diff options
Diffstat (limited to 'compiler/deSugar/MatchCon.lhs')
-rw-r--r-- | compiler/deSugar/MatchCon.lhs | 174 |
1 files changed, 174 insertions, 0 deletions
diff --git a/compiler/deSugar/MatchCon.lhs b/compiler/deSugar/MatchCon.lhs new file mode 100644 index 0000000000..6ff502a8ae --- /dev/null +++ b/compiler/deSugar/MatchCon.lhs @@ -0,0 +1,174 @@ + +% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 +% +\section[MatchCon]{Pattern-matching constructors} + +\begin{code} +module MatchCon ( matchConFamily ) where + +#include "HsVersions.h" + +import Id( idType ) + +import {-# SOURCE #-} Match ( match ) + +import HsSyn ( Pat(..), HsConDetails(..) ) +import DsBinds ( dsLHsBinds ) +import DataCon ( isVanillaDataCon, dataConInstOrigArgTys ) +import TcType ( tcTyConAppArgs ) +import Type ( mkTyVarTys ) +import CoreSyn +import DsMonad +import DsUtils + +import Id ( Id ) +import Type ( Type ) +import ListSetOps ( equivClassesByUniq ) +import SrcLoc ( unLoc, Located(..) ) +import Unique ( Uniquable(..) ) +import Outputable +\end{code} + +We are confronted with the first column of patterns in a set of +equations, all beginning with constructors from one ``family'' (e.g., +@[]@ and @:@ make up the @List@ ``family''). We want to generate the +alternatives for a @Case@ expression. There are several choices: +\begin{enumerate} +\item +Generate an alternative for every constructor in the family, whether +they are used in this set of equations or not; this is what the Wadler +chapter does. +\begin{description} +\item[Advantages:] +(a)~Simple. (b)~It may also be that large sparsely-used constructor +families are mainly handled by the code for literals. +\item[Disadvantages:] +(a)~Not practical for large sparsely-used constructor families, e.g., +the ASCII character set. (b)~Have to look up a list of what +constructors make up the whole family. +\end{description} + +\item +Generate an alternative for each constructor used, then add a default +alternative in case some constructors in the family weren't used. +\begin{description} +\item[Advantages:] +(a)~Alternatives aren't generated for unused constructors. (b)~The +STG is quite happy with defaults. (c)~No lookup in an environment needed. +\item[Disadvantages:] +(a)~A spurious default alternative may be generated. +\end{description} + +\item +``Do it right:'' generate an alternative for each constructor used, +and add a default alternative if all constructors in the family +weren't used. +\begin{description} +\item[Advantages:] +(a)~You will get cases with only one alternative (and no default), +which should be amenable to optimisation. Tuples are a common example. +\item[Disadvantages:] +(b)~Have to look up constructor families in TDE (as above). +\end{description} +\end{enumerate} + +We are implementing the ``do-it-right'' option for now. The arguments +to @matchConFamily@ are the same as to @match@; the extra @Int@ +returned is the number of constructors in the family. + +The function @matchConFamily@ is concerned with this +have-we-used-all-the-constructors? question; the local function +@match_cons_used@ does all the real work. +\begin{code} +matchConFamily :: [Id] + -> Type + -> [EquationInfo] + -> DsM MatchResult +matchConFamily (var:vars) ty eqns_info + = let + -- Sort into equivalence classes by the unique on the constructor + -- All the EqnInfos should start with a ConPat + groups = equivClassesByUniq get_uniq eqns_info + get_uniq (EqnInfo { eqn_pats = ConPatOut (L _ data_con) _ _ _ _ _ : _}) = getUnique data_con + + -- Get the wrapper from the head of each group. We're going to + -- use it as the pattern in this case expression, so we need to + -- ensure that any type variables it mentions in the pattern are + -- in scope. So we put its wrappers outside the case, and + -- zap the wrapper for it. + wraps :: [CoreExpr -> CoreExpr] + wraps = map (eqn_wrap . head) groups + + groups' = [ eqn { eqn_wrap = idWrapper } : eqns | eqn:eqns <- groups ] + in + -- Now make a case alternative out of each group + mappM (match_con vars ty) groups' `thenDs` \ alts -> + returnDs (adjustMatchResult (foldr (.) idWrapper wraps) $ + mkCoAlgCaseMatchResult var ty alts) +\end{code} + +And here is the local function that does all the work. It is +more-or-less the @matchCon@/@matchClause@ functions on page~94 in +Wadler's chapter in SLPJ. The function @shift_con_pats@ does what the +list comprehension in @matchClause@ (SLPJ, p.~94) does, except things +are trickier in real life. Works for @ConPats@, and we want it to +fail catastrophically for anything else (which a list comprehension +wouldn't). Cf.~@shift_lit_pats@ in @MatchLits@. + +\begin{code} +match_con vars ty eqns + = do { -- Make new vars for the con arguments; avoid new locals where possible + arg_vars <- selectMatchVars (map unLoc arg_pats1) arg_tys + ; eqns' <- mapM shift eqns + ; match_result <- match (arg_vars ++ vars) ty eqns' + ; return (con, tvs1 ++ dicts1 ++ arg_vars, match_result) } + where + ConPatOut (L _ con) tvs1 dicts1 _ (PrefixCon arg_pats1) pat_ty = firstPat (head eqns) + + shift eqn@(EqnInfo { eqn_wrap = wrap, + eqn_pats = ConPatOut _ tvs ds bind (PrefixCon arg_pats) _ : pats }) + = do { prs <- dsLHsBinds bind + ; return (eqn { eqn_wrap = wrap . wrapBinds (tvs `zip` tvs1) + . wrapBinds (ds `zip` dicts1) + . mkDsLet (Rec prs), + eqn_pats = map unLoc arg_pats ++ pats }) } + + -- Get the arg types, which we use to type the new vars + -- to match on, from the "outside"; the types of pats1 may + -- be more refined, and hence won't do + arg_tys = dataConInstOrigArgTys con inst_tys + inst_tys | isVanillaDataCon con = tcTyConAppArgs pat_ty -- Newtypes opaque! + | otherwise = mkTyVarTys tvs1 +\end{code} + +Note [Existentials in shift_con_pat] +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +Consider + data T = forall a. Ord a => T a (a->Int) + + f (T x f) True = ...expr1... + f (T y g) False = ...expr2.. + +When we put in the tyvars etc we get + + f (T a (d::Ord a) (x::a) (f::a->Int)) True = ...expr1... + f (T b (e::Ord b) (y::a) (g::a->Int)) True = ...expr2... + +After desugaring etc we'll get a single case: + + f = \t::T b::Bool -> + case t of + T a (d::Ord a) (x::a) (f::a->Int)) -> + case b of + True -> ...expr1... + False -> ...expr2... + +*** We have to substitute [a/b, d/e] in expr2! ** +Hence + False -> ....((/\b\(e:Ord b).expr2) a d).... + +Originally I tried to use + (\b -> let e = d in expr2) a +to do this substitution. While this is "correct" in a way, it fails +Lint, because e::Ord b but d::Ord a. + |