summaryrefslogtreecommitdiff
path: root/compiler/simplCore/SetLevels.lhs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/simplCore/SetLevels.lhs')
-rw-r--r--compiler/simplCore/SetLevels.lhs847
1 files changed, 847 insertions, 0 deletions
diff --git a/compiler/simplCore/SetLevels.lhs b/compiler/simplCore/SetLevels.lhs
new file mode 100644
index 0000000000..f8ab29dcd5
--- /dev/null
+++ b/compiler/simplCore/SetLevels.lhs
@@ -0,0 +1,847 @@
+%
+% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
+%
+\section{SetLevels}
+
+ ***************************
+ Overview
+ ***************************
+
+1. We attach binding levels to Core bindings, in preparation for floating
+ outwards (@FloatOut@).
+
+2. We also let-ify many expressions (notably case scrutinees), so they
+ will have a fighting chance of being floated sensible.
+
+3. We clone the binders of any floatable let-binding, so that when it is
+ floated out it will be unique. (This used to be done by the simplifier
+ but the latter now only ensures that there's no shadowing; indeed, even
+ that may not be true.)
+
+ NOTE: this can't be done using the uniqAway idea, because the variable
+ must be unique in the whole program, not just its current scope,
+ because two variables in different scopes may float out to the
+ same top level place
+
+ NOTE: Very tiresomely, we must apply this substitution to
+ the rules stored inside a variable too.
+
+ We do *not* clone top-level bindings, because some of them must not change,
+ but we *do* clone bindings that are heading for the top level
+
+4. In the expression
+ case x of wild { p -> ...wild... }
+ we substitute x for wild in the RHS of the case alternatives:
+ case x of wild { p -> ...x... }
+ This means that a sub-expression involving x is not "trapped" inside the RHS.
+ And it's not inconvenient because we already have a substitution.
+
+ Note that this is EXACTLY BACKWARDS from the what the simplifier does.
+ The simplifier tries to get rid of occurrences of x, in favour of wild,
+ in the hope that there will only be one remaining occurrence of x, namely
+ the scrutinee of the case, and we can inline it.
+
+\begin{code}
+module SetLevels (
+ setLevels,
+
+ Level(..), tOP_LEVEL,
+ LevelledBind, LevelledExpr,
+
+ incMinorLvl, ltMajLvl, ltLvl, isTopLvl, isInlineCtxt
+ ) where
+
+#include "HsVersions.h"
+
+import CoreSyn
+
+import DynFlags ( FloatOutSwitches(..) )
+import CoreUtils ( exprType, exprIsTrivial, exprIsCheap, mkPiTypes )
+import CoreFVs -- all of it
+import CoreSubst ( Subst, emptySubst, extendInScope, extendIdSubst,
+ cloneIdBndr, cloneRecIdBndrs )
+import Id ( Id, idType, mkSysLocal, isOneShotLambda,
+ zapDemandIdInfo,
+ idSpecialisation, idWorkerInfo, setIdInfo
+ )
+import IdInfo ( workerExists, vanillaIdInfo, isEmptySpecInfo )
+import Var ( Var )
+import VarSet
+import VarEnv
+import Name ( getOccName )
+import OccName ( occNameString )
+import Type ( isUnLiftedType, Type )
+import BasicTypes ( TopLevelFlag(..) )
+import UniqSupply
+import Util ( sortLe, isSingleton, count )
+import Outputable
+import FastString
+\end{code}
+
+%************************************************************************
+%* *
+\subsection{Level numbers}
+%* *
+%************************************************************************
+
+\begin{code}
+data Level = InlineCtxt -- A level that's used only for
+ -- the context parameter ctxt_lvl
+ | Level Int -- Level number of enclosing lambdas
+ Int -- Number of big-lambda and/or case expressions between
+ -- here and the nearest enclosing lambda
+\end{code}
+
+The {\em level number} on a (type-)lambda-bound variable is the
+nesting depth of the (type-)lambda which binds it. The outermost lambda
+has level 1, so (Level 0 0) means that the variable is bound outside any lambda.
+
+On an expression, it's the maximum level number of its free
+(type-)variables. On a let(rec)-bound variable, it's the level of its
+RHS. On a case-bound variable, it's the number of enclosing lambdas.
+
+Top-level variables: level~0. Those bound on the RHS of a top-level
+definition but ``before'' a lambda; e.g., the \tr{x} in (levels shown
+as ``subscripts'')...
+\begin{verbatim}
+a_0 = let b_? = ... in
+ x_1 = ... b ... in ...
+\end{verbatim}
+
+The main function @lvlExpr@ carries a ``context level'' (@ctxt_lvl@).
+That's meant to be the level number of the enclosing binder in the
+final (floated) program. If the level number of a sub-expression is
+less than that of the context, then it might be worth let-binding the
+sub-expression so that it will indeed float.
+
+If you can float to level @Level 0 0@ worth doing so because then your
+allocation becomes static instead of dynamic. We always start with
+context @Level 0 0@.
+
+
+InlineCtxt
+~~~~~~~~~~
+@InlineCtxt@ very similar to @Level 0 0@, but is used for one purpose:
+to say "don't float anything out of here". That's exactly what we
+want for the body of an INLINE, where we don't want to float anything
+out at all. See notes with lvlMFE below.
+
+But, check this out:
+
+-- At one time I tried the effect of not float anything out of an InlineMe,
+-- but it sometimes works badly. For example, consider PrelArr.done. It
+-- has the form __inline (\d. e)
+-- where e doesn't mention d. If we float this to
+-- __inline (let x = e in \d. x)
+-- things are bad. The inliner doesn't even inline it because it doesn't look
+-- like a head-normal form. So it seems a lesser evil to let things float.
+-- In SetLevels we do set the context to (Level 0 0) when we get to an InlineMe
+-- which discourages floating out.
+
+So the conclusion is: don't do any floating at all inside an InlineMe.
+(In the above example, don't float the {x=e} out of the \d.)
+
+One particular case is that of workers: we don't want to float the
+call to the worker outside the wrapper, otherwise the worker might get
+inlined into the floated expression, and an importing module won't see
+the worker at all.
+
+\begin{code}
+type LevelledExpr = TaggedExpr Level
+type LevelledBind = TaggedBind Level
+
+tOP_LEVEL = Level 0 0
+iNLINE_CTXT = InlineCtxt
+
+incMajorLvl :: Level -> Level
+-- For InlineCtxt we ignore any inc's; we don't want
+-- to do any floating at all; see notes above
+incMajorLvl InlineCtxt = InlineCtxt
+incMajorLvl (Level major minor) = Level (major+1) 0
+
+incMinorLvl :: Level -> Level
+incMinorLvl InlineCtxt = InlineCtxt
+incMinorLvl (Level major minor) = Level major (minor+1)
+
+maxLvl :: Level -> Level -> Level
+maxLvl InlineCtxt l2 = l2
+maxLvl l1 InlineCtxt = l1
+maxLvl l1@(Level maj1 min1) l2@(Level maj2 min2)
+ | (maj1 > maj2) || (maj1 == maj2 && min1 > min2) = l1
+ | otherwise = l2
+
+ltLvl :: Level -> Level -> Bool
+ltLvl any_lvl InlineCtxt = False
+ltLvl InlineCtxt (Level _ _) = True
+ltLvl (Level maj1 min1) (Level maj2 min2)
+ = (maj1 < maj2) || (maj1 == maj2 && min1 < min2)
+
+ltMajLvl :: Level -> Level -> Bool
+ -- Tells if one level belongs to a difft *lambda* level to another
+ltMajLvl any_lvl InlineCtxt = False
+ltMajLvl InlineCtxt (Level maj2 _) = 0 < maj2
+ltMajLvl (Level maj1 _) (Level maj2 _) = maj1 < maj2
+
+isTopLvl :: Level -> Bool
+isTopLvl (Level 0 0) = True
+isTopLvl other = False
+
+isInlineCtxt :: Level -> Bool
+isInlineCtxt InlineCtxt = True
+isInlineCtxt other = False
+
+instance Outputable Level where
+ ppr InlineCtxt = text "<INLINE>"
+ ppr (Level maj min) = hcat [ char '<', int maj, char ',', int min, char '>' ]
+
+instance Eq Level where
+ InlineCtxt == InlineCtxt = True
+ (Level maj1 min1) == (Level maj2 min2) = maj1==maj2 && min1==min2
+ l1 == l2 = False
+\end{code}
+
+
+%************************************************************************
+%* *
+\subsection{Main level-setting code}
+%* *
+%************************************************************************
+
+\begin{code}
+setLevels :: FloatOutSwitches
+ -> [CoreBind]
+ -> UniqSupply
+ -> [LevelledBind]
+
+setLevels float_lams binds us
+ = initLvl us (do_them binds)
+ where
+ -- "do_them"'s main business is to thread the monad along
+ -- It gives each top binding the same empty envt, because
+ -- things unbound in the envt have level number zero implicitly
+ do_them :: [CoreBind] -> LvlM [LevelledBind]
+
+ do_them [] = returnLvl []
+ do_them (b:bs)
+ = lvlTopBind init_env b `thenLvl` \ (lvld_bind, _) ->
+ do_them bs `thenLvl` \ lvld_binds ->
+ returnLvl (lvld_bind : lvld_binds)
+
+ init_env = initialEnv float_lams
+
+lvlTopBind env (NonRec binder rhs)
+ = lvlBind TopLevel tOP_LEVEL env (AnnNonRec binder (freeVars rhs))
+ -- Rhs can have no free vars!
+
+lvlTopBind env (Rec pairs)
+ = lvlBind TopLevel tOP_LEVEL env (AnnRec [(b,freeVars rhs) | (b,rhs) <- pairs])
+\end{code}
+
+%************************************************************************
+%* *
+\subsection{Setting expression levels}
+%* *
+%************************************************************************
+
+\begin{code}
+lvlExpr :: Level -- ctxt_lvl: Level of enclosing expression
+ -> LevelEnv -- Level of in-scope names/tyvars
+ -> CoreExprWithFVs -- input expression
+ -> LvlM LevelledExpr -- Result expression
+\end{code}
+
+The @ctxt_lvl@ is, roughly, the level of the innermost enclosing
+binder. Here's an example
+
+ v = \x -> ...\y -> let r = case (..x..) of
+ ..x..
+ in ..
+
+When looking at the rhs of @r@, @ctxt_lvl@ will be 1 because that's
+the level of @r@, even though it's inside a level-2 @\y@. It's
+important that @ctxt_lvl@ is 1 and not 2 in @r@'s rhs, because we
+don't want @lvlExpr@ to turn the scrutinee of the @case@ into an MFE
+--- because it isn't a *maximal* free expression.
+
+If there were another lambda in @r@'s rhs, it would get level-2 as well.
+
+\begin{code}
+lvlExpr _ _ (_, AnnType ty) = returnLvl (Type ty)
+lvlExpr _ env (_, AnnVar v) = returnLvl (lookupVar env v)
+lvlExpr _ env (_, AnnLit lit) = returnLvl (Lit lit)
+
+lvlExpr ctxt_lvl env (_, AnnApp fun arg)
+ = lvl_fun fun `thenLvl` \ fun' ->
+ lvlMFE False ctxt_lvl env arg `thenLvl` \ arg' ->
+ returnLvl (App fun' arg')
+ where
+-- gaw 2004
+ lvl_fun (_, AnnCase _ _ _ _) = lvlMFE True ctxt_lvl env fun
+ lvl_fun other = lvlExpr ctxt_lvl env fun
+ -- We don't do MFE on partial applications generally,
+ -- but we do if the function is big and hairy, like a case
+
+lvlExpr ctxt_lvl env (_, AnnNote InlineMe expr)
+-- Don't float anything out of an InlineMe; hence the iNLINE_CTXT
+ = lvlExpr iNLINE_CTXT env expr `thenLvl` \ expr' ->
+ returnLvl (Note InlineMe expr')
+
+lvlExpr ctxt_lvl env (_, AnnNote note expr)
+ = lvlExpr ctxt_lvl env expr `thenLvl` \ expr' ->
+ returnLvl (Note note expr')
+
+-- We don't split adjacent lambdas. That is, given
+-- \x y -> (x+1,y)
+-- we don't float to give
+-- \x -> let v = x+y in \y -> (v,y)
+-- Why not? Because partial applications are fairly rare, and splitting
+-- lambdas makes them more expensive.
+
+lvlExpr ctxt_lvl env expr@(_, AnnLam bndr rhs)
+ = lvlMFE True new_lvl new_env body `thenLvl` \ new_body ->
+ returnLvl (mkLams new_bndrs new_body)
+ where
+ (bndrs, body) = collectAnnBndrs expr
+ (new_lvl, new_bndrs) = lvlLamBndrs ctxt_lvl bndrs
+ new_env = extendLvlEnv env new_bndrs
+ -- At one time we called a special verion of collectBinders,
+ -- which ignored coercions, because we don't want to split
+ -- a lambda like this (\x -> coerce t (\s -> ...))
+ -- This used to happen quite a bit in state-transformer programs,
+ -- but not nearly so much now non-recursive newtypes are transparent.
+ -- [See SetLevels rev 1.50 for a version with this approach.]
+
+lvlExpr ctxt_lvl env (_, AnnLet (AnnNonRec bndr rhs) body)
+ | isUnLiftedType (idType bndr)
+ -- Treat unlifted let-bindings (let x = b in e) just like (case b of x -> e)
+ -- That is, leave it exactly where it is
+ -- We used to float unlifted bindings too (e.g. to get a cheap primop
+ -- outside a lambda (to see how, look at lvlBind in rev 1.58)
+ -- but an unrelated change meant that these unlifed bindings
+ -- could get to the top level which is bad. And there's not much point;
+ -- unlifted bindings are always cheap, and so hardly worth floating.
+ = lvlExpr ctxt_lvl env rhs `thenLvl` \ rhs' ->
+ lvlExpr incd_lvl env' body `thenLvl` \ body' ->
+ returnLvl (Let (NonRec bndr' rhs') body')
+ where
+ incd_lvl = incMinorLvl ctxt_lvl
+ bndr' = TB bndr incd_lvl
+ env' = extendLvlEnv env [bndr']
+
+lvlExpr ctxt_lvl env (_, AnnLet bind body)
+ = lvlBind NotTopLevel ctxt_lvl env bind `thenLvl` \ (bind', new_env) ->
+ lvlExpr ctxt_lvl new_env body `thenLvl` \ body' ->
+ returnLvl (Let bind' body')
+
+lvlExpr ctxt_lvl env (_, AnnCase expr case_bndr ty alts)
+ = lvlMFE True ctxt_lvl env expr `thenLvl` \ expr' ->
+ let
+ alts_env = extendCaseBndrLvlEnv env expr' case_bndr incd_lvl
+ in
+ mapLvl (lvl_alt alts_env) alts `thenLvl` \ alts' ->
+ returnLvl (Case expr' (TB case_bndr incd_lvl) ty alts')
+ where
+ incd_lvl = incMinorLvl ctxt_lvl
+
+ lvl_alt alts_env (con, bs, rhs)
+ = lvlMFE True incd_lvl new_env rhs `thenLvl` \ rhs' ->
+ returnLvl (con, bs', rhs')
+ where
+ bs' = [ TB b incd_lvl | b <- bs ]
+ new_env = extendLvlEnv alts_env bs'
+\end{code}
+
+@lvlMFE@ is just like @lvlExpr@, except that it might let-bind
+the expression, so that it can itself be floated.
+
+[NOTE: unlifted MFEs]
+We don't float unlifted MFEs, which potentially loses big opportunites.
+For example:
+ \x -> f (h y)
+where h :: Int -> Int# is expensive. We'd like to float the (h y) outside
+the \x, but we don't because it's unboxed. Possible solution: box it.
+
+\begin{code}
+lvlMFE :: Bool -- True <=> strict context [body of case or let]
+ -> Level -- Level of innermost enclosing lambda/tylam
+ -> LevelEnv -- Level of in-scope names/tyvars
+ -> CoreExprWithFVs -- input expression
+ -> LvlM LevelledExpr -- Result expression
+
+lvlMFE strict_ctxt ctxt_lvl env (_, AnnType ty)
+ = returnLvl (Type ty)
+
+
+lvlMFE strict_ctxt ctxt_lvl env ann_expr@(fvs, _)
+ | isUnLiftedType ty -- Can't let-bind it; see [NOTE: unlifted MFEs]
+ || isInlineCtxt ctxt_lvl -- Don't float out of an __inline__ context
+ || exprIsTrivial expr -- Never float if it's trivial
+ || not good_destination
+ = -- Don't float it out
+ lvlExpr ctxt_lvl env ann_expr
+
+ | otherwise -- Float it out!
+ = lvlFloatRhs abs_vars dest_lvl env ann_expr `thenLvl` \ expr' ->
+ newLvlVar "lvl" abs_vars ty `thenLvl` \ var ->
+ returnLvl (Let (NonRec (TB var dest_lvl) expr')
+ (mkVarApps (Var var) abs_vars))
+ where
+ expr = deAnnotate ann_expr
+ ty = exprType expr
+ dest_lvl = destLevel env fvs (isFunction ann_expr)
+ abs_vars = abstractVars dest_lvl env fvs
+
+ -- A decision to float entails let-binding this thing, and we only do
+ -- that if we'll escape a value lambda, or will go to the top level.
+ good_destination
+ | dest_lvl `ltMajLvl` ctxt_lvl -- Escapes a value lambda
+ = not (exprIsCheap expr) || isTopLvl dest_lvl
+ -- Even if it escapes a value lambda, we only
+ -- float if it's not cheap (unless it'll get all the
+ -- way to the top). I've seen cases where we
+ -- float dozens of tiny free expressions, which cost
+ -- more to allocate than to evaluate.
+ -- NB: exprIsCheap is also true of bottom expressions, which
+ -- is good; we don't want to share them
+ --
+ -- It's only Really Bad to float a cheap expression out of a
+ -- strict context, because that builds a thunk that otherwise
+ -- would never be built. So another alternative would be to
+ -- add
+ -- || (strict_ctxt && not (exprIsBottom expr))
+ -- to the condition above. We should really try this out.
+
+ | otherwise -- Does not escape a value lambda
+ = isTopLvl dest_lvl -- Only float if we are going to the top level
+ && floatConsts env -- and the floatConsts flag is on
+ && not strict_ctxt -- Don't float from a strict context
+ -- We are keen to float something to the top level, even if it does not
+ -- escape a lambda, because then it needs no allocation. But it's controlled
+ -- by a flag, because doing this too early loses opportunities for RULES
+ -- which (needless to say) are important in some nofib programs
+ -- (gcd is an example).
+ --
+ -- Beware:
+ -- concat = /\ a -> foldr ..a.. (++) []
+ -- was getting turned into
+ -- concat = /\ a -> lvl a
+ -- lvl = /\ a -> foldr ..a.. (++) []
+ -- which is pretty stupid. Hence the strict_ctxt test
+\end{code}
+
+
+%************************************************************************
+%* *
+\subsection{Bindings}
+%* *
+%************************************************************************
+
+The binding stuff works for top level too.
+
+\begin{code}
+lvlBind :: TopLevelFlag -- Used solely to decide whether to clone
+ -> Level -- Context level; might be Top even for bindings nested in the RHS
+ -- of a top level binding
+ -> LevelEnv
+ -> CoreBindWithFVs
+ -> LvlM (LevelledBind, LevelEnv)
+
+lvlBind top_lvl ctxt_lvl env (AnnNonRec bndr rhs@(rhs_fvs,_))
+ | isInlineCtxt ctxt_lvl -- Don't do anything inside InlineMe
+ = lvlExpr ctxt_lvl env rhs `thenLvl` \ rhs' ->
+ returnLvl (NonRec (TB bndr ctxt_lvl) rhs', env)
+
+ | null abs_vars
+ = -- No type abstraction; clone existing binder
+ lvlExpr dest_lvl env rhs `thenLvl` \ rhs' ->
+ cloneVar top_lvl env bndr ctxt_lvl dest_lvl `thenLvl` \ (env', bndr') ->
+ returnLvl (NonRec (TB bndr' dest_lvl) rhs', env')
+
+ | otherwise
+ = -- Yes, type abstraction; create a new binder, extend substitution, etc
+ lvlFloatRhs abs_vars dest_lvl env rhs `thenLvl` \ rhs' ->
+ newPolyBndrs dest_lvl env abs_vars [bndr] `thenLvl` \ (env', [bndr']) ->
+ returnLvl (NonRec (TB bndr' dest_lvl) rhs', env')
+
+ where
+ bind_fvs = rhs_fvs `unionVarSet` idFreeVars bndr
+ abs_vars = abstractVars dest_lvl env bind_fvs
+ dest_lvl = destLevel env bind_fvs (isFunction rhs)
+\end{code}
+
+
+\begin{code}
+lvlBind top_lvl ctxt_lvl env (AnnRec pairs)
+ | isInlineCtxt ctxt_lvl -- Don't do anything inside InlineMe
+ = mapLvl (lvlExpr ctxt_lvl env) rhss `thenLvl` \ rhss' ->
+ returnLvl (Rec ([TB b ctxt_lvl | b <- bndrs] `zip` rhss'), env)
+
+ | null abs_vars
+ = cloneRecVars top_lvl env bndrs ctxt_lvl dest_lvl `thenLvl` \ (new_env, new_bndrs) ->
+ mapLvl (lvlExpr ctxt_lvl new_env) rhss `thenLvl` \ new_rhss ->
+ returnLvl (Rec ([TB b dest_lvl | b <- new_bndrs] `zip` new_rhss), new_env)
+
+ | isSingleton pairs && count isId abs_vars > 1
+ = -- Special case for self recursion where there are
+ -- several variables carried around: build a local loop:
+ -- poly_f = \abs_vars. \lam_vars . letrec f = \lam_vars. rhs in f lam_vars
+ -- This just makes the closures a bit smaller. If we don't do
+ -- this, allocation rises significantly on some programs
+ --
+ -- We could elaborate it for the case where there are several
+ -- mutually functions, but it's quite a bit more complicated
+ --
+ -- This all seems a bit ad hoc -- sigh
+ let
+ (bndr,rhs) = head pairs
+ (rhs_lvl, abs_vars_w_lvls) = lvlLamBndrs dest_lvl abs_vars
+ rhs_env = extendLvlEnv env abs_vars_w_lvls
+ in
+ cloneVar NotTopLevel rhs_env bndr rhs_lvl rhs_lvl `thenLvl` \ (rhs_env', new_bndr) ->
+ let
+ (lam_bndrs, rhs_body) = collectAnnBndrs rhs
+ (body_lvl, new_lam_bndrs) = lvlLamBndrs rhs_lvl lam_bndrs
+ body_env = extendLvlEnv rhs_env' new_lam_bndrs
+ in
+ lvlExpr body_lvl body_env rhs_body `thenLvl` \ new_rhs_body ->
+ newPolyBndrs dest_lvl env abs_vars [bndr] `thenLvl` \ (poly_env, [poly_bndr]) ->
+ returnLvl (Rec [(TB poly_bndr dest_lvl,
+ mkLams abs_vars_w_lvls $
+ mkLams new_lam_bndrs $
+ Let (Rec [(TB new_bndr rhs_lvl, mkLams new_lam_bndrs new_rhs_body)])
+ (mkVarApps (Var new_bndr) lam_bndrs))],
+ poly_env)
+
+ | otherwise -- Non-null abs_vars
+ = newPolyBndrs dest_lvl env abs_vars bndrs `thenLvl` \ (new_env, new_bndrs) ->
+ mapLvl (lvlFloatRhs abs_vars dest_lvl new_env) rhss `thenLvl` \ new_rhss ->
+ returnLvl (Rec ([TB b dest_lvl | b <- new_bndrs] `zip` new_rhss), new_env)
+
+ where
+ (bndrs,rhss) = unzip pairs
+
+ -- Finding the free vars of the binding group is annoying
+ bind_fvs = (unionVarSets [ idFreeVars bndr `unionVarSet` rhs_fvs
+ | (bndr, (rhs_fvs,_)) <- pairs])
+ `minusVarSet`
+ mkVarSet bndrs
+
+ dest_lvl = destLevel env bind_fvs (all isFunction rhss)
+ abs_vars = abstractVars dest_lvl env bind_fvs
+
+----------------------------------------------------
+-- Three help functons for the type-abstraction case
+
+lvlFloatRhs abs_vars dest_lvl env rhs
+ = lvlExpr rhs_lvl rhs_env rhs `thenLvl` \ rhs' ->
+ returnLvl (mkLams abs_vars_w_lvls rhs')
+ where
+ (rhs_lvl, abs_vars_w_lvls) = lvlLamBndrs dest_lvl abs_vars
+ rhs_env = extendLvlEnv env abs_vars_w_lvls
+\end{code}
+
+
+%************************************************************************
+%* *
+\subsection{Deciding floatability}
+%* *
+%************************************************************************
+
+\begin{code}
+lvlLamBndrs :: Level -> [CoreBndr] -> (Level, [TaggedBndr Level])
+-- Compute the levels for the binders of a lambda group
+-- The binders returned are exactly the same as the ones passed,
+-- but they are now paired with a level
+lvlLamBndrs lvl []
+ = (lvl, [])
+
+lvlLamBndrs lvl bndrs
+ = go (incMinorLvl lvl)
+ False -- Havn't bumped major level in this group
+ [] bndrs
+ where
+ go old_lvl bumped_major rev_lvld_bndrs (bndr:bndrs)
+ | isId bndr && -- Go to the next major level if this is a value binder,
+ not bumped_major && -- and we havn't already gone to the next level (one jump per group)
+ not (isOneShotLambda bndr) -- and it isn't a one-shot lambda
+ = go new_lvl True (TB bndr new_lvl : rev_lvld_bndrs) bndrs
+
+ | otherwise
+ = go old_lvl bumped_major (TB bndr old_lvl : rev_lvld_bndrs) bndrs
+
+ where
+ new_lvl = incMajorLvl old_lvl
+
+ go old_lvl _ rev_lvld_bndrs []
+ = (old_lvl, reverse rev_lvld_bndrs)
+ -- a lambda like this (\x -> coerce t (\s -> ...))
+ -- This happens quite a bit in state-transformer programs
+\end{code}
+
+\begin{code}
+ -- Destintion level is the max Id level of the expression
+ -- (We'll abstract the type variables, if any.)
+destLevel :: LevelEnv -> VarSet -> Bool -> Level
+destLevel env fvs is_function
+ | floatLams env
+ && is_function = tOP_LEVEL -- Send functions to top level; see
+ -- the comments with isFunction
+ | otherwise = maxIdLevel env fvs
+
+isFunction :: CoreExprWithFVs -> Bool
+-- The idea here is that we want to float *functions* to
+-- the top level. This saves no work, but
+-- (a) it can make the host function body a lot smaller,
+-- and hence inlinable.
+-- (b) it can also save allocation when the function is recursive:
+-- h = \x -> letrec f = \y -> ...f...y...x...
+-- in f x
+-- becomes
+-- f = \x y -> ...(f x)...y...x...
+-- h = \x -> f x x
+-- No allocation for f now.
+-- We may only want to do this if there are sufficiently few free
+-- variables. We certainly only want to do it for values, and not for
+-- constructors. So the simple thing is just to look for lambdas
+isFunction (_, AnnLam b e) | isId b = True
+ | otherwise = isFunction e
+isFunction (_, AnnNote n e) = isFunction e
+isFunction other = False
+\end{code}
+
+
+%************************************************************************
+%* *
+\subsection{Free-To-Level Monad}
+%* *
+%************************************************************************
+
+\begin{code}
+type LevelEnv = (FloatOutSwitches,
+ VarEnv Level, -- Domain is *post-cloned* TyVars and Ids
+ Subst, -- Domain is pre-cloned Ids; tracks the in-scope set
+ -- so that subtitution is capture-avoiding
+ IdEnv ([Var], LevelledExpr)) -- Domain is pre-cloned Ids
+ -- We clone let-bound variables so that they are still
+ -- distinct when floated out; hence the SubstEnv/IdEnv.
+ -- (see point 3 of the module overview comment).
+ -- We also use these envs when making a variable polymorphic
+ -- because we want to float it out past a big lambda.
+ --
+ -- The SubstEnv and IdEnv always implement the same mapping, but the
+ -- SubstEnv maps to CoreExpr and the IdEnv to LevelledExpr
+ -- Since the range is always a variable or type application,
+ -- there is never any difference between the two, but sadly
+ -- the types differ. The SubstEnv is used when substituting in
+ -- a variable's IdInfo; the IdEnv when we find a Var.
+ --
+ -- In addition the IdEnv records a list of tyvars free in the
+ -- type application, just so we don't have to call freeVars on
+ -- the type application repeatedly.
+ --
+ -- The domain of the both envs is *pre-cloned* Ids, though
+ --
+ -- The domain of the VarEnv Level is the *post-cloned* Ids
+
+initialEnv :: FloatOutSwitches -> LevelEnv
+initialEnv float_lams = (float_lams, emptyVarEnv, emptySubst, emptyVarEnv)
+
+floatLams :: LevelEnv -> Bool
+floatLams (FloatOutSw float_lams _, _, _, _) = float_lams
+
+floatConsts :: LevelEnv -> Bool
+floatConsts (FloatOutSw _ float_consts, _, _, _) = float_consts
+
+extendLvlEnv :: LevelEnv -> [TaggedBndr Level] -> LevelEnv
+-- Used when *not* cloning
+extendLvlEnv (float_lams, lvl_env, subst, id_env) prs
+ = (float_lams,
+ foldl add_lvl lvl_env prs,
+ foldl del_subst subst prs,
+ foldl del_id id_env prs)
+ where
+ add_lvl env (TB v l) = extendVarEnv env v l
+ del_subst env (TB v _) = extendInScope env v
+ del_id env (TB v _) = delVarEnv env v
+ -- We must remove any clone for this variable name in case of
+ -- shadowing. This bit me in the following case
+ -- (in nofib/real/gg/Spark.hs):
+ --
+ -- case ds of wild {
+ -- ... -> case e of wild {
+ -- ... -> ... wild ...
+ -- }
+ -- }
+ --
+ -- The inside occurrence of @wild@ was being replaced with @ds@,
+ -- incorrectly, because the SubstEnv was still lying around. Ouch!
+ -- KSW 2000-07.
+
+-- extendCaseBndrLvlEnv adds the mapping case-bndr->scrut-var if it can
+-- (see point 4 of the module overview comment)
+extendCaseBndrLvlEnv (float_lams, lvl_env, subst, id_env) (Var scrut_var) case_bndr lvl
+ = (float_lams,
+ extendVarEnv lvl_env case_bndr lvl,
+ extendIdSubst subst case_bndr (Var scrut_var),
+ extendVarEnv id_env case_bndr ([scrut_var], Var scrut_var))
+
+extendCaseBndrLvlEnv env scrut case_bndr lvl
+ = extendLvlEnv env [TB case_bndr lvl]
+
+extendPolyLvlEnv dest_lvl (float_lams, lvl_env, subst, id_env) abs_vars bndr_pairs
+ = (float_lams,
+ foldl add_lvl lvl_env bndr_pairs,
+ foldl add_subst subst bndr_pairs,
+ foldl add_id id_env bndr_pairs)
+ where
+ add_lvl env (v,v') = extendVarEnv env v' dest_lvl
+ add_subst env (v,v') = extendIdSubst env v (mkVarApps (Var v') abs_vars)
+ add_id env (v,v') = extendVarEnv env v ((v':abs_vars), mkVarApps (Var v') abs_vars)
+
+extendCloneLvlEnv lvl (float_lams, lvl_env, _, id_env) new_subst bndr_pairs
+ = (float_lams,
+ foldl add_lvl lvl_env bndr_pairs,
+ new_subst,
+ foldl add_id id_env bndr_pairs)
+ where
+ add_lvl env (v,v') = extendVarEnv env v' lvl
+ add_id env (v,v') = extendVarEnv env v ([v'], Var v')
+
+
+maxIdLevel :: LevelEnv -> VarSet -> Level
+maxIdLevel (_, lvl_env,_,id_env) var_set
+ = foldVarSet max_in tOP_LEVEL var_set
+ where
+ max_in in_var lvl = foldr max_out lvl (case lookupVarEnv id_env in_var of
+ Just (abs_vars, _) -> abs_vars
+ Nothing -> [in_var])
+
+ max_out out_var lvl
+ | isId out_var = case lookupVarEnv lvl_env out_var of
+ Just lvl' -> maxLvl lvl' lvl
+ Nothing -> lvl
+ | otherwise = lvl -- Ignore tyvars in *maxIdLevel*
+
+lookupVar :: LevelEnv -> Id -> LevelledExpr
+lookupVar (_, _, _, id_env) v = case lookupVarEnv id_env v of
+ Just (_, expr) -> expr
+ other -> Var v
+
+abstractVars :: Level -> LevelEnv -> VarSet -> [Var]
+ -- Find the variables in fvs, free vars of the target expresion,
+ -- whose level is greater than the destination level
+ -- These are the ones we are going to abstract out
+abstractVars dest_lvl env fvs
+ = uniq (sortLe le [var | fv <- varSetElems fvs, var <- absVarsOf dest_lvl env fv])
+ where
+ -- Sort the variables so we don't get
+ -- mixed-up tyvars and Ids; it's just messy
+ v1 `le` v2 = case (isId v1, isId v2) of
+ (True, False) -> False
+ (False, True) -> True
+ other -> v1 <= v2 -- Same family
+
+ uniq :: [Var] -> [Var]
+ -- Remove adjacent duplicates; the sort will have brought them together
+ uniq (v1:v2:vs) | v1 == v2 = uniq (v2:vs)
+ | otherwise = v1 : uniq (v2:vs)
+ uniq vs = vs
+
+absVarsOf :: Level -> LevelEnv -> Var -> [Var]
+ -- If f is free in the expression, and f maps to poly_f a b c in the
+ -- current substitution, then we must report a b c as candidate type
+ -- variables
+absVarsOf dest_lvl (_, lvl_env, _, id_env) v
+ | isId v
+ = [zap av2 | av1 <- lookup_avs v, av2 <- add_tyvars av1, abstract_me av2]
+
+ | otherwise
+ = if abstract_me v then [v] else []
+
+ where
+ abstract_me v = case lookupVarEnv lvl_env v of
+ Just lvl -> dest_lvl `ltLvl` lvl
+ Nothing -> False
+
+ lookup_avs v = case lookupVarEnv id_env v of
+ Just (abs_vars, _) -> abs_vars
+ Nothing -> [v]
+
+ add_tyvars v | isId v = v : varSetElems (idFreeTyVars v)
+ | otherwise = [v]
+
+ -- We are going to lambda-abstract, so nuke any IdInfo,
+ -- and add the tyvars of the Id (if necessary)
+ zap v | isId v = WARN( workerExists (idWorkerInfo v) ||
+ not (isEmptySpecInfo (idSpecialisation v)),
+ text "absVarsOf: discarding info on" <+> ppr v )
+ setIdInfo v vanillaIdInfo
+ | otherwise = v
+\end{code}
+
+\begin{code}
+type LvlM result = UniqSM result
+
+initLvl = initUs_
+thenLvl = thenUs
+returnLvl = returnUs
+mapLvl = mapUs
+\end{code}
+
+\begin{code}
+newPolyBndrs dest_lvl env abs_vars bndrs
+ = getUniquesUs `thenLvl` \ uniqs ->
+ let
+ new_bndrs = zipWith mk_poly_bndr bndrs uniqs
+ in
+ returnLvl (extendPolyLvlEnv dest_lvl env abs_vars (bndrs `zip` new_bndrs), new_bndrs)
+ where
+ mk_poly_bndr bndr uniq = mkSysLocal (mkFastString str) uniq poly_ty
+ where
+ str = "poly_" ++ occNameString (getOccName bndr)
+ poly_ty = mkPiTypes abs_vars (idType bndr)
+
+
+newLvlVar :: String
+ -> [CoreBndr] -> Type -- Abstract wrt these bndrs
+ -> LvlM Id
+newLvlVar str vars body_ty
+ = getUniqueUs `thenLvl` \ uniq ->
+ returnUs (mkSysLocal (mkFastString str) uniq (mkPiTypes vars body_ty))
+
+-- The deeply tiresome thing is that we have to apply the substitution
+-- to the rules inside each Id. Grr. But it matters.
+
+cloneVar :: TopLevelFlag -> LevelEnv -> Id -> Level -> Level -> LvlM (LevelEnv, Id)
+cloneVar TopLevel env v ctxt_lvl dest_lvl
+ = returnUs (env, v) -- Don't clone top level things
+cloneVar NotTopLevel env@(_,_,subst,_) v ctxt_lvl dest_lvl
+ = ASSERT( isId v )
+ getUs `thenLvl` \ us ->
+ let
+ (subst', v1) = cloneIdBndr subst us v
+ v2 = zap_demand ctxt_lvl dest_lvl v1
+ env' = extendCloneLvlEnv dest_lvl env subst' [(v,v2)]
+ in
+ returnUs (env', v2)
+
+cloneRecVars :: TopLevelFlag -> LevelEnv -> [Id] -> Level -> Level -> LvlM (LevelEnv, [Id])
+cloneRecVars TopLevel env vs ctxt_lvl dest_lvl
+ = returnUs (env, vs) -- Don't clone top level things
+cloneRecVars NotTopLevel env@(_,_,subst,_) vs ctxt_lvl dest_lvl
+ = ASSERT( all isId vs )
+ getUs `thenLvl` \ us ->
+ let
+ (subst', vs1) = cloneRecIdBndrs subst us vs
+ vs2 = map (zap_demand ctxt_lvl dest_lvl) vs1
+ env' = extendCloneLvlEnv dest_lvl env subst' (vs `zip` vs2)
+ in
+ returnUs (env', vs2)
+
+ -- VERY IMPORTANT: we must zap the demand info
+ -- if the thing is going to float out past a lambda
+zap_demand dest_lvl ctxt_lvl id
+ | ctxt_lvl == dest_lvl = id -- Stays put
+ | otherwise = zapDemandIdInfo id -- Floats out
+\end{code}
+