summaryrefslogtreecommitdiff
path: root/compiler/utils/Digraph.lhs
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/utils/Digraph.lhs')
-rw-r--r--compiler/utils/Digraph.lhs426
1 files changed, 426 insertions, 0 deletions
diff --git a/compiler/utils/Digraph.lhs b/compiler/utils/Digraph.lhs
new file mode 100644
index 0000000000..c49087c8f3
--- /dev/null
+++ b/compiler/utils/Digraph.lhs
@@ -0,0 +1,426 @@
+\begin{code}
+module Digraph(
+
+ -- At present the only one with a "nice" external interface
+ stronglyConnComp, stronglyConnCompR, SCC(..), flattenSCC, flattenSCCs,
+
+ Graph, Vertex,
+ graphFromEdges, graphFromEdges',
+ buildG, transposeG, reverseE, outdegree, indegree,
+
+ Tree(..), Forest,
+ showTree, showForest,
+
+ dfs, dff,
+ topSort,
+ components,
+ scc,
+ back, cross, forward,
+ reachable, path,
+ bcc
+
+ ) where
+
+# include "HsVersions.h"
+
+------------------------------------------------------------------------------
+-- A version of the graph algorithms described in:
+--
+-- ``Lazy Depth-First Search and Linear Graph Algorithms in Haskell''
+-- by David King and John Launchbury
+--
+-- Also included is some additional code for printing tree structures ...
+------------------------------------------------------------------------------
+
+
+import Util ( sortLe )
+
+-- Extensions
+import MONAD_ST
+
+-- std interfaces
+import Maybe
+import Array
+import List
+import Outputable
+
+#if __GLASGOW_HASKELL__ >= 504
+import Data.Array.ST hiding ( indices, bounds )
+#else
+import ST
+#endif
+\end{code}
+
+
+%************************************************************************
+%* *
+%* External interface
+%* *
+%************************************************************************
+
+\begin{code}
+data SCC vertex = AcyclicSCC vertex
+ | CyclicSCC [vertex]
+
+flattenSCCs :: [SCC a] -> [a]
+flattenSCCs = concatMap flattenSCC
+
+flattenSCC (AcyclicSCC v) = [v]
+flattenSCC (CyclicSCC vs) = vs
+
+instance Outputable a => Outputable (SCC a) where
+ ppr (AcyclicSCC v) = text "NONREC" $$ (nest 3 (ppr v))
+ ppr (CyclicSCC vs) = text "REC" $$ (nest 3 (vcat (map ppr vs)))
+\end{code}
+
+\begin{code}
+stronglyConnComp
+ :: Ord key
+ => [(node, key, [key])] -- The graph; its ok for the
+ -- out-list to contain keys which arent
+ -- a vertex key, they are ignored
+ -> [SCC node] -- Returned in topologically sorted order
+ -- Later components depend on earlier ones, but not vice versa
+
+stronglyConnComp edges
+ = map get_node (stronglyConnCompR edges)
+ where
+ get_node (AcyclicSCC (n, _, _)) = AcyclicSCC n
+ get_node (CyclicSCC triples) = CyclicSCC [n | (n,_,_) <- triples]
+
+-- The "R" interface is used when you expect to apply SCC to
+-- the (some of) the result of SCC, so you dont want to lose the dependency info
+stronglyConnCompR
+ :: Ord key
+ => [(node, key, [key])] -- The graph; its ok for the
+ -- out-list to contain keys which arent
+ -- a vertex key, they are ignored
+ -> [SCC (node, key, [key])] -- Topologically sorted
+
+stronglyConnCompR [] = [] -- added to avoid creating empty array in graphFromEdges -- SOF
+stronglyConnCompR edges
+ = map decode forest
+ where
+ (graph, vertex_fn) = _scc_ "graphFromEdges" graphFromEdges edges
+ forest = _scc_ "Digraph.scc" scc graph
+ decode (Node v []) | mentions_itself v = CyclicSCC [vertex_fn v]
+ | otherwise = AcyclicSCC (vertex_fn v)
+ decode other = CyclicSCC (dec other [])
+ where
+ dec (Node v ts) vs = vertex_fn v : foldr dec vs ts
+ mentions_itself v = v `elem` (graph ! v)
+\end{code}
+
+%************************************************************************
+%* *
+%* Graphs
+%* *
+%************************************************************************
+
+
+\begin{code}
+type Vertex = Int
+type Table a = Array Vertex a
+type Graph = Table [Vertex]
+type Bounds = (Vertex, Vertex)
+type Edge = (Vertex, Vertex)
+\end{code}
+
+\begin{code}
+vertices :: Graph -> [Vertex]
+vertices = indices
+
+edges :: Graph -> [Edge]
+edges g = [ (v, w) | v <- vertices g, w <- g!v ]
+
+mapT :: (Vertex -> a -> b) -> Table a -> Table b
+mapT f t = array (bounds t) [ (,) v (f v (t!v)) | v <- indices t ]
+
+buildG :: Bounds -> [Edge] -> Graph
+buildG bounds edges = accumArray (flip (:)) [] bounds edges
+
+transposeG :: Graph -> Graph
+transposeG g = buildG (bounds g) (reverseE g)
+
+reverseE :: Graph -> [Edge]
+reverseE g = [ (w, v) | (v, w) <- edges g ]
+
+outdegree :: Graph -> Table Int
+outdegree = mapT numEdges
+ where numEdges v ws = length ws
+
+indegree :: Graph -> Table Int
+indegree = outdegree . transposeG
+\end{code}
+
+
+\begin{code}
+graphFromEdges
+ :: Ord key
+ => [(node, key, [key])]
+ -> (Graph, Vertex -> (node, key, [key]))
+graphFromEdges edges =
+ case graphFromEdges' edges of (graph, vertex_fn, _) -> (graph, vertex_fn)
+
+graphFromEdges'
+ :: Ord key
+ => [(node, key, [key])]
+ -> (Graph, Vertex -> (node, key, [key]), key -> Maybe Vertex)
+graphFromEdges' edges
+ = (graph, \v -> vertex_map ! v, key_vertex)
+ where
+ max_v = length edges - 1
+ bounds = (0,max_v) :: (Vertex, Vertex)
+ sorted_edges = let
+ (_,k1,_) `le` (_,k2,_) = case k1 `compare` k2 of { GT -> False; other -> True }
+ in
+ sortLe le edges
+ edges1 = zipWith (,) [0..] sorted_edges
+
+ graph = array bounds [(,) v (mapMaybe key_vertex ks) | (,) v (_, _, ks) <- edges1]
+ key_map = array bounds [(,) v k | (,) v (_, k, _ ) <- edges1]
+ vertex_map = array bounds edges1
+
+
+ -- key_vertex :: key -> Maybe Vertex
+ -- returns Nothing for non-interesting vertices
+ key_vertex k = find 0 max_v
+ where
+ find a b | a > b
+ = Nothing
+ find a b = case compare k (key_map ! mid) of
+ LT -> find a (mid-1)
+ EQ -> Just mid
+ GT -> find (mid+1) b
+ where
+ mid = (a + b) `div` 2
+\end{code}
+
+%************************************************************************
+%* *
+%* Trees and forests
+%* *
+%************************************************************************
+
+\begin{code}
+data Tree a = Node a (Forest a)
+type Forest a = [Tree a]
+
+mapTree :: (a -> b) -> (Tree a -> Tree b)
+mapTree f (Node x ts) = Node (f x) (map (mapTree f) ts)
+\end{code}
+
+\begin{code}
+instance Show a => Show (Tree a) where
+ showsPrec p t s = showTree t ++ s
+
+showTree :: Show a => Tree a -> String
+showTree = drawTree . mapTree show
+
+showForest :: Show a => Forest a -> String
+showForest = unlines . map showTree
+
+drawTree :: Tree String -> String
+drawTree = unlines . draw
+
+draw (Node x ts) = grp this (space (length this)) (stLoop ts)
+ where this = s1 ++ x ++ " "
+
+ space n = replicate n ' '
+
+ stLoop [] = [""]
+ stLoop [t] = grp s2 " " (draw t)
+ stLoop (t:ts) = grp s3 s4 (draw t) ++ [s4] ++ rsLoop ts
+
+ rsLoop [t] = grp s5 " " (draw t)
+ rsLoop (t:ts) = grp s6 s4 (draw t) ++ [s4] ++ rsLoop ts
+
+ grp fst rst = zipWith (++) (fst:repeat rst)
+
+ [s1,s2,s3,s4,s5,s6] = ["- ", "--", "-+", " |", " `", " +"]
+\end{code}
+
+
+%************************************************************************
+%* *
+%* Depth first search
+%* *
+%************************************************************************
+
+\begin{code}
+#if __GLASGOW_HASKELL__ >= 504
+newSTArray :: Ix i => (i,i) -> e -> ST s (STArray s i e)
+newSTArray = newArray
+
+readSTArray :: Ix i => STArray s i e -> i -> ST s e
+readSTArray = readArray
+
+writeSTArray :: Ix i => STArray s i e -> i -> e -> ST s ()
+writeSTArray = writeArray
+#endif
+
+type Set s = STArray s Vertex Bool
+
+mkEmpty :: Bounds -> ST s (Set s)
+mkEmpty bnds = newSTArray bnds False
+
+contains :: Set s -> Vertex -> ST s Bool
+contains m v = readSTArray m v
+
+include :: Set s -> Vertex -> ST s ()
+include m v = writeSTArray m v True
+\end{code}
+
+\begin{code}
+dff :: Graph -> Forest Vertex
+dff g = dfs g (vertices g)
+
+dfs :: Graph -> [Vertex] -> Forest Vertex
+dfs g vs = prune (bounds g) (map (generate g) vs)
+
+generate :: Graph -> Vertex -> Tree Vertex
+generate g v = Node v (map (generate g) (g!v))
+
+prune :: Bounds -> Forest Vertex -> Forest Vertex
+prune bnds ts = runST (mkEmpty bnds >>= \m ->
+ chop m ts)
+
+chop :: Set s -> Forest Vertex -> ST s (Forest Vertex)
+chop m [] = return []
+chop m (Node v ts : us)
+ = contains m v >>= \visited ->
+ if visited then
+ chop m us
+ else
+ include m v >>= \_ ->
+ chop m ts >>= \as ->
+ chop m us >>= \bs ->
+ return (Node v as : bs)
+\end{code}
+
+
+%************************************************************************
+%* *
+%* Algorithms
+%* *
+%************************************************************************
+
+------------------------------------------------------------
+-- Algorithm 1: depth first search numbering
+------------------------------------------------------------
+
+\begin{code}
+--preorder :: Tree a -> [a]
+preorder (Node a ts) = a : preorderF ts
+
+preorderF :: Forest a -> [a]
+preorderF ts = concat (map preorder ts)
+
+tabulate :: Bounds -> [Vertex] -> Table Int
+tabulate bnds vs = array bnds (zipWith (,) vs [1..])
+
+preArr :: Bounds -> Forest Vertex -> Table Int
+preArr bnds = tabulate bnds . preorderF
+\end{code}
+
+
+------------------------------------------------------------
+-- Algorithm 2: topological sorting
+------------------------------------------------------------
+
+\begin{code}
+--postorder :: Tree a -> [a]
+postorder (Node a ts) = postorderF ts ++ [a]
+
+postorderF :: Forest a -> [a]
+postorderF ts = concat (map postorder ts)
+
+postOrd :: Graph -> [Vertex]
+postOrd = postorderF . dff
+
+topSort :: Graph -> [Vertex]
+topSort = reverse . postOrd
+\end{code}
+
+
+------------------------------------------------------------
+-- Algorithm 3: connected components
+------------------------------------------------------------
+
+\begin{code}
+components :: Graph -> Forest Vertex
+components = dff . undirected
+
+undirected :: Graph -> Graph
+undirected g = buildG (bounds g) (edges g ++ reverseE g)
+\end{code}
+
+
+-- Algorithm 4: strongly connected components
+
+\begin{code}
+scc :: Graph -> Forest Vertex
+scc g = dfs g (reverse (postOrd (transposeG g)))
+\end{code}
+
+
+------------------------------------------------------------
+-- Algorithm 5: Classifying edges
+------------------------------------------------------------
+
+\begin{code}
+back :: Graph -> Table Int -> Graph
+back g post = mapT select g
+ where select v ws = [ w | w <- ws, post!v < post!w ]
+
+cross :: Graph -> Table Int -> Table Int -> Graph
+cross g pre post = mapT select g
+ where select v ws = [ w | w <- ws, post!v > post!w, pre!v > pre!w ]
+
+forward :: Graph -> Graph -> Table Int -> Graph
+forward g tree pre = mapT select g
+ where select v ws = [ w | w <- ws, pre!v < pre!w ] \\ tree!v
+\end{code}
+
+
+------------------------------------------------------------
+-- Algorithm 6: Finding reachable vertices
+------------------------------------------------------------
+
+\begin{code}
+reachable :: Graph -> Vertex -> [Vertex]
+reachable g v = preorderF (dfs g [v])
+
+path :: Graph -> Vertex -> Vertex -> Bool
+path g v w = w `elem` (reachable g v)
+\end{code}
+
+
+------------------------------------------------------------
+-- Algorithm 7: Biconnected components
+------------------------------------------------------------
+
+\begin{code}
+bcc :: Graph -> Forest [Vertex]
+bcc g = (concat . map bicomps . map (do_label g dnum)) forest
+ where forest = dff g
+ dnum = preArr (bounds g) forest
+
+do_label :: Graph -> Table Int -> Tree Vertex -> Tree (Vertex,Int,Int)
+do_label g dnum (Node v ts) = Node (v,dnum!v,lv) us
+ where us = map (do_label g dnum) ts
+ lv = minimum ([dnum!v] ++ [dnum!w | w <- g!v]
+ ++ [lu | Node (u,du,lu) xs <- us])
+
+bicomps :: Tree (Vertex,Int,Int) -> Forest [Vertex]
+bicomps (Node (v,dv,lv) ts)
+ = [ Node (v:vs) us | (l,Node vs us) <- map collect ts]
+
+collect :: Tree (Vertex,Int,Int) -> (Int, Tree [Vertex])
+collect (Node (v,dv,lv) ts) = (lv, Node (v:vs) cs)
+ where collected = map collect ts
+ vs = concat [ ws | (lw, Node ws us) <- collected, lw<dv]
+ cs = concat [ if lw<dv then us else [Node (v:ws) us]
+ | (lw, Node ws us) <- collected ]
+\end{code}
+