summaryrefslogtreecommitdiff
path: root/compiler/deSugar/DsExpr.lhs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/deSugar/DsExpr.lhs')
-rw-r--r--compiler/deSugar/DsExpr.lhs781
1 files changed, 781 insertions, 0 deletions
diff --git a/compiler/deSugar/DsExpr.lhs b/compiler/deSugar/DsExpr.lhs
new file mode 100644
index 0000000000..e8e9e7b370
--- /dev/null
+++ b/compiler/deSugar/DsExpr.lhs
@@ -0,0 +1,781 @@
+%
+% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
+%
+\section[DsExpr]{Matching expressions (Exprs)}
+
+\begin{code}
+module DsExpr ( dsExpr, dsLExpr, dsLocalBinds, dsValBinds, dsLit ) where
+
+#include "HsVersions.h"
+#if defined(GHCI) && defined(BREAKPOINT)
+import Foreign.StablePtr ( newStablePtr, castStablePtrToPtr )
+import GHC.Exts ( Ptr(..), Int(..), addr2Int# )
+import IOEnv ( ioToIOEnv )
+import PrelNames ( breakpointJumpName )
+import TysWiredIn ( unitTy )
+import TypeRep ( Type(..) )
+#endif
+
+import Match ( matchWrapper, matchSinglePat, matchEquations )
+import MatchLit ( dsLit, dsOverLit )
+import DsBinds ( dsLHsBinds, dsCoercion )
+import DsGRHSs ( dsGuarded )
+import DsListComp ( dsListComp, dsPArrComp )
+import DsUtils ( mkErrorAppDs, mkStringExpr, mkConsExpr, mkNilExpr,
+ extractMatchResult, cantFailMatchResult, matchCanFail,
+ mkCoreTupTy, selectSimpleMatchVarL, lookupEvidence, selectMatchVar )
+import DsArrows ( dsProcExpr )
+import DsMonad
+
+#ifdef GHCI
+ -- Template Haskell stuff iff bootstrapped
+import DsMeta ( dsBracket )
+#endif
+
+import HsSyn
+import TcHsSyn ( hsPatType, mkVanillaTuplePat )
+
+-- NB: The desugarer, which straddles the source and Core worlds, sometimes
+-- needs to see source types (newtypes etc), and sometimes not
+-- So WATCH OUT; check each use of split*Ty functions.
+-- Sigh. This is a pain.
+
+import TcType ( tcSplitAppTy, tcSplitFunTys, tcTyConAppTyCon,
+ tcTyConAppArgs, isUnLiftedType, Type, mkAppTy )
+import Type ( funArgTy, splitFunTys, isUnboxedTupleType, mkFunTy )
+import CoreSyn
+import CoreUtils ( exprType, mkIfThenElse, bindNonRec )
+
+import CostCentre ( mkUserCC )
+import Id ( Id, idType, idName, idDataCon )
+import PrelInfo ( rEC_CON_ERROR_ID, iRREFUT_PAT_ERROR_ID )
+import DataCon ( DataCon, dataConWrapId, dataConFieldLabels, dataConInstOrigArgTys )
+import DataCon ( isVanillaDataCon )
+import TyCon ( FieldLabel, tyConDataCons )
+import TysWiredIn ( tupleCon )
+import BasicTypes ( RecFlag(..), Boxity(..), ipNameName )
+import PrelNames ( toPName,
+ returnMName, bindMName, thenMName, failMName,
+ mfixName )
+import SrcLoc ( Located(..), unLoc, getLoc, noLoc )
+import Util ( zipEqual, zipWithEqual )
+import Bag ( bagToList )
+import Outputable
+import FastString
+\end{code}
+
+
+%************************************************************************
+%* *
+ dsLocalBinds, dsValBinds
+%* *
+%************************************************************************
+
+\begin{code}
+dsLocalBinds :: HsLocalBinds Id -> CoreExpr -> DsM CoreExpr
+dsLocalBinds EmptyLocalBinds body = return body
+dsLocalBinds (HsValBinds binds) body = dsValBinds binds body
+dsLocalBinds (HsIPBinds binds) body = dsIPBinds binds body
+
+-------------------------
+dsValBinds :: HsValBinds Id -> CoreExpr -> DsM CoreExpr
+dsValBinds (ValBindsOut binds _) body = foldrDs ds_val_bind body binds
+
+-------------------------
+dsIPBinds (IPBinds ip_binds dict_binds) body
+ = do { prs <- dsLHsBinds dict_binds
+ ; let inner = foldr (\(x,r) e -> Let (NonRec x r) e) body prs
+ ; foldrDs ds_ip_bind inner ip_binds }
+ where
+ ds_ip_bind (L _ (IPBind n e)) body
+ = dsLExpr e `thenDs` \ e' ->
+ returnDs (Let (NonRec (ipNameName n) e') body)
+
+-------------------------
+ds_val_bind :: (RecFlag, LHsBinds Id) -> CoreExpr -> DsM CoreExpr
+-- Special case for bindings which bind unlifted variables
+-- We need to do a case right away, rather than building
+-- a tuple and doing selections.
+-- Silently ignore INLINE and SPECIALISE pragmas...
+ds_val_bind (NonRecursive, hsbinds) body
+ | [L _ (AbsBinds [] [] exports binds)] <- bagToList hsbinds,
+ (L loc bind : null_binds) <- bagToList binds,
+ isBangHsBind bind
+ || isUnboxedTupleBind bind
+ || or [isUnLiftedType (idType g) | (_, g, _, _) <- exports]
+ = let
+ body_w_exports = foldr bind_export body exports
+ bind_export (tvs, g, l, _) body = ASSERT( null tvs )
+ bindNonRec g (Var l) body
+ in
+ ASSERT (null null_binds)
+ -- Non-recursive, non-overloaded bindings only come in ones
+ -- ToDo: in some bizarre case it's conceivable that there
+ -- could be dict binds in the 'binds'. (See the notes
+ -- below. Then pattern-match would fail. Urk.)
+ putSrcSpanDs loc $
+ case bind of
+ FunBind { fun_id = L _ fun, fun_matches = matches, fun_co_fn = co_fn }
+ -> matchWrapper (FunRhs (idName fun)) matches `thenDs` \ (args, rhs) ->
+ ASSERT( null args ) -- Functions aren't lifted
+ ASSERT( isIdCoercion co_fn )
+ returnDs (bindNonRec fun rhs body_w_exports)
+
+ PatBind {pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty }
+ -> -- let C x# y# = rhs in body
+ -- ==> case rhs of C x# y# -> body
+ putSrcSpanDs loc $
+ do { rhs <- dsGuarded grhss ty
+ ; let upat = unLoc pat
+ eqn = EqnInfo { eqn_wrap = idWrapper, eqn_pats = [upat],
+ eqn_rhs = cantFailMatchResult body_w_exports }
+ ; var <- selectMatchVar upat ty
+ ; result <- matchEquations PatBindRhs [var] [eqn] (exprType body)
+ ; return (scrungleMatch var rhs result) }
+
+ other -> pprPanic "dsLet: unlifted" (pprLHsBinds hsbinds $$ ppr body)
+
+
+-- Ordinary case for bindings; none should be unlifted
+ds_val_bind (is_rec, binds) body
+ = do { prs <- dsLHsBinds binds
+ ; ASSERT( not (any (isUnLiftedType . idType . fst) prs) )
+ case prs of
+ [] -> return body
+ other -> return (Let (Rec prs) body) }
+ -- Use a Rec regardless of is_rec.
+ -- Why? Because it allows the binds to be all
+ -- mixed up, which is what happens in one rare case
+ -- Namely, for an AbsBind with no tyvars and no dicts,
+ -- but which does have dictionary bindings.
+ -- See notes with TcSimplify.inferLoop [NO TYVARS]
+ -- It turned out that wrapping a Rec here was the easiest solution
+ --
+ -- NB The previous case dealt with unlifted bindings, so we
+ -- only have to deal with lifted ones now; so Rec is ok
+
+isUnboxedTupleBind :: HsBind Id -> Bool
+isUnboxedTupleBind (PatBind { pat_rhs_ty = ty }) = isUnboxedTupleType ty
+isUnboxedTupleBind other = False
+
+scrungleMatch :: Id -> CoreExpr -> CoreExpr -> CoreExpr
+-- Returns something like (let var = scrut in body)
+-- but if var is an unboxed-tuple type, it inlines it in a fragile way
+-- Special case to handle unboxed tuple patterns; they can't appear nested
+-- The idea is that
+-- case e of (# p1, p2 #) -> rhs
+-- should desugar to
+-- case e of (# x1, x2 #) -> ... match p1, p2 ...
+-- NOT
+-- let x = e in case x of ....
+--
+-- But there may be a big
+-- let fail = ... in case e of ...
+-- wrapping the whole case, which complicates matters slightly
+-- It all seems a bit fragile. Test is dsrun013.
+
+scrungleMatch var scrut body
+ | isUnboxedTupleType (idType var) = scrungle body
+ | otherwise = bindNonRec var scrut body
+ where
+ scrungle (Case (Var x) bndr ty alts)
+ | x == var = Case scrut bndr ty alts
+ scrungle (Let binds body) = Let binds (scrungle body)
+ scrungle other = panic ("scrungleMatch: tuple pattern:\n" ++ showSDoc (ppr other))
+\end{code}
+
+%************************************************************************
+%* *
+\subsection[DsExpr-vars-and-cons]{Variables, constructors, literals}
+%* *
+%************************************************************************
+
+\begin{code}
+dsLExpr :: LHsExpr Id -> DsM CoreExpr
+dsLExpr (L loc e) = putSrcSpanDs loc $ dsExpr e
+
+dsExpr :: HsExpr Id -> DsM CoreExpr
+
+dsExpr (HsPar e) = dsLExpr e
+dsExpr (ExprWithTySigOut e _) = dsLExpr e
+dsExpr (HsVar var) = returnDs (Var var)
+dsExpr (HsIPVar ip) = returnDs (Var (ipNameName ip))
+dsExpr (HsLit lit) = dsLit lit
+dsExpr (HsOverLit lit) = dsOverLit lit
+
+dsExpr (NegApp expr neg_expr)
+ = do { core_expr <- dsLExpr expr
+ ; core_neg <- dsExpr neg_expr
+ ; return (core_neg `App` core_expr) }
+
+dsExpr expr@(HsLam a_Match)
+ = matchWrapper LambdaExpr a_Match `thenDs` \ (binders, matching_code) ->
+ returnDs (mkLams binders matching_code)
+
+#if defined(GHCI) && defined(BREAKPOINT)
+dsExpr (HsApp (L _ (HsApp realFun@(L _ (HsCoerce _ fun)) (L loc arg))) _)
+ | HsVar funId <- fun
+ , idName funId == breakpointJumpName
+ , ids <- filter (not.hasTyVar.idType) (extractIds arg)
+ = do dsWarn (text "Extracted ids:" <+> ppr ids <+> ppr (map idType ids))
+ stablePtr <- ioToIOEnv $ newStablePtr ids
+ -- Yes, I know... I'm gonna burn in hell.
+ let Ptr addr# = castStablePtrToPtr stablePtr
+ funCore <- dsLExpr realFun
+ argCore <- dsLExpr (L loc (HsLit (HsInt (fromIntegral (I# (addr2Int# addr#))))))
+ hvalCore <- dsLExpr (L loc (extractHVals ids))
+ return ((funCore `App` argCore) `App` hvalCore)
+ where extractIds :: HsExpr Id -> [Id]
+ extractIds (HsApp fn arg)
+ | HsVar argId <- unLoc arg
+ = argId:extractIds (unLoc fn)
+ | TyApp arg' ts <- unLoc arg
+ , HsVar argId <- unLoc arg'
+ = error (showSDoc (ppr ts)) -- argId:extractIds (unLoc fn)
+ extractIds x = []
+ extractHVals ids = ExplicitList unitTy (map (L loc . HsVar) ids)
+ hasTyVar (TyVarTy _) = True
+ hasTyVar (FunTy a b) = hasTyVar a || hasTyVar b
+ hasTyVar (NoteTy _ t) = hasTyVar t
+ hasTyVar (AppTy a b) = hasTyVar a || hasTyVar b
+ hasTyVar (TyConApp _ ts) = any hasTyVar ts
+ hasTyVar _ = False
+#endif
+
+dsExpr expr@(HsApp fun arg)
+ = dsLExpr fun `thenDs` \ core_fun ->
+ dsLExpr arg `thenDs` \ core_arg ->
+ returnDs (core_fun `App` core_arg)
+\end{code}
+
+Operator sections. At first it looks as if we can convert
+\begin{verbatim}
+ (expr op)
+\end{verbatim}
+to
+\begin{verbatim}
+ \x -> op expr x
+\end{verbatim}
+
+But no! expr might be a redex, and we can lose laziness badly this
+way. Consider
+\begin{verbatim}
+ map (expr op) xs
+\end{verbatim}
+for example. So we convert instead to
+\begin{verbatim}
+ let y = expr in \x -> op y x
+\end{verbatim}
+If \tr{expr} is actually just a variable, say, then the simplifier
+will sort it out.
+
+\begin{code}
+dsExpr (OpApp e1 op _ e2)
+ = dsLExpr op `thenDs` \ core_op ->
+ -- for the type of y, we need the type of op's 2nd argument
+ dsLExpr e1 `thenDs` \ x_core ->
+ dsLExpr e2 `thenDs` \ y_core ->
+ returnDs (mkApps core_op [x_core, y_core])
+
+dsExpr (SectionL expr op)
+ = dsLExpr op `thenDs` \ core_op ->
+ -- for the type of y, we need the type of op's 2nd argument
+ let
+ (x_ty:y_ty:_, _) = splitFunTys (exprType core_op)
+ -- Must look through an implicit-parameter type;
+ -- newtype impossible; hence Type.splitFunTys
+ in
+ dsLExpr expr `thenDs` \ x_core ->
+ newSysLocalDs x_ty `thenDs` \ x_id ->
+ newSysLocalDs y_ty `thenDs` \ y_id ->
+
+ returnDs (bindNonRec x_id x_core $
+ Lam y_id (mkApps core_op [Var x_id, Var y_id]))
+
+-- dsLExpr (SectionR op expr) -- \ x -> op x expr
+dsExpr (SectionR op expr)
+ = dsLExpr op `thenDs` \ core_op ->
+ -- for the type of x, we need the type of op's 2nd argument
+ let
+ (x_ty:y_ty:_, _) = splitFunTys (exprType core_op)
+ -- See comment with SectionL
+ in
+ dsLExpr expr `thenDs` \ y_core ->
+ newSysLocalDs x_ty `thenDs` \ x_id ->
+ newSysLocalDs y_ty `thenDs` \ y_id ->
+
+ returnDs (bindNonRec y_id y_core $
+ Lam x_id (mkApps core_op [Var x_id, Var y_id]))
+
+dsExpr (HsSCC cc expr)
+ = dsLExpr expr `thenDs` \ core_expr ->
+ getModuleDs `thenDs` \ mod_name ->
+ returnDs (Note (SCC (mkUserCC cc mod_name)) core_expr)
+
+
+-- hdaume: core annotation
+
+dsExpr (HsCoreAnn fs expr)
+ = dsLExpr expr `thenDs` \ core_expr ->
+ returnDs (Note (CoreNote $ unpackFS fs) core_expr)
+
+dsExpr (HsCase discrim matches)
+ = dsLExpr discrim `thenDs` \ core_discrim ->
+ matchWrapper CaseAlt matches `thenDs` \ ([discrim_var], matching_code) ->
+ returnDs (scrungleMatch discrim_var core_discrim matching_code)
+
+dsExpr (HsLet binds body)
+ = dsLExpr body `thenDs` \ body' ->
+ dsLocalBinds binds body'
+
+-- We need the `ListComp' form to use `deListComp' (rather than the "do" form)
+-- because the interpretation of `stmts' depends on what sort of thing it is.
+--
+dsExpr (HsDo ListComp stmts body result_ty)
+ = -- Special case for list comprehensions
+ dsListComp stmts body elt_ty
+ where
+ [elt_ty] = tcTyConAppArgs result_ty
+
+dsExpr (HsDo DoExpr stmts body result_ty)
+ = dsDo stmts body result_ty
+
+dsExpr (HsDo (MDoExpr tbl) stmts body result_ty)
+ = dsMDo tbl stmts body result_ty
+
+dsExpr (HsDo PArrComp stmts body result_ty)
+ = -- Special case for array comprehensions
+ dsPArrComp (map unLoc stmts) body elt_ty
+ where
+ [elt_ty] = tcTyConAppArgs result_ty
+
+dsExpr (HsIf guard_expr then_expr else_expr)
+ = dsLExpr guard_expr `thenDs` \ core_guard ->
+ dsLExpr then_expr `thenDs` \ core_then ->
+ dsLExpr else_expr `thenDs` \ core_else ->
+ returnDs (mkIfThenElse core_guard core_then core_else)
+\end{code}
+
+
+\noindent
+\underline{\bf Type lambda and application}
+% ~~~~~~~~~~~~~~~~~~~~~~~~~~~
+\begin{code}
+dsExpr (TyLam tyvars expr)
+ = dsLExpr expr `thenDs` \ core_expr ->
+ returnDs (mkLams tyvars core_expr)
+
+dsExpr (TyApp expr tys)
+ = dsLExpr expr `thenDs` \ core_expr ->
+ returnDs (mkTyApps core_expr tys)
+\end{code}
+
+
+\noindent
+\underline{\bf Various data construction things}
+% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+\begin{code}
+dsExpr (ExplicitList ty xs)
+ = go xs
+ where
+ go [] = returnDs (mkNilExpr ty)
+ go (x:xs) = dsLExpr x `thenDs` \ core_x ->
+ go xs `thenDs` \ core_xs ->
+ returnDs (mkConsExpr ty core_x core_xs)
+
+-- we create a list from the array elements and convert them into a list using
+-- `PrelPArr.toP'
+--
+-- * the main disadvantage to this scheme is that `toP' traverses the list
+-- twice: once to determine the length and a second time to put to elements
+-- into the array; this inefficiency could be avoided by exposing some of
+-- the innards of `PrelPArr' to the compiler (ie, have a `PrelPArrBase') so
+-- that we can exploit the fact that we already know the length of the array
+-- here at compile time
+--
+dsExpr (ExplicitPArr ty xs)
+ = dsLookupGlobalId toPName `thenDs` \toP ->
+ dsExpr (ExplicitList ty xs) `thenDs` \coreList ->
+ returnDs (mkApps (Var toP) [Type ty, coreList])
+
+dsExpr (ExplicitTuple expr_list boxity)
+ = mappM dsLExpr expr_list `thenDs` \ core_exprs ->
+ returnDs (mkConApp (tupleCon boxity (length expr_list))
+ (map (Type . exprType) core_exprs ++ core_exprs))
+
+dsExpr (ArithSeq expr (From from))
+ = dsExpr expr `thenDs` \ expr2 ->
+ dsLExpr from `thenDs` \ from2 ->
+ returnDs (App expr2 from2)
+
+dsExpr (ArithSeq expr (FromTo from two))
+ = dsExpr expr `thenDs` \ expr2 ->
+ dsLExpr from `thenDs` \ from2 ->
+ dsLExpr two `thenDs` \ two2 ->
+ returnDs (mkApps expr2 [from2, two2])
+
+dsExpr (ArithSeq expr (FromThen from thn))
+ = dsExpr expr `thenDs` \ expr2 ->
+ dsLExpr from `thenDs` \ from2 ->
+ dsLExpr thn `thenDs` \ thn2 ->
+ returnDs (mkApps expr2 [from2, thn2])
+
+dsExpr (ArithSeq expr (FromThenTo from thn two))
+ = dsExpr expr `thenDs` \ expr2 ->
+ dsLExpr from `thenDs` \ from2 ->
+ dsLExpr thn `thenDs` \ thn2 ->
+ dsLExpr two `thenDs` \ two2 ->
+ returnDs (mkApps expr2 [from2, thn2, two2])
+
+dsExpr (PArrSeq expr (FromTo from two))
+ = dsExpr expr `thenDs` \ expr2 ->
+ dsLExpr from `thenDs` \ from2 ->
+ dsLExpr two `thenDs` \ two2 ->
+ returnDs (mkApps expr2 [from2, two2])
+
+dsExpr (PArrSeq expr (FromThenTo from thn two))
+ = dsExpr expr `thenDs` \ expr2 ->
+ dsLExpr from `thenDs` \ from2 ->
+ dsLExpr thn `thenDs` \ thn2 ->
+ dsLExpr two `thenDs` \ two2 ->
+ returnDs (mkApps expr2 [from2, thn2, two2])
+
+dsExpr (PArrSeq expr _)
+ = panic "DsExpr.dsExpr: Infinite parallel array!"
+ -- the parser shouldn't have generated it and the renamer and typechecker
+ -- shouldn't have let it through
+\end{code}
+
+\noindent
+\underline{\bf Record construction and update}
+% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+For record construction we do this (assuming T has three arguments)
+\begin{verbatim}
+ T { op2 = e }
+==>
+ let err = /\a -> recConErr a
+ T (recConErr t1 "M.lhs/230/op1")
+ e
+ (recConErr t1 "M.lhs/230/op3")
+\end{verbatim}
+@recConErr@ then converts its arugment string into a proper message
+before printing it as
+\begin{verbatim}
+ M.lhs, line 230: missing field op1 was evaluated
+\end{verbatim}
+
+We also handle @C{}@ as valid construction syntax for an unlabelled
+constructor @C@, setting all of @C@'s fields to bottom.
+
+\begin{code}
+dsExpr (RecordCon (L _ data_con_id) con_expr rbinds)
+ = dsExpr con_expr `thenDs` \ con_expr' ->
+ let
+ (arg_tys, _) = tcSplitFunTys (exprType con_expr')
+ -- A newtype in the corner should be opaque;
+ -- hence TcType.tcSplitFunTys
+
+ mk_arg (arg_ty, lbl) -- Selector id has the field label as its name
+ = case [rhs | (L _ sel_id, rhs) <- rbinds, lbl == idName sel_id] of
+ (rhs:rhss) -> ASSERT( null rhss )
+ dsLExpr rhs
+ [] -> mkErrorAppDs rEC_CON_ERROR_ID arg_ty (showSDoc (ppr lbl))
+ unlabelled_bottom arg_ty = mkErrorAppDs rEC_CON_ERROR_ID arg_ty ""
+
+ labels = dataConFieldLabels (idDataCon data_con_id)
+ -- The data_con_id is guaranteed to be the wrapper id of the constructor
+ in
+
+ (if null labels
+ then mappM unlabelled_bottom arg_tys
+ else mappM mk_arg (zipEqual "dsExpr:RecordCon" arg_tys labels))
+ `thenDs` \ con_args ->
+
+ returnDs (mkApps con_expr' con_args)
+\end{code}
+
+Record update is a little harder. Suppose we have the decl:
+\begin{verbatim}
+ data T = T1 {op1, op2, op3 :: Int}
+ | T2 {op4, op2 :: Int}
+ | T3
+\end{verbatim}
+Then we translate as follows:
+\begin{verbatim}
+ r { op2 = e }
+===>
+ let op2 = e in
+ case r of
+ T1 op1 _ op3 -> T1 op1 op2 op3
+ T2 op4 _ -> T2 op4 op2
+ other -> recUpdError "M.lhs/230"
+\end{verbatim}
+It's important that we use the constructor Ids for @T1@, @T2@ etc on the
+RHSs, and do not generate a Core constructor application directly, because the constructor
+might do some argument-evaluation first; and may have to throw away some
+dictionaries.
+
+\begin{code}
+dsExpr (RecordUpd record_expr [] record_in_ty record_out_ty)
+ = dsLExpr record_expr
+
+dsExpr expr@(RecordUpd record_expr rbinds record_in_ty record_out_ty)
+ = dsLExpr record_expr `thenDs` \ record_expr' ->
+
+ -- Desugar the rbinds, and generate let-bindings if
+ -- necessary so that we don't lose sharing
+
+ let
+ in_inst_tys = tcTyConAppArgs record_in_ty -- Newtype opaque
+ out_inst_tys = tcTyConAppArgs record_out_ty -- Newtype opaque
+ in_out_ty = mkFunTy record_in_ty record_out_ty
+
+ mk_val_arg field old_arg_id
+ = case [rhs | (L _ sel_id, rhs) <- rbinds, field == idName sel_id] of
+ (rhs:rest) -> ASSERT(null rest) rhs
+ [] -> nlHsVar old_arg_id
+
+ mk_alt con
+ = newSysLocalsDs (dataConInstOrigArgTys con in_inst_tys) `thenDs` \ arg_ids ->
+ -- This call to dataConInstOrigArgTys won't work for existentials
+ -- but existentials don't have record types anyway
+ let
+ val_args = zipWithEqual "dsExpr:RecordUpd" mk_val_arg
+ (dataConFieldLabels con) arg_ids
+ rhs = foldl (\a b -> nlHsApp a b)
+ (noLoc $ TyApp (nlHsVar (dataConWrapId con))
+ out_inst_tys)
+ val_args
+ in
+ returnDs (mkSimpleMatch [noLoc $ ConPatOut (noLoc con) [] [] emptyLHsBinds
+ (PrefixCon (map nlVarPat arg_ids)) record_in_ty]
+ rhs)
+ in
+ -- Record stuff doesn't work for existentials
+ -- The type checker checks for this, but we need
+ -- worry only about the constructors that are to be updated
+ ASSERT2( all isVanillaDataCon cons_to_upd, ppr expr )
+
+ -- It's important to generate the match with matchWrapper,
+ -- and the right hand sides with applications of the wrapper Id
+ -- so that everything works when we are doing fancy unboxing on the
+ -- constructor aguments.
+ mappM mk_alt cons_to_upd `thenDs` \ alts ->
+ matchWrapper RecUpd (MatchGroup alts in_out_ty) `thenDs` \ ([discrim_var], matching_code) ->
+
+ returnDs (bindNonRec discrim_var record_expr' matching_code)
+
+ where
+ updated_fields :: [FieldLabel]
+ updated_fields = [ idName sel_id | (L _ sel_id,_) <- rbinds]
+
+ -- Get the type constructor from the record_in_ty
+ -- so that we are sure it'll have all its DataCons
+ -- (In GHCI, it's possible that some TyCons may not have all
+ -- their constructors, in a module-loop situation.)
+ tycon = tcTyConAppTyCon record_in_ty
+ data_cons = tyConDataCons tycon
+ cons_to_upd = filter has_all_fields data_cons
+
+ has_all_fields :: DataCon -> Bool
+ has_all_fields con_id
+ = all (`elem` con_fields) updated_fields
+ where
+ con_fields = dataConFieldLabels con_id
+\end{code}
+
+
+\noindent
+\underline{\bf Dictionary lambda and application}
+% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+@DictLam@ and @DictApp@ turn into the regular old things.
+(OLD:) @DictFunApp@ also becomes a curried application, albeit slightly more
+complicated; reminiscent of fully-applied constructors.
+\begin{code}
+dsExpr (DictLam dictvars expr)
+ = dsLExpr expr `thenDs` \ core_expr ->
+ returnDs (mkLams dictvars core_expr)
+
+------------------
+
+dsExpr (DictApp expr dicts) -- becomes a curried application
+ = dsLExpr expr `thenDs` \ core_expr ->
+ returnDs (foldl (\f d -> f `App` (Var d)) core_expr dicts)
+
+dsExpr (HsCoerce co_fn e) = dsCoercion co_fn (dsExpr e)
+\end{code}
+
+Here is where we desugar the Template Haskell brackets and escapes
+
+\begin{code}
+-- Template Haskell stuff
+
+#ifdef GHCI /* Only if bootstrapping */
+dsExpr (HsBracketOut x ps) = dsBracket x ps
+dsExpr (HsSpliceE s) = pprPanic "dsExpr:splice" (ppr s)
+#endif
+
+-- Arrow notation extension
+dsExpr (HsProc pat cmd) = dsProcExpr pat cmd
+\end{code}
+
+
+\begin{code}
+
+#ifdef DEBUG
+-- HsSyn constructs that just shouldn't be here:
+dsExpr (ExprWithTySig _ _) = panic "dsExpr:ExprWithTySig"
+#endif
+
+\end{code}
+
+%--------------------------------------------------------------------
+
+Desugar 'do' and 'mdo' expressions (NOT list comprehensions, they're
+handled in DsListComp). Basically does the translation given in the
+Haskell 98 report:
+
+\begin{code}
+dsDo :: [LStmt Id]
+ -> LHsExpr Id
+ -> Type -- Type of the whole expression
+ -> DsM CoreExpr
+
+dsDo stmts body result_ty
+ = go (map unLoc stmts)
+ where
+ go [] = dsLExpr body
+
+ go (ExprStmt rhs then_expr _ : stmts)
+ = do { rhs2 <- dsLExpr rhs
+ ; then_expr2 <- dsExpr then_expr
+ ; rest <- go stmts
+ ; returnDs (mkApps then_expr2 [rhs2, rest]) }
+
+ go (LetStmt binds : stmts)
+ = do { rest <- go stmts
+ ; dsLocalBinds binds rest }
+
+ go (BindStmt pat rhs bind_op fail_op : stmts)
+ = do { body <- go stmts
+ ; var <- selectSimpleMatchVarL pat
+ ; match <- matchSinglePat (Var var) (StmtCtxt DoExpr) pat
+ result_ty (cantFailMatchResult body)
+ ; match_code <- handle_failure pat match fail_op
+ ; rhs' <- dsLExpr rhs
+ ; bind_op' <- dsExpr bind_op
+ ; returnDs (mkApps bind_op' [rhs', Lam var match_code]) }
+
+ -- In a do expression, pattern-match failure just calls
+ -- the monadic 'fail' rather than throwing an exception
+ handle_failure pat match fail_op
+ | matchCanFail match
+ = do { fail_op' <- dsExpr fail_op
+ ; fail_msg <- mkStringExpr (mk_fail_msg pat)
+ ; extractMatchResult match (App fail_op' fail_msg) }
+ | otherwise
+ = extractMatchResult match (error "It can't fail")
+
+mk_fail_msg pat = "Pattern match failure in do expression at " ++
+ showSDoc (ppr (getLoc pat))
+\end{code}
+
+Translation for RecStmt's:
+-----------------------------
+We turn (RecStmt [v1,..vn] stmts) into:
+
+ (v1,..,vn) <- mfix (\~(v1,..vn). do stmts
+ return (v1,..vn))
+
+\begin{code}
+dsMDo :: PostTcTable
+ -> [LStmt Id]
+ -> LHsExpr Id
+ -> Type -- Type of the whole expression
+ -> DsM CoreExpr
+
+dsMDo tbl stmts body result_ty
+ = go (map unLoc stmts)
+ where
+ (m_ty, b_ty) = tcSplitAppTy result_ty -- result_ty must be of the form (m b)
+ mfix_id = lookupEvidence tbl mfixName
+ return_id = lookupEvidence tbl returnMName
+ bind_id = lookupEvidence tbl bindMName
+ then_id = lookupEvidence tbl thenMName
+ fail_id = lookupEvidence tbl failMName
+ ctxt = MDoExpr tbl
+
+ go [] = dsLExpr body
+
+ go (LetStmt binds : stmts)
+ = do { rest <- go stmts
+ ; dsLocalBinds binds rest }
+
+ go (ExprStmt rhs _ rhs_ty : stmts)
+ = do { rhs2 <- dsLExpr rhs
+ ; rest <- go stmts
+ ; returnDs (mkApps (Var then_id) [Type rhs_ty, Type b_ty, rhs2, rest]) }
+
+ go (BindStmt pat rhs _ _ : stmts)
+ = do { body <- go stmts
+ ; var <- selectSimpleMatchVarL pat
+ ; match <- matchSinglePat (Var var) (StmtCtxt ctxt) pat
+ result_ty (cantFailMatchResult body)
+ ; fail_msg <- mkStringExpr (mk_fail_msg pat)
+ ; let fail_expr = mkApps (Var fail_id) [Type b_ty, fail_msg]
+ ; match_code <- extractMatchResult match fail_expr
+
+ ; rhs' <- dsLExpr rhs
+ ; returnDs (mkApps (Var bind_id) [Type (hsPatType pat), Type b_ty,
+ rhs', Lam var match_code]) }
+
+ go (RecStmt rec_stmts later_ids rec_ids rec_rets binds : stmts)
+ = ASSERT( length rec_ids > 0 )
+ ASSERT( length rec_ids == length rec_rets )
+ go (new_bind_stmt : let_stmt : stmts)
+ where
+ new_bind_stmt = mkBindStmt (mk_tup_pat later_pats) mfix_app
+ let_stmt = LetStmt (HsValBinds (ValBindsOut [(Recursive, binds)] []))
+
+
+ -- Remove the later_ids that appear (without fancy coercions)
+ -- in rec_rets, because there's no need to knot-tie them separately
+ -- See Note [RecStmt] in HsExpr
+ later_ids' = filter (`notElem` mono_rec_ids) later_ids
+ mono_rec_ids = [ id | HsVar id <- rec_rets ]
+
+ mfix_app = nlHsApp (noLoc $ TyApp (nlHsVar mfix_id) [tup_ty]) mfix_arg
+ mfix_arg = noLoc $ HsLam (MatchGroup [mkSimpleMatch [mfix_pat] body]
+ (mkFunTy tup_ty body_ty))
+
+ -- The rec_tup_pat must bind the rec_ids only; remember that the
+ -- trimmed_laters may share the same Names
+ -- Meanwhile, the later_pats must bind the later_vars
+ rec_tup_pats = map mk_wild_pat later_ids' ++ map nlVarPat rec_ids
+ later_pats = map nlVarPat later_ids' ++ map mk_later_pat rec_ids
+ rets = map nlHsVar later_ids' ++ map noLoc rec_rets
+
+ mfix_pat = noLoc $ LazyPat $ mk_tup_pat rec_tup_pats
+ body = noLoc $ HsDo ctxt rec_stmts return_app body_ty
+ body_ty = mkAppTy m_ty tup_ty
+ tup_ty = mkCoreTupTy (map idType (later_ids' ++ rec_ids))
+ -- mkCoreTupTy deals with singleton case
+
+ return_app = nlHsApp (noLoc $ TyApp (nlHsVar return_id) [tup_ty])
+ (mk_ret_tup rets)
+
+ mk_wild_pat :: Id -> LPat Id
+ mk_wild_pat v = noLoc $ WildPat $ idType v
+
+ mk_later_pat :: Id -> LPat Id
+ mk_later_pat v | v `elem` later_ids' = mk_wild_pat v
+ | otherwise = nlVarPat v
+
+ mk_tup_pat :: [LPat Id] -> LPat Id
+ mk_tup_pat [p] = p
+ mk_tup_pat ps = noLoc $ mkVanillaTuplePat ps Boxed
+
+ mk_ret_tup :: [LHsExpr Id] -> LHsExpr Id
+ mk_ret_tup [r] = r
+ mk_ret_tup rs = noLoc $ ExplicitTuple rs Boxed
+\end{code}