+ wc_nm = case hole_mode of
+ HM_Sig -> "w"
+ HM_FamPat -> "_"
+ HM_VTA -> "w"
+
+ emit_holes = case hole_mode of
+ HM_Sig -> True
+ HM_FamPat -> False
+ HM_VTA -> False
+
+tcAnonWildCardOcc mode ty _
+-- mode_holes is Nothing. Should not happen, because renamer
+-- should already have rejected holes in unexpected places
+ = pprPanic "tcWildCardOcc" (ppr mode $$ ppr ty)
+
+{- Note [Wildcard names]
+~~~~~~~~~~~~~~~~~~~~~~~~
+So we hackily use the mode_holes flag to control the name used
+for wildcards:
+
+* For proper holes (whether in a visible type application (VTA) or no),
+ we rename the '_' to 'w'. This is so that we see variables like 'w0'
+ or 'w1' in error messages, a vast improvement upon '_0' and '_1'. For
+ example, we prefer
+ Found type wildcard ‘_’ standing for ‘w0’
+ over
+ Found type wildcard ‘_’ standing for ‘_1’
+
+ Even in the VTA case, where we do not emit an error to be printed, we
+ want to do the renaming, as the variables may appear in other,
+ non-wildcard error messages.
+
+* However, holes in the left-hand sides of type families ("type
+ patterns") stand for type variables which we do not care to name --
+ much like the use of an underscore in an ordinary term-level
+ pattern. When we spot these, we neither wish to generate an error
+ message nor to rename the variable. We don't rename the variable so
+ that we can pretty-print a type family LHS as, e.g.,
+ F _ Int _ = ...
+ and not
+ F w1 Int w2 = ...
+
+ See also Note [Wildcards in family instances] in
+ GHC.Rename.Module. The choice of HM_FamPat is made in
+ tcFamTyPats. There is also some unsavory magic, relying on that
+ underscore, in GHC.Core.Coercion.tidyCoAxBndrsForUser.
+
+Note [Wildcards in visible kind application]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+There are cases where users might want to pass in a wildcard as a visible kind
+argument, for instance:
+
+data T :: forall k1 k2. k1 → k2 → Type where
+ MkT :: T a b
+x :: T @_ @Nat False n
+x = MkT
+
+So we should allow '@_' without emitting any hole constraints, and
+regardless of whether PartialTypeSignatures is enabled or not. But how
+would the typechecker know which '_' is being used in VKA and which is
+not when it calls emitNamedTypeHole in
+tcHsPartialSigType on all HsWildCardBndrs? The solution is to neither
+rename nor include unnamed wildcards in HsWildCardBndrs, but instead
+give every anonymous wildcard a fresh wild tyvar in tcAnonWildCardOcc.
+
+And whenever we see a '@', we set mode_holes to HM_VKA, so that
+we do not call emitAnonTypeHole in tcAnonWildCardOcc.
+See related Note [Wildcards in visible type application] here and
+Note [The wildcard story for types] in GHC.Hs.Type
+-}
+
{- *********************************************************************
* *
Kind inference for type declarations
@@ -2703,8 +2869,17 @@ bindExplicitTKBndrs_Skol, bindExplicitTKBndrs_Tv
-> TcM a
-> TcM ([VarBndr TyVar flag], a)
-bindExplicitTKBndrs_Skol = bindExplicitTKBndrsX (tcHsTyVarBndr newSkolemTyVar)
-bindExplicitTKBndrs_Tv = bindExplicitTKBndrsX (tcHsTyVarBndr cloneTyVarTyVar)
+bindExplicitTKBndrs_Skol_M, bindExplicitTKBndrs_Tv_M
+ :: (OutputableBndrFlag flag)
+ => TcTyMode
+ -> [LHsTyVarBndr flag GhcRn]
+ -> TcM a
+ -> TcM ([VarBndr TyVar flag], a)
+
+bindExplicitTKBndrs_Skol = bindExplicitTKBndrsX (tcHsTyVarBndr (mkMode KindLevel) newSkolemTyVar)
+bindExplicitTKBndrs_Skol_M mode = bindExplicitTKBndrsX (tcHsTyVarBndr (kindLevel mode) newSkolemTyVar)
+bindExplicitTKBndrs_Tv = bindExplicitTKBndrsX (tcHsTyVarBndr (mkMode KindLevel) cloneTyVarTyVar)
+bindExplicitTKBndrs_Tv_M mode = bindExplicitTKBndrsX (tcHsTyVarBndr (kindLevel mode) cloneTyVarTyVar)
-- newSkolemTyVar: see Note [Non-cloning for tyvar binders]
-- cloneTyVarTyVar: see Note [Cloning for tyvar binders]
@@ -2752,13 +2927,13 @@ bindExplicitTKBndrsX tc_tv hs_tvs thing_inside
; return ((Bndr tv (hsTyVarBndrFlag hs_tv)):tvs, res) }
-----------------
-tcHsTyVarBndr :: (Name -> Kind -> TcM TyVar)
+tcHsTyVarBndr :: TcTyMode -> (Name -> Kind -> TcM TyVar)
-> HsTyVarBndr flag GhcRn -> TcM TcTyVar
-tcHsTyVarBndr new_tv (UserTyVar _ _ (L _ tv_nm))
+tcHsTyVarBndr _ new_tv (UserTyVar _ _ (L _ tv_nm))
= do { kind <- newMetaKindVar
; new_tv tv_nm kind }
-tcHsTyVarBndr new_tv (KindedTyVar _ _ (L _ tv_nm) lhs_kind)
- = do { kind <- tcLHsKindSig (TyVarBndrKindCtxt tv_nm) lhs_kind
+tcHsTyVarBndr mode new_tv (KindedTyVar _ _ (L _ tv_nm) lhs_kind)
+ = do { kind <- tc_lhs_kind_sig mode (TyVarBndrKindCtxt tv_nm) lhs_kind
; new_tv tv_nm kind }
-----------------
@@ -2861,15 +3036,14 @@ kindGeneralizeSome should_gen kind_or_type
; let (to_promote, dvs') = partitionCandidates dvs (not . should_gen)
- ; (_, promoted) <- promoteTyVarSet (dVarSetToVarSet to_promote)
+ ; _ <- promoteTyVarSet to_promote
; qkvs <- quantifyTyVars dvs'
; traceTc "kindGeneralizeSome }" $
vcat [ text "Kind or type:" <+> ppr kind_or_type
, text "dvs:" <+> ppr dvs
, text "dvs':" <+> ppr dvs'
- , text "to_promote:" <+> pprTyVars (dVarSetElems to_promote)
- , text "promoted:" <+> pprTyVars (nonDetEltsUniqSet promoted)
+ , text "to_promote:" <+> ppr to_promote
, text "qkvs:" <+> pprTyVars qkvs ]
; return qkvs }
@@ -3046,6 +3220,7 @@ data DataSort
checkDataKindSig :: DataSort -> Kind -> TcM ()
checkDataKindSig data_sort kind = do
dflags <- getDynFlags
+ traceTc "checkDataKindSig" (ppr kind)
checkTc (is_TYPE_or_Type dflags || is_kind_var) (err_msg dflags)
where
pp_dec :: SDoc
@@ -3211,19 +3386,20 @@ tcHsPartialSigType ctxt sig_ty
, hsib_body = hs_ty } <- ib_ty
, (explicit_hs_tvs, L _ hs_ctxt, hs_tau) <- splitLHsSigmaTyInvis hs_ty
= addSigCtxt ctxt hs_ty $
- do { (implicit_tvs, (explicit_tvbndrs, (wcs, wcx, theta, tau)))
+ do { mode <- mkHoleMode TypeLevel HM_Sig
+ ; (implicit_tvs, (explicit_tvbndrs, (wcs, wcx, theta, tau)))
<- solveLocalEqualities "tcHsPartialSigType" $
- -- This solveLocalEqualiltes fails fast if there are
- -- insoluble equalities. See GHC.Tc.Solver
- -- Note [Fail fast if there are insoluble kind equalities]
+ -- See Note [Failure in local type signatures]
tcNamedWildCardBinders sig_wcs $ \ wcs ->
- bindImplicitTKBndrs_Tv implicit_hs_tvs $
- bindExplicitTKBndrs_Tv explicit_hs_tvs $
+ bindImplicitTKBndrs_Tv implicit_hs_tvs $
+ bindExplicitTKBndrs_Tv_M mode explicit_hs_tvs $
do { -- Instantiate the type-class context; but if there
-- is an extra-constraints wildcard, just discard it here
- (theta, wcx) <- tcPartialContext hs_ctxt
+ (theta, wcx) <- tcPartialContext mode hs_ctxt
- ; tau <- tcHsOpenType hs_tau
+ ; ek <- newOpenTypeKind
+ ; tau <- addTypeCtxt hs_tau $
+ tc_lhs_type mode hs_tau ek
; return (wcs, wcx, theta, tau) }
@@ -3241,10 +3417,12 @@ tcHsPartialSigType ctxt sig_ty
; mapM_ emitNamedTypeHole wcs
-- Zonk, so that any nested foralls can "see" their occurrences
- -- See Note [Checking partial type signatures], in
- -- the bullet on Nested foralls.
- ; theta <- mapM zonkTcType theta
- ; tau <- zonkTcType tau
+ -- See Note [Checking partial type signatures], and in particular
+ -- Note [Levels for wildcards]
+ ; implicit_tvbndrs <- mapM zonkInvisTVBinder implicit_tvbndrs
+ ; explicit_tvbndrs <- mapM zonkInvisTVBinder explicit_tvbndrs
+ ; theta <- mapM zonkTcType theta
+ ; tau <- zonkTcType tau
-- We return a proper (Name,InvisTVBinder) environment, to be sure that
-- we bring the right name into scope in the function body.
@@ -3259,16 +3437,16 @@ tcHsPartialSigType ctxt sig_ty
; traceTc "tcHsPartialSigType" (ppr tv_prs)
; return (wcs, wcx, tv_prs, theta, tau) }
-tcPartialContext :: HsContext GhcRn -> TcM (TcThetaType, Maybe TcType)
-tcPartialContext hs_theta
+tcPartialContext :: TcTyMode -> HsContext GhcRn -> TcM (TcThetaType, Maybe TcType)
+tcPartialContext mode hs_theta
| Just (hs_theta1, hs_ctxt_last) <- snocView hs_theta
- , L wc_loc wc@(HsWildCardTy _) <- ignoreParens hs_ctxt_last
+ , L wc_loc ty@(HsWildCardTy _) <- ignoreParens hs_ctxt_last
= do { wc_tv_ty <- setSrcSpan wc_loc $
- tcAnonWildCardOcc wc constraintKind
- ; theta <- mapM tcLHsPredType hs_theta1
+ tcAnonWildCardOcc mode ty constraintKind
+ ; theta <- mapM (tc_lhs_pred mode) hs_theta1
; return (theta, Just wc_tv_ty) }
| otherwise
- = do { theta <- mapM tcLHsPredType hs_theta
+ = do { theta <- mapM (tc_lhs_pred mode) hs_theta
; return (theta, Nothing) }
{- Note [Checking partial type signatures]
@@ -3312,29 +3490,48 @@ we do the following
g x = True
It's really as if we'd written two distinct signatures.
-* Nested foralls. Consider
- f :: forall b. (forall a. a -> _) -> b
- We do /not/ allow the "_" to be instantiated to 'a'; but we do
- (as before) allow it to be instantiated to the (top level) 'b'.
- Why not? Because suppose
- f x = (x True, x 'c')
- We must instantiate that (forall a. a -> _) when typechecking
- f's body, so we must know precisely where all the a's are; they
- must not be hidden under (filled-in) unification variables!
-
- We achieve this in the usual way: we push a level at a forall,
- so now the unification variable for the "_" can't unify with
- 'a'.
-
-* Just as for ordinary signatures, we must zonk the type after
- kind-checking it, to ensure that all the nested forall binders can
- see their occurrenceds
+* Nested foralls. See Note [Levels for wildcards]
+
+* Just as for ordinary signatures, we must solve local equalities and
+ zonk the type after kind-checking it, to ensure that all the nested
+ forall binders can "see" their occurrenceds
Just as for ordinary signatures, this zonk also gets any Refl casts
out of the way of instantiation. Example: #18008 had
foo :: (forall a. (Show a => blah) |> Refl) -> _
and that Refl cast messed things up. See #18062.
+Note [Levels for wildcards]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Consider
+ f :: forall b. (forall a. a -> _) -> b
+We do /not/ allow the "_" to be instantiated to 'a'; although we do
+(as before) allow it to be instantiated to the (top level) 'b'.
+Why not? Suppose
+ f x = (x True, x 'c')
+
+During typecking the RHS we must instantiate that (forall a. a -> _),
+so we must know /precisely/ where all the a's are; they must not be
+hidden under (possibly-not-yet-filled-in) unification variables!
+
+We achieve this as follows:
+
+- For /named/ wildcards such sas
+ g :: forall b. (forall la. a -> _x) -> b
+ there is no problem: we create them at the outer level (ie the
+ ambient level of teh signature itself), and push the level when we
+ go inside a forall. So now the unification variable for the "_x"
+ can't unify with skolem 'a'.
+
+- For /anonymous/ wildcards, such as 'f' above, we carry the ambient
+ level of the signature to the hole in the TcLevel part of the
+ mode_holes field of TcTyMode. Then, in tcAnonWildCardOcc we us that
+ level (and /not/ the level ambient at the occurrence of "_") to
+ create the unification variable for the wildcard. That is the sole
+ purpose of the TcLevel in the mode_holes field: to transport the
+ ambient level of the signature down to the anonymous wildcard
+ occurrences.
+
Note [Extra-constraint holes in partial type signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
@@ -3399,14 +3596,16 @@ tcHsPatSigType ctxt
, hsps_body = hs_ty })
= addSigCtxt ctxt hs_ty $
do { sig_tkv_prs <- mapM new_implicit_tv sig_ns
+ ; mode <- mkHoleMode TypeLevel HM_Sig
; (wcs, sig_ty)
- <- solveLocalEqualities "tcHsPatSigType" $
- -- Always solve local equalities if possible,
- -- else casts get in the way of deep skolemisation
- -- (#16033)
+ <- addTypeCtxt hs_ty $
+ solveLocalEqualities "tcHsPatSigType" $
+ -- See Note [Failure in local type signatures]
+ -- and c.f #16033
tcNamedWildCardBinders sig_wcs $ \ wcs ->
tcExtendNameTyVarEnv sig_tkv_prs $
- do { sig_ty <- tcHsOpenType hs_ty
+ do { ek <- newOpenTypeKind
+ ; sig_ty <- tc_lhs_type mode hs_ty ek
; return (wcs, sig_ty) }
; mapM_ emitNamedTypeHole wcs
@@ -3509,10 +3708,15 @@ It does sort checking and desugaring at the same time, in one single pass.
tcLHsKindSig :: UserTypeCtxt -> LHsKind GhcRn -> TcM Kind
tcLHsKindSig ctxt hs_kind
+ = tc_lhs_kind_sig (mkMode KindLevel) ctxt hs_kind
+
+tc_lhs_kind_sig :: TcTyMode -> UserTypeCtxt -> LHsKind GhcRn -> TcM Kind
+tc_lhs_kind_sig mode ctxt hs_kind
-- See Note [Recipe for checking a signature] in GHC.Tc.Gen.HsType
-- Result is zonked
- = do { kind <- solveLocalEqualities "tcLHsKindSig" $
- tc_lhs_kind kindLevelMode hs_kind
+ = do { kind <- addErrCtxt (text "In the kind" <+> quotes (ppr hs_kind)) $
+ solveLocalEqualities "tcLHsKindSig" $
+ tc_lhs_type mode hs_kind liftedTypeKind
; traceTc "tcLHsKindSig" (ppr hs_kind $$ ppr kind)
-- No generalization:
; kindGeneralizeNone kind
@@ -3528,11 +3732,6 @@ tcLHsKindSig ctxt hs_kind
; traceTc "tcLHsKindSig2" (ppr kind)
; return kind }
-tc_lhs_kind :: TcTyMode -> LHsKind GhcRn -> TcM Kind
-tc_lhs_kind mode k
- = addErrCtxt (text "In the kind" <+> quotes (ppr k)) $
- tc_lhs_type (kindLevel mode) k liftedTypeKind
-
promotionErr :: Name -> PromotionErr -> TcM a
promotionErr name err
= failWithTc (hang (pprPECategory err <+> quotes (ppr name) <+> text "cannot be used here")