summaryrefslogtreecommitdiff
path: root/compiler/deSugar/MatchCon.lhs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/deSugar/MatchCon.lhs')
-rw-r--r--compiler/deSugar/MatchCon.lhs174
1 files changed, 174 insertions, 0 deletions
diff --git a/compiler/deSugar/MatchCon.lhs b/compiler/deSugar/MatchCon.lhs
new file mode 100644
index 0000000000..6ff502a8ae
--- /dev/null
+++ b/compiler/deSugar/MatchCon.lhs
@@ -0,0 +1,174 @@
+
+% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
+%
+\section[MatchCon]{Pattern-matching constructors}
+
+\begin{code}
+module MatchCon ( matchConFamily ) where
+
+#include "HsVersions.h"
+
+import Id( idType )
+
+import {-# SOURCE #-} Match ( match )
+
+import HsSyn ( Pat(..), HsConDetails(..) )
+import DsBinds ( dsLHsBinds )
+import DataCon ( isVanillaDataCon, dataConInstOrigArgTys )
+import TcType ( tcTyConAppArgs )
+import Type ( mkTyVarTys )
+import CoreSyn
+import DsMonad
+import DsUtils
+
+import Id ( Id )
+import Type ( Type )
+import ListSetOps ( equivClassesByUniq )
+import SrcLoc ( unLoc, Located(..) )
+import Unique ( Uniquable(..) )
+import Outputable
+\end{code}
+
+We are confronted with the first column of patterns in a set of
+equations, all beginning with constructors from one ``family'' (e.g.,
+@[]@ and @:@ make up the @List@ ``family''). We want to generate the
+alternatives for a @Case@ expression. There are several choices:
+\begin{enumerate}
+\item
+Generate an alternative for every constructor in the family, whether
+they are used in this set of equations or not; this is what the Wadler
+chapter does.
+\begin{description}
+\item[Advantages:]
+(a)~Simple. (b)~It may also be that large sparsely-used constructor
+families are mainly handled by the code for literals.
+\item[Disadvantages:]
+(a)~Not practical for large sparsely-used constructor families, e.g.,
+the ASCII character set. (b)~Have to look up a list of what
+constructors make up the whole family.
+\end{description}
+
+\item
+Generate an alternative for each constructor used, then add a default
+alternative in case some constructors in the family weren't used.
+\begin{description}
+\item[Advantages:]
+(a)~Alternatives aren't generated for unused constructors. (b)~The
+STG is quite happy with defaults. (c)~No lookup in an environment needed.
+\item[Disadvantages:]
+(a)~A spurious default alternative may be generated.
+\end{description}
+
+\item
+``Do it right:'' generate an alternative for each constructor used,
+and add a default alternative if all constructors in the family
+weren't used.
+\begin{description}
+\item[Advantages:]
+(a)~You will get cases with only one alternative (and no default),
+which should be amenable to optimisation. Tuples are a common example.
+\item[Disadvantages:]
+(b)~Have to look up constructor families in TDE (as above).
+\end{description}
+\end{enumerate}
+
+We are implementing the ``do-it-right'' option for now. The arguments
+to @matchConFamily@ are the same as to @match@; the extra @Int@
+returned is the number of constructors in the family.
+
+The function @matchConFamily@ is concerned with this
+have-we-used-all-the-constructors? question; the local function
+@match_cons_used@ does all the real work.
+\begin{code}
+matchConFamily :: [Id]
+ -> Type
+ -> [EquationInfo]
+ -> DsM MatchResult
+matchConFamily (var:vars) ty eqns_info
+ = let
+ -- Sort into equivalence classes by the unique on the constructor
+ -- All the EqnInfos should start with a ConPat
+ groups = equivClassesByUniq get_uniq eqns_info
+ get_uniq (EqnInfo { eqn_pats = ConPatOut (L _ data_con) _ _ _ _ _ : _}) = getUnique data_con
+
+ -- Get the wrapper from the head of each group. We're going to
+ -- use it as the pattern in this case expression, so we need to
+ -- ensure that any type variables it mentions in the pattern are
+ -- in scope. So we put its wrappers outside the case, and
+ -- zap the wrapper for it.
+ wraps :: [CoreExpr -> CoreExpr]
+ wraps = map (eqn_wrap . head) groups
+
+ groups' = [ eqn { eqn_wrap = idWrapper } : eqns | eqn:eqns <- groups ]
+ in
+ -- Now make a case alternative out of each group
+ mappM (match_con vars ty) groups' `thenDs` \ alts ->
+ returnDs (adjustMatchResult (foldr (.) idWrapper wraps) $
+ mkCoAlgCaseMatchResult var ty alts)
+\end{code}
+
+And here is the local function that does all the work. It is
+more-or-less the @matchCon@/@matchClause@ functions on page~94 in
+Wadler's chapter in SLPJ. The function @shift_con_pats@ does what the
+list comprehension in @matchClause@ (SLPJ, p.~94) does, except things
+are trickier in real life. Works for @ConPats@, and we want it to
+fail catastrophically for anything else (which a list comprehension
+wouldn't). Cf.~@shift_lit_pats@ in @MatchLits@.
+
+\begin{code}
+match_con vars ty eqns
+ = do { -- Make new vars for the con arguments; avoid new locals where possible
+ arg_vars <- selectMatchVars (map unLoc arg_pats1) arg_tys
+ ; eqns' <- mapM shift eqns
+ ; match_result <- match (arg_vars ++ vars) ty eqns'
+ ; return (con, tvs1 ++ dicts1 ++ arg_vars, match_result) }
+ where
+ ConPatOut (L _ con) tvs1 dicts1 _ (PrefixCon arg_pats1) pat_ty = firstPat (head eqns)
+
+ shift eqn@(EqnInfo { eqn_wrap = wrap,
+ eqn_pats = ConPatOut _ tvs ds bind (PrefixCon arg_pats) _ : pats })
+ = do { prs <- dsLHsBinds bind
+ ; return (eqn { eqn_wrap = wrap . wrapBinds (tvs `zip` tvs1)
+ . wrapBinds (ds `zip` dicts1)
+ . mkDsLet (Rec prs),
+ eqn_pats = map unLoc arg_pats ++ pats }) }
+
+ -- Get the arg types, which we use to type the new vars
+ -- to match on, from the "outside"; the types of pats1 may
+ -- be more refined, and hence won't do
+ arg_tys = dataConInstOrigArgTys con inst_tys
+ inst_tys | isVanillaDataCon con = tcTyConAppArgs pat_ty -- Newtypes opaque!
+ | otherwise = mkTyVarTys tvs1
+\end{code}
+
+Note [Existentials in shift_con_pat]
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+Consider
+ data T = forall a. Ord a => T a (a->Int)
+
+ f (T x f) True = ...expr1...
+ f (T y g) False = ...expr2..
+
+When we put in the tyvars etc we get
+
+ f (T a (d::Ord a) (x::a) (f::a->Int)) True = ...expr1...
+ f (T b (e::Ord b) (y::a) (g::a->Int)) True = ...expr2...
+
+After desugaring etc we'll get a single case:
+
+ f = \t::T b::Bool ->
+ case t of
+ T a (d::Ord a) (x::a) (f::a->Int)) ->
+ case b of
+ True -> ...expr1...
+ False -> ...expr2...
+
+*** We have to substitute [a/b, d/e] in expr2! **
+Hence
+ False -> ....((/\b\(e:Ord b).expr2) a d)....
+
+Originally I tried to use
+ (\b -> let e = d in expr2) a
+to do this substitution. While this is "correct" in a way, it fails
+Lint, because e::Ord b but d::Ord a.
+