summaryrefslogtreecommitdiff
path: root/compiler/deSugar/DsUtils.lhs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/deSugar/DsUtils.lhs')
-rw-r--r--compiler/deSugar/DsUtils.lhs884
1 files changed, 884 insertions, 0 deletions
diff --git a/compiler/deSugar/DsUtils.lhs b/compiler/deSugar/DsUtils.lhs
new file mode 100644
index 0000000000..29e7773bb8
--- /dev/null
+++ b/compiler/deSugar/DsUtils.lhs
@@ -0,0 +1,884 @@
+%
+% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
+%
+\section[DsUtils]{Utilities for desugaring}
+
+This module exports some utility functions of no great interest.
+
+\begin{code}
+module DsUtils (
+ EquationInfo(..),
+ firstPat, shiftEqns,
+
+ mkDsLet, mkDsLets,
+
+ MatchResult(..), CanItFail(..),
+ cantFailMatchResult, alwaysFailMatchResult,
+ extractMatchResult, combineMatchResults,
+ adjustMatchResult, adjustMatchResultDs,
+ mkCoLetMatchResult, mkGuardedMatchResult,
+ matchCanFail,
+ mkCoPrimCaseMatchResult, mkCoAlgCaseMatchResult,
+ wrapBind, wrapBinds,
+
+ mkErrorAppDs, mkNilExpr, mkConsExpr, mkListExpr,
+ mkIntExpr, mkCharExpr,
+ mkStringExpr, mkStringExprFS, mkIntegerExpr,
+
+ mkSelectorBinds, mkTupleExpr, mkTupleSelector,
+ mkTupleType, mkTupleCase, mkBigCoreTup,
+ mkCoreTup, mkCoreTupTy, seqVar,
+
+ dsSyntaxTable, lookupEvidence,
+
+ selectSimpleMatchVarL, selectMatchVars, selectMatchVar
+ ) where
+
+#include "HsVersions.h"
+
+import {-# SOURCE #-} Match ( matchSimply )
+import {-# SOURCE #-} DsExpr( dsExpr )
+
+import HsSyn
+import TcHsSyn ( hsPatType )
+import CoreSyn
+import Constants ( mAX_TUPLE_SIZE )
+import DsMonad
+
+import CoreUtils ( exprType, mkIfThenElse, mkCoerce, bindNonRec )
+import MkId ( iRREFUT_PAT_ERROR_ID, mkReboxingAlt, mkNewTypeBody )
+import Id ( idType, Id, mkWildId, mkTemplateLocals, mkSysLocal )
+import Var ( Var )
+import Name ( Name )
+import Literal ( Literal(..), mkStringLit, inIntRange, tARGET_MAX_INT )
+import TyCon ( isNewTyCon, tyConDataCons )
+import DataCon ( DataCon, dataConSourceArity, dataConTyCon, dataConTag )
+import Type ( mkFunTy, isUnLiftedType, Type, splitTyConApp, mkTyVarTy )
+import TcType ( tcEqType )
+import TysPrim ( intPrimTy )
+import TysWiredIn ( nilDataCon, consDataCon,
+ tupleCon, mkTupleTy,
+ unitDataConId, unitTy,
+ charTy, charDataCon,
+ intTy, intDataCon,
+ isPArrFakeCon )
+import BasicTypes ( Boxity(..) )
+import UniqSet ( mkUniqSet, minusUniqSet, isEmptyUniqSet )
+import UniqSupply ( splitUniqSupply, uniqFromSupply, uniqsFromSupply )
+import PrelNames ( unpackCStringName, unpackCStringUtf8Name,
+ plusIntegerName, timesIntegerName, smallIntegerDataConName,
+ lengthPName, indexPName )
+import Outputable
+import SrcLoc ( Located(..), unLoc )
+import Util ( isSingleton, zipEqual, sortWith )
+import ListSetOps ( assocDefault )
+import FastString
+import Data.Char ( ord )
+
+#ifdef DEBUG
+import Util ( notNull ) -- Used in an assertion
+#endif
+\end{code}
+
+
+
+%************************************************************************
+%* *
+ Rebindable syntax
+%* *
+%************************************************************************
+
+\begin{code}
+dsSyntaxTable :: SyntaxTable Id
+ -> DsM ([CoreBind], -- Auxiliary bindings
+ [(Name,Id)]) -- Maps the standard name to its value
+
+dsSyntaxTable rebound_ids
+ = mapAndUnzipDs mk_bind rebound_ids `thenDs` \ (binds_s, prs) ->
+ return (concat binds_s, prs)
+ where
+ -- The cheapo special case can happen when we
+ -- make an intermediate HsDo when desugaring a RecStmt
+ mk_bind (std_name, HsVar id) = return ([], (std_name, id))
+ mk_bind (std_name, expr)
+ = dsExpr expr `thenDs` \ rhs ->
+ newSysLocalDs (exprType rhs) `thenDs` \ id ->
+ return ([NonRec id rhs], (std_name, id))
+
+lookupEvidence :: [(Name, Id)] -> Name -> Id
+lookupEvidence prs std_name
+ = assocDefault (mk_panic std_name) prs std_name
+ where
+ mk_panic std_name = pprPanic "dsSyntaxTable" (ptext SLIT("Not found:") <+> ppr std_name)
+\end{code}
+
+
+%************************************************************************
+%* *
+\subsection{Building lets}
+%* *
+%************************************************************************
+
+Use case, not let for unlifted types. The simplifier will turn some
+back again.
+
+\begin{code}
+mkDsLet :: CoreBind -> CoreExpr -> CoreExpr
+mkDsLet (NonRec bndr rhs) body
+ | isUnLiftedType (idType bndr)
+ = Case rhs bndr (exprType body) [(DEFAULT,[],body)]
+mkDsLet bind body
+ = Let bind body
+
+mkDsLets :: [CoreBind] -> CoreExpr -> CoreExpr
+mkDsLets binds body = foldr mkDsLet body binds
+\end{code}
+
+
+%************************************************************************
+%* *
+\subsection{ Selecting match variables}
+%* *
+%************************************************************************
+
+We're about to match against some patterns. We want to make some
+@Ids@ to use as match variables. If a pattern has an @Id@ readily at
+hand, which should indeed be bound to the pattern as a whole, then use it;
+otherwise, make one up.
+
+\begin{code}
+selectSimpleMatchVarL :: LPat Id -> DsM Id
+selectSimpleMatchVarL pat = selectMatchVar (unLoc pat) (hsPatType pat)
+
+-- (selectMatchVars ps tys) chooses variables of type tys
+-- to use for matching ps against. If the pattern is a variable,
+-- we try to use that, to save inventing lots of fresh variables.
+-- But even if it is a variable, its type might not match. Consider
+-- data T a where
+-- T1 :: Int -> T Int
+-- T2 :: a -> T a
+--
+-- f :: T a -> a -> Int
+-- f (T1 i) (x::Int) = x
+-- f (T2 i) (y::a) = 0
+-- Then we must not choose (x::Int) as the matching variable!
+
+selectMatchVars :: [Pat Id] -> [Type] -> DsM [Id]
+selectMatchVars [] [] = return []
+selectMatchVars (p:ps) (ty:tys) = do { v <- selectMatchVar p ty
+ ; vs <- selectMatchVars ps tys
+ ; return (v:vs) }
+
+selectMatchVar (BangPat pat) pat_ty = selectMatchVar (unLoc pat) pat_ty
+selectMatchVar (LazyPat pat) pat_ty = selectMatchVar (unLoc pat) pat_ty
+selectMatchVar (VarPat var) pat_ty = try_for var pat_ty
+selectMatchVar (AsPat var pat) pat_ty = try_for (unLoc var) pat_ty
+selectMatchVar other_pat pat_ty = newSysLocalDs pat_ty -- OK, better make up one...
+
+try_for var pat_ty
+ | idType var `tcEqType` pat_ty = returnDs var
+ | otherwise = newSysLocalDs pat_ty
+\end{code}
+
+
+%************************************************************************
+%* *
+%* type synonym EquationInfo and access functions for its pieces *
+%* *
+%************************************************************************
+\subsection[EquationInfo-synonym]{@EquationInfo@: a useful synonym}
+
+The ``equation info'' used by @match@ is relatively complicated and
+worthy of a type synonym and a few handy functions.
+
+\begin{code}
+firstPat :: EquationInfo -> Pat Id
+firstPat eqn = head (eqn_pats eqn)
+
+shiftEqns :: [EquationInfo] -> [EquationInfo]
+-- Drop the first pattern in each equation
+shiftEqns eqns = [ eqn { eqn_pats = tail (eqn_pats eqn) } | eqn <- eqns ]
+\end{code}
+
+Functions on MatchResults
+
+\begin{code}
+matchCanFail :: MatchResult -> Bool
+matchCanFail (MatchResult CanFail _) = True
+matchCanFail (MatchResult CantFail _) = False
+
+alwaysFailMatchResult :: MatchResult
+alwaysFailMatchResult = MatchResult CanFail (\fail -> returnDs fail)
+
+cantFailMatchResult :: CoreExpr -> MatchResult
+cantFailMatchResult expr = MatchResult CantFail (\ ignore -> returnDs expr)
+
+extractMatchResult :: MatchResult -> CoreExpr -> DsM CoreExpr
+extractMatchResult (MatchResult CantFail match_fn) fail_expr
+ = match_fn (error "It can't fail!")
+
+extractMatchResult (MatchResult CanFail match_fn) fail_expr
+ = mkFailurePair fail_expr `thenDs` \ (fail_bind, if_it_fails) ->
+ match_fn if_it_fails `thenDs` \ body ->
+ returnDs (mkDsLet fail_bind body)
+
+
+combineMatchResults :: MatchResult -> MatchResult -> MatchResult
+combineMatchResults (MatchResult CanFail body_fn1)
+ (MatchResult can_it_fail2 body_fn2)
+ = MatchResult can_it_fail2 body_fn
+ where
+ body_fn fail = body_fn2 fail `thenDs` \ body2 ->
+ mkFailurePair body2 `thenDs` \ (fail_bind, duplicatable_expr) ->
+ body_fn1 duplicatable_expr `thenDs` \ body1 ->
+ returnDs (Let fail_bind body1)
+
+combineMatchResults match_result1@(MatchResult CantFail body_fn1) match_result2
+ = match_result1
+
+adjustMatchResult :: (CoreExpr -> CoreExpr) -> MatchResult -> MatchResult
+adjustMatchResult encl_fn (MatchResult can_it_fail body_fn)
+ = MatchResult can_it_fail (\fail -> body_fn fail `thenDs` \ body ->
+ returnDs (encl_fn body))
+
+adjustMatchResultDs :: (CoreExpr -> DsM CoreExpr) -> MatchResult -> MatchResult
+adjustMatchResultDs encl_fn (MatchResult can_it_fail body_fn)
+ = MatchResult can_it_fail (\fail -> body_fn fail `thenDs` \ body ->
+ encl_fn body)
+
+wrapBinds :: [(Var,Var)] -> CoreExpr -> CoreExpr
+wrapBinds [] e = e
+wrapBinds ((new,old):prs) e = wrapBind new old (wrapBinds prs e)
+
+wrapBind :: Var -> Var -> CoreExpr -> CoreExpr
+wrapBind new old body
+ | new==old = body
+ | isTyVar new = App (Lam new body) (Type (mkTyVarTy old))
+ | otherwise = Let (NonRec new (Var old)) body
+
+seqVar :: Var -> CoreExpr -> CoreExpr
+seqVar var body = Case (Var var) var (exprType body)
+ [(DEFAULT, [], body)]
+
+mkCoLetMatchResult :: CoreBind -> MatchResult -> MatchResult
+mkCoLetMatchResult bind match_result
+ = adjustMatchResult (mkDsLet bind) match_result
+
+mkGuardedMatchResult :: CoreExpr -> MatchResult -> MatchResult
+mkGuardedMatchResult pred_expr (MatchResult can_it_fail body_fn)
+ = MatchResult CanFail (\fail -> body_fn fail `thenDs` \ body ->
+ returnDs (mkIfThenElse pred_expr body fail))
+
+mkCoPrimCaseMatchResult :: Id -- Scrutinee
+ -> Type -- Type of the case
+ -> [(Literal, MatchResult)] -- Alternatives
+ -> MatchResult
+mkCoPrimCaseMatchResult var ty match_alts
+ = MatchResult CanFail mk_case
+ where
+ mk_case fail
+ = mappM (mk_alt fail) sorted_alts `thenDs` \ alts ->
+ returnDs (Case (Var var) var ty ((DEFAULT, [], fail) : alts))
+
+ sorted_alts = sortWith fst match_alts -- Right order for a Case
+ mk_alt fail (lit, MatchResult _ body_fn) = body_fn fail `thenDs` \ body ->
+ returnDs (LitAlt lit, [], body)
+
+
+mkCoAlgCaseMatchResult :: Id -- Scrutinee
+ -> Type -- Type of exp
+ -> [(DataCon, [CoreBndr], MatchResult)] -- Alternatives
+ -> MatchResult
+mkCoAlgCaseMatchResult var ty match_alts
+ | isNewTyCon tycon -- Newtype case; use a let
+ = ASSERT( null (tail match_alts) && null (tail arg_ids1) )
+ mkCoLetMatchResult (NonRec arg_id1 newtype_rhs) match_result1
+
+ | isPArrFakeAlts match_alts -- Sugared parallel array; use a literal case
+ = MatchResult CanFail mk_parrCase
+
+ | otherwise -- Datatype case; use a case
+ = MatchResult fail_flag mk_case
+ where
+ tycon = dataConTyCon con1
+ -- [Interesting: becuase of GADTs, we can't rely on the type of
+ -- the scrutinised Id to be sufficiently refined to have a TyCon in it]
+
+ -- Stuff for newtype
+ (con1, arg_ids1, match_result1) = head match_alts
+ arg_id1 = head arg_ids1
+ newtype_rhs = mkNewTypeBody tycon (idType arg_id1) (Var var)
+
+ -- Stuff for data types
+ data_cons = tyConDataCons tycon
+ match_results = [match_result | (_,_,match_result) <- match_alts]
+
+ fail_flag | exhaustive_case
+ = foldr1 orFail [can_it_fail | MatchResult can_it_fail _ <- match_results]
+ | otherwise
+ = CanFail
+
+ wild_var = mkWildId (idType var)
+ sorted_alts = sortWith get_tag match_alts
+ get_tag (con, _, _) = dataConTag con
+ mk_case fail = mappM (mk_alt fail) sorted_alts `thenDs` \ alts ->
+ returnDs (Case (Var var) wild_var ty (mk_default fail ++ alts))
+
+ mk_alt fail (con, args, MatchResult _ body_fn)
+ = body_fn fail `thenDs` \ body ->
+ newUniqueSupply `thenDs` \ us ->
+ returnDs (mkReboxingAlt (uniqsFromSupply us) con args body)
+
+ mk_default fail | exhaustive_case = []
+ | otherwise = [(DEFAULT, [], fail)]
+
+ un_mentioned_constructors
+ = mkUniqSet data_cons `minusUniqSet` mkUniqSet [ con | (con, _, _) <- match_alts]
+ exhaustive_case = isEmptyUniqSet un_mentioned_constructors
+
+ -- Stuff for parallel arrays
+ --
+ -- * the following is to desugar cases over fake constructors for
+ -- parallel arrays, which are introduced by `tidy1' in the `PArrPat'
+ -- case
+ --
+ -- Concerning `isPArrFakeAlts':
+ --
+ -- * it is *not* sufficient to just check the type of the type
+ -- constructor, as we have to be careful not to confuse the real
+ -- representation of parallel arrays with the fake constructors;
+ -- moreover, a list of alternatives must not mix fake and real
+ -- constructors (this is checked earlier on)
+ --
+ -- FIXME: We actually go through the whole list and make sure that
+ -- either all or none of the constructors are fake parallel
+ -- array constructors. This is to spot equations that mix fake
+ -- constructors with the real representation defined in
+ -- `PrelPArr'. It would be nicer to spot this situation
+ -- earlier and raise a proper error message, but it can really
+ -- only happen in `PrelPArr' anyway.
+ --
+ isPArrFakeAlts [(dcon, _, _)] = isPArrFakeCon dcon
+ isPArrFakeAlts ((dcon, _, _):alts) =
+ case (isPArrFakeCon dcon, isPArrFakeAlts alts) of
+ (True , True ) -> True
+ (False, False) -> False
+ _ ->
+ panic "DsUtils: You may not mix `[:...:]' with `PArr' patterns"
+ --
+ mk_parrCase fail =
+ dsLookupGlobalId lengthPName `thenDs` \lengthP ->
+ unboxAlt `thenDs` \alt ->
+ returnDs (Case (len lengthP) (mkWildId intTy) ty [alt])
+ where
+ elemTy = case splitTyConApp (idType var) of
+ (_, [elemTy]) -> elemTy
+ _ -> panic panicMsg
+ panicMsg = "DsUtils.mkCoAlgCaseMatchResult: not a parallel array?"
+ len lengthP = mkApps (Var lengthP) [Type elemTy, Var var]
+ --
+ unboxAlt =
+ newSysLocalDs intPrimTy `thenDs` \l ->
+ dsLookupGlobalId indexPName `thenDs` \indexP ->
+ mappM (mkAlt indexP) sorted_alts `thenDs` \alts ->
+ returnDs (DataAlt intDataCon, [l], (Case (Var l) wild ty (dft : alts)))
+ where
+ wild = mkWildId intPrimTy
+ dft = (DEFAULT, [], fail)
+ --
+ -- each alternative matches one array length (corresponding to one
+ -- fake array constructor), so the match is on a literal; each
+ -- alternative's body is extended by a local binding for each
+ -- constructor argument, which are bound to array elements starting
+ -- with the first
+ --
+ mkAlt indexP (con, args, MatchResult _ bodyFun) =
+ bodyFun fail `thenDs` \body ->
+ returnDs (LitAlt lit, [], mkDsLets binds body)
+ where
+ lit = MachInt $ toInteger (dataConSourceArity con)
+ binds = [NonRec arg (indexExpr i) | (i, arg) <- zip [1..] args]
+ --
+ indexExpr i = mkApps (Var indexP) [Type elemTy, Var var, mkIntExpr i]
+\end{code}
+
+
+%************************************************************************
+%* *
+\subsection{Desugarer's versions of some Core functions}
+%* *
+%************************************************************************
+
+\begin{code}
+mkErrorAppDs :: Id -- The error function
+ -> Type -- Type to which it should be applied
+ -> String -- The error message string to pass
+ -> DsM CoreExpr
+
+mkErrorAppDs err_id ty msg
+ = getSrcSpanDs `thenDs` \ src_loc ->
+ let
+ full_msg = showSDoc (hcat [ppr src_loc, text "|", text msg])
+ core_msg = Lit (mkStringLit full_msg)
+ -- mkStringLit returns a result of type String#
+ in
+ returnDs (mkApps (Var err_id) [Type ty, core_msg])
+\end{code}
+
+
+*************************************************************
+%* *
+\subsection{Making literals}
+%* *
+%************************************************************************
+
+\begin{code}
+mkCharExpr :: Char -> CoreExpr -- Returns C# c :: Int
+mkIntExpr :: Integer -> CoreExpr -- Returns I# i :: Int
+mkIntegerExpr :: Integer -> DsM CoreExpr -- Result :: Integer
+mkStringExpr :: String -> DsM CoreExpr -- Result :: String
+mkStringExprFS :: FastString -> DsM CoreExpr -- Result :: String
+
+mkIntExpr i = mkConApp intDataCon [mkIntLit i]
+mkCharExpr c = mkConApp charDataCon [mkLit (MachChar c)]
+
+mkIntegerExpr i
+ | inIntRange i -- Small enough, so start from an Int
+ = dsLookupDataCon smallIntegerDataConName `thenDs` \ integer_dc ->
+ returnDs (mkSmallIntegerLit integer_dc i)
+
+-- Special case for integral literals with a large magnitude:
+-- They are transformed into an expression involving only smaller
+-- integral literals. This improves constant folding.
+
+ | otherwise -- Big, so start from a string
+ = dsLookupGlobalId plusIntegerName `thenDs` \ plus_id ->
+ dsLookupGlobalId timesIntegerName `thenDs` \ times_id ->
+ dsLookupDataCon smallIntegerDataConName `thenDs` \ integer_dc ->
+ let
+ lit i = mkSmallIntegerLit integer_dc i
+ plus a b = Var plus_id `App` a `App` b
+ times a b = Var times_id `App` a `App` b
+
+ -- Transform i into (x1 + (x2 + (x3 + (...) * b) * b) * b) with abs xi <= b
+ horner :: Integer -> Integer -> CoreExpr
+ horner b i | abs q <= 1 = if r == 0 || r == i
+ then lit i
+ else lit r `plus` lit (i-r)
+ | r == 0 = horner b q `times` lit b
+ | otherwise = lit r `plus` (horner b q `times` lit b)
+ where
+ (q,r) = i `quotRem` b
+
+ in
+ returnDs (horner tARGET_MAX_INT i)
+
+mkSmallIntegerLit small_integer_data_con i = mkConApp small_integer_data_con [mkIntLit i]
+
+mkStringExpr str = mkStringExprFS (mkFastString str)
+
+mkStringExprFS str
+ | nullFS str
+ = returnDs (mkNilExpr charTy)
+
+ | lengthFS str == 1
+ = let
+ the_char = mkCharExpr (headFS str)
+ in
+ returnDs (mkConsExpr charTy the_char (mkNilExpr charTy))
+
+ | all safeChar chars
+ = dsLookupGlobalId unpackCStringName `thenDs` \ unpack_id ->
+ returnDs (App (Var unpack_id) (Lit (MachStr str)))
+
+ | otherwise
+ = dsLookupGlobalId unpackCStringUtf8Name `thenDs` \ unpack_id ->
+ returnDs (App (Var unpack_id) (Lit (MachStr str)))
+
+ where
+ chars = unpackFS str
+ safeChar c = ord c >= 1 && ord c <= 0x7F
+\end{code}
+
+
+%************************************************************************
+%* *
+\subsection[mkSelectorBind]{Make a selector bind}
+%* *
+%************************************************************************
+
+This is used in various places to do with lazy patterns.
+For each binder $b$ in the pattern, we create a binding:
+\begin{verbatim}
+ b = case v of pat' -> b'
+\end{verbatim}
+where @pat'@ is @pat@ with each binder @b@ cloned into @b'@.
+
+ToDo: making these bindings should really depend on whether there's
+much work to be done per binding. If the pattern is complex, it
+should be de-mangled once, into a tuple (and then selected from).
+Otherwise the demangling can be in-line in the bindings (as here).
+
+Boring! Boring! One error message per binder. The above ToDo is
+even more helpful. Something very similar happens for pattern-bound
+expressions.
+
+\begin{code}
+mkSelectorBinds :: LPat Id -- The pattern
+ -> CoreExpr -- Expression to which the pattern is bound
+ -> DsM [(Id,CoreExpr)]
+
+mkSelectorBinds (L _ (VarPat v)) val_expr
+ = returnDs [(v, val_expr)]
+
+mkSelectorBinds pat val_expr
+ | isSingleton binders || is_simple_lpat pat
+ = -- Given p = e, where p binds x,y
+ -- we are going to make
+ -- v = p (where v is fresh)
+ -- x = case v of p -> x
+ -- y = case v of p -> x
+
+ -- Make up 'v'
+ -- NB: give it the type of *pattern* p, not the type of the *rhs* e.
+ -- This does not matter after desugaring, but there's a subtle
+ -- issue with implicit parameters. Consider
+ -- (x,y) = ?i
+ -- Then, ?i is given type {?i :: Int}, a PredType, which is opaque
+ -- to the desugarer. (Why opaque? Because newtypes have to be. Why
+ -- does it get that type? So that when we abstract over it we get the
+ -- right top-level type (?i::Int) => ...)
+ --
+ -- So to get the type of 'v', use the pattern not the rhs. Often more
+ -- efficient too.
+ newSysLocalDs (hsPatType pat) `thenDs` \ val_var ->
+
+ -- For the error message we make one error-app, to avoid duplication.
+ -- But we need it at different types... so we use coerce for that
+ mkErrorAppDs iRREFUT_PAT_ERROR_ID
+ unitTy (showSDoc (ppr pat)) `thenDs` \ err_expr ->
+ newSysLocalDs unitTy `thenDs` \ err_var ->
+ mappM (mk_bind val_var err_var) binders `thenDs` \ binds ->
+ returnDs ( (val_var, val_expr) :
+ (err_var, err_expr) :
+ binds )
+
+
+ | otherwise
+ = mkErrorAppDs iRREFUT_PAT_ERROR_ID
+ tuple_ty (showSDoc (ppr pat)) `thenDs` \ error_expr ->
+ matchSimply val_expr PatBindRhs pat local_tuple error_expr `thenDs` \ tuple_expr ->
+ newSysLocalDs tuple_ty `thenDs` \ tuple_var ->
+ let
+ mk_tup_bind binder
+ = (binder, mkTupleSelector binders binder tuple_var (Var tuple_var))
+ in
+ returnDs ( (tuple_var, tuple_expr) : map mk_tup_bind binders )
+ where
+ binders = collectPatBinders pat
+ local_tuple = mkTupleExpr binders
+ tuple_ty = exprType local_tuple
+
+ mk_bind scrut_var err_var bndr_var
+ -- (mk_bind sv err_var) generates
+ -- bv = case sv of { pat -> bv; other -> coerce (type-of-bv) err_var }
+ -- Remember, pat binds bv
+ = matchSimply (Var scrut_var) PatBindRhs pat
+ (Var bndr_var) error_expr `thenDs` \ rhs_expr ->
+ returnDs (bndr_var, rhs_expr)
+ where
+ error_expr = mkCoerce (idType bndr_var) (Var err_var)
+
+ is_simple_lpat p = is_simple_pat (unLoc p)
+
+ is_simple_pat (TuplePat ps Boxed _) = all is_triv_lpat ps
+ is_simple_pat (ConPatOut _ _ _ _ ps _) = all is_triv_lpat (hsConArgs ps)
+ is_simple_pat (VarPat _) = True
+ is_simple_pat (ParPat p) = is_simple_lpat p
+ is_simple_pat other = False
+
+ is_triv_lpat p = is_triv_pat (unLoc p)
+
+ is_triv_pat (VarPat v) = True
+ is_triv_pat (WildPat _) = True
+ is_triv_pat (ParPat p) = is_triv_lpat p
+ is_triv_pat other = False
+\end{code}
+
+
+%************************************************************************
+%* *
+ Tuples
+%* *
+%************************************************************************
+
+@mkTupleExpr@ builds a tuple; the inverse to @mkTupleSelector@.
+
+* If it has only one element, it is the identity function.
+
+* If there are more elements than a big tuple can have, it nests
+ the tuples.
+
+Nesting policy. Better a 2-tuple of 10-tuples (3 objects) than
+a 10-tuple of 2-tuples (11 objects). So we want the leaves to be big.
+
+\begin{code}
+mkTupleExpr :: [Id] -> CoreExpr
+mkTupleExpr ids = mkBigCoreTup (map Var ids)
+
+-- corresponding type
+mkTupleType :: [Id] -> Type
+mkTupleType ids = mkBigTuple mkCoreTupTy (map idType ids)
+
+mkBigCoreTup :: [CoreExpr] -> CoreExpr
+mkBigCoreTup = mkBigTuple mkCoreTup
+
+mkBigTuple :: ([a] -> a) -> [a] -> a
+mkBigTuple small_tuple as = mk_big_tuple (chunkify as)
+ where
+ -- Each sub-list is short enough to fit in a tuple
+ mk_big_tuple [as] = small_tuple as
+ mk_big_tuple as_s = mk_big_tuple (chunkify (map small_tuple as_s))
+
+chunkify :: [a] -> [[a]]
+-- The sub-lists of the result all have length <= mAX_TUPLE_SIZE
+-- But there may be more than mAX_TUPLE_SIZE sub-lists
+chunkify xs
+ | n_xs <= mAX_TUPLE_SIZE = {- pprTrace "Small" (ppr n_xs) -} [xs]
+ | otherwise = {- pprTrace "Big" (ppr n_xs) -} (split xs)
+ where
+ n_xs = length xs
+ split [] = []
+ split xs = take mAX_TUPLE_SIZE xs : split (drop mAX_TUPLE_SIZE xs)
+\end{code}
+
+
+@mkTupleSelector@ builds a selector which scrutises the given
+expression and extracts the one name from the list given.
+If you want the no-shadowing rule to apply, the caller
+is responsible for making sure that none of these names
+are in scope.
+
+If there is just one id in the ``tuple'', then the selector is
+just the identity.
+
+If it's big, it does nesting
+ mkTupleSelector [a,b,c,d] b v e
+ = case e of v {
+ (p,q) -> case p of p {
+ (a,b) -> b }}
+We use 'tpl' vars for the p,q, since shadowing does not matter.
+
+In fact, it's more convenient to generate it innermost first, getting
+
+ case (case e of v
+ (p,q) -> p) of p
+ (a,b) -> b
+
+\begin{code}
+mkTupleSelector :: [Id] -- The tuple args
+ -> Id -- The selected one
+ -> Id -- A variable of the same type as the scrutinee
+ -> CoreExpr -- Scrutinee
+ -> CoreExpr
+
+mkTupleSelector vars the_var scrut_var scrut
+ = mk_tup_sel (chunkify vars) the_var
+ where
+ mk_tup_sel [vars] the_var = mkCoreSel vars the_var scrut_var scrut
+ mk_tup_sel vars_s the_var = mkCoreSel group the_var tpl_v $
+ mk_tup_sel (chunkify tpl_vs) tpl_v
+ where
+ tpl_tys = [mkCoreTupTy (map idType gp) | gp <- vars_s]
+ tpl_vs = mkTemplateLocals tpl_tys
+ [(tpl_v, group)] = [(tpl,gp) | (tpl,gp) <- zipEqual "mkTupleSelector" tpl_vs vars_s,
+ the_var `elem` gp ]
+\end{code}
+
+A generalization of @mkTupleSelector@, allowing the body
+of the case to be an arbitrary expression.
+
+If the tuple is big, it is nested:
+
+ mkTupleCase uniqs [a,b,c,d] body v e
+ = case e of v { (p,q) ->
+ case p of p { (a,b) ->
+ case q of q { (c,d) ->
+ body }}}
+
+To avoid shadowing, we use uniqs to invent new variables p,q.
+
+ToDo: eliminate cases where none of the variables are needed.
+
+\begin{code}
+mkTupleCase
+ :: UniqSupply -- for inventing names of intermediate variables
+ -> [Id] -- the tuple args
+ -> CoreExpr -- body of the case
+ -> Id -- a variable of the same type as the scrutinee
+ -> CoreExpr -- scrutinee
+ -> CoreExpr
+
+mkTupleCase uniqs vars body scrut_var scrut
+ = mk_tuple_case uniqs (chunkify vars) body
+ where
+ mk_tuple_case us [vars] body
+ = mkSmallTupleCase vars body scrut_var scrut
+ mk_tuple_case us vars_s body
+ = let
+ (us', vars', body') = foldr one_tuple_case (us, [], body) vars_s
+ in
+ mk_tuple_case us' (chunkify vars') body'
+ one_tuple_case chunk_vars (us, vs, body)
+ = let
+ (us1, us2) = splitUniqSupply us
+ scrut_var = mkSysLocal FSLIT("ds") (uniqFromSupply us1)
+ (mkCoreTupTy (map idType chunk_vars))
+ body' = mkSmallTupleCase chunk_vars body scrut_var (Var scrut_var)
+ in (us2, scrut_var:vs, body')
+\end{code}
+
+The same, but with a tuple small enough not to need nesting.
+
+\begin{code}
+mkSmallTupleCase
+ :: [Id] -- the tuple args
+ -> CoreExpr -- body of the case
+ -> Id -- a variable of the same type as the scrutinee
+ -> CoreExpr -- scrutinee
+ -> CoreExpr
+
+mkSmallTupleCase [var] body _scrut_var scrut
+ = bindNonRec var scrut body
+mkSmallTupleCase vars body scrut_var scrut
+-- One branch no refinement?
+ = Case scrut scrut_var (exprType body) [(DataAlt (tupleCon Boxed (length vars)), vars, body)]
+\end{code}
+
+%************************************************************************
+%* *
+\subsection[mkFailurePair]{Code for pattern-matching and other failures}
+%* *
+%************************************************************************
+
+Call the constructor Ids when building explicit lists, so that they
+interact well with rules.
+
+\begin{code}
+mkNilExpr :: Type -> CoreExpr
+mkNilExpr ty = mkConApp nilDataCon [Type ty]
+
+mkConsExpr :: Type -> CoreExpr -> CoreExpr -> CoreExpr
+mkConsExpr ty hd tl = mkConApp consDataCon [Type ty, hd, tl]
+
+mkListExpr :: Type -> [CoreExpr] -> CoreExpr
+mkListExpr ty xs = foldr (mkConsExpr ty) (mkNilExpr ty) xs
+
+
+-- The next three functions make tuple types, constructors and selectors,
+-- with the rule that a 1-tuple is represented by the thing itselg
+mkCoreTupTy :: [Type] -> Type
+mkCoreTupTy [ty] = ty
+mkCoreTupTy tys = mkTupleTy Boxed (length tys) tys
+
+mkCoreTup :: [CoreExpr] -> CoreExpr
+-- Builds exactly the specified tuple.
+-- No fancy business for big tuples
+mkCoreTup [] = Var unitDataConId
+mkCoreTup [c] = c
+mkCoreTup cs = mkConApp (tupleCon Boxed (length cs))
+ (map (Type . exprType) cs ++ cs)
+
+mkCoreSel :: [Id] -- The tuple args
+ -> Id -- The selected one
+ -> Id -- A variable of the same type as the scrutinee
+ -> CoreExpr -- Scrutinee
+ -> CoreExpr
+-- mkCoreSel [x,y,z] x v e
+-- ===> case e of v { (x,y,z) -> x
+mkCoreSel [var] should_be_the_same_var scrut_var scrut
+ = ASSERT(var == should_be_the_same_var)
+ scrut
+
+mkCoreSel vars the_var scrut_var scrut
+ = ASSERT( notNull vars )
+ Case scrut scrut_var (idType the_var)
+ [(DataAlt (tupleCon Boxed (length vars)), vars, Var the_var)]
+\end{code}
+
+
+%************************************************************************
+%* *
+\subsection[mkFailurePair]{Code for pattern-matching and other failures}
+%* *
+%************************************************************************
+
+Generally, we handle pattern matching failure like this: let-bind a
+fail-variable, and use that variable if the thing fails:
+\begin{verbatim}
+ let fail.33 = error "Help"
+ in
+ case x of
+ p1 -> ...
+ p2 -> fail.33
+ p3 -> fail.33
+ p4 -> ...
+\end{verbatim}
+Then
+\begin{itemize}
+\item
+If the case can't fail, then there'll be no mention of @fail.33@, and the
+simplifier will later discard it.
+
+\item
+If it can fail in only one way, then the simplifier will inline it.
+
+\item
+Only if it is used more than once will the let-binding remain.
+\end{itemize}
+
+There's a problem when the result of the case expression is of
+unboxed type. Then the type of @fail.33@ is unboxed too, and
+there is every chance that someone will change the let into a case:
+\begin{verbatim}
+ case error "Help" of
+ fail.33 -> case ....
+\end{verbatim}
+
+which is of course utterly wrong. Rather than drop the condition that
+only boxed types can be let-bound, we just turn the fail into a function
+for the primitive case:
+\begin{verbatim}
+ let fail.33 :: Void -> Int#
+ fail.33 = \_ -> error "Help"
+ in
+ case x of
+ p1 -> ...
+ p2 -> fail.33 void
+ p3 -> fail.33 void
+ p4 -> ...
+\end{verbatim}
+
+Now @fail.33@ is a function, so it can be let-bound.
+
+\begin{code}
+mkFailurePair :: CoreExpr -- Result type of the whole case expression
+ -> DsM (CoreBind, -- Binds the newly-created fail variable
+ -- to either the expression or \ _ -> expression
+ CoreExpr) -- Either the fail variable, or fail variable
+ -- applied to unit tuple
+mkFailurePair expr
+ | isUnLiftedType ty
+ = newFailLocalDs (unitTy `mkFunTy` ty) `thenDs` \ fail_fun_var ->
+ newSysLocalDs unitTy `thenDs` \ fail_fun_arg ->
+ returnDs (NonRec fail_fun_var (Lam fail_fun_arg expr),
+ App (Var fail_fun_var) (Var unitDataConId))
+
+ | otherwise
+ = newFailLocalDs ty `thenDs` \ fail_var ->
+ returnDs (NonRec fail_var expr, Var fail_var)
+ where
+ ty = exprType expr
+\end{code}
+
+