summaryrefslogtreecommitdiff
path: root/ghc/rts/gmp/mpz/perfpow.c
diff options
context:
space:
mode:
Diffstat (limited to 'ghc/rts/gmp/mpz/perfpow.c')
-rw-r--r--ghc/rts/gmp/mpz/perfpow.c272
1 files changed, 0 insertions, 272 deletions
diff --git a/ghc/rts/gmp/mpz/perfpow.c b/ghc/rts/gmp/mpz/perfpow.c
deleted file mode 100644
index e71670a0be..0000000000
--- a/ghc/rts/gmp/mpz/perfpow.c
+++ /dev/null
@@ -1,272 +0,0 @@
-/* mpz_perfect_power_p(arg) -- Return non-zero if ARG is a perfect power,
- zero otherwise.
-
-Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc.
-
-This file is part of the GNU MP Library.
-
-The GNU MP Library is free software; you can redistribute it and/or modify
-it under the terms of the GNU Lesser General Public License as published by
-the Free Software Foundation; either version 2.1 of the License, or (at your
-option) any later version.
-
-The GNU MP Library is distributed in the hope that it will be useful, but
-WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
-or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
-License for more details.
-
-You should have received a copy of the GNU Lesser General Public License
-along with the GNU MP Library; see the file COPYING.LIB. If not, write to
-the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
-MA 02111-1307, USA. */
-
-/*
- We are to determine if c is a perfect power, c = a ^ b.
- Assume c is divisible by 2^n and that codd = c/2^n is odd.
- Assume a is divisible by 2^m and that aodd = a/2^m is odd.
- It is always true that m divides n.
-
- * If n is prime, either 1) a is 2*aodd and b = n
- or 2) a = c and b = 1.
- So for n prime, we readily have a solution.
- * If n is factorable into the non-trivial factors p1,p2,...
- Since m divides n, m has a subset of n's factors and b = n / m.
-
- BUG: Should handle negative numbers, since they can be odd perfect powers.
-*/
-
-/* This is a naive approach to recognizing perfect powers.
- Many things can be improved. In particular, we should use p-adic
- arithmetic for computing possible roots. */
-
-#include <stdio.h> /* for NULL */
-#include "gmp.h"
-#include "gmp-impl.h"
-#include "longlong.h"
-
-static unsigned long int gcd _PROTO ((unsigned long int a, unsigned long int b));
-static int isprime _PROTO ((unsigned long int t));
-
-static const unsigned short primes[] =
-{ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
- 59, 61, 67, 71, 73, 79, 83, 89, 97,101,103,107,109,113,127,131,
- 137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,
- 227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,
- 313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,
- 419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,
- 509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,
- 617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,
- 727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,
- 829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,
- 947,953,967,971,977,983,991,997,0
-};
-#define SMALLEST_OMITTED_PRIME 1009
-
-
-int
-#if __STDC__
-mpz_perfect_power_p (mpz_srcptr u)
-#else
-mpz_perfect_power_p (u)
- mpz_srcptr u;
-#endif
-{
- unsigned long int prime;
- unsigned long int n, n2;
- int i;
- unsigned long int rem;
- mpz_t u2, q;
- int exact;
- mp_size_t uns;
- TMP_DECL (marker);
-
- if (mpz_cmp_ui (u, 1) <= 0)
- return 0;
-
- n2 = mpz_scan1 (u, 0);
- if (n2 == 1)
- return 0;
-
- TMP_MARK (marker);
-
- uns = ABSIZ (u) - n2 / BITS_PER_MP_LIMB;
- MPZ_TMP_INIT (q, uns);
- MPZ_TMP_INIT (u2, uns);
-
- mpz_tdiv_q_2exp (u2, u, n2);
-
- if (isprime (n2))
- goto n2prime;
-
- for (i = 1; primes[i] != 0; i++)
- {
- prime = primes[i];
- rem = mpz_tdiv_ui (u2, prime);
- if (rem == 0) /* divisable? */
- {
- rem = mpz_tdiv_q_ui (q, u2, prime * prime);
- if (rem != 0)
- {
- TMP_FREE (marker);
- return 0;
- }
- mpz_swap (q, u2);
- for (n = 2;;)
- {
- rem = mpz_tdiv_q_ui (q, u2, prime);
- if (rem != 0)
- break;
- mpz_swap (q, u2);
- n++;
- }
-
- n2 = gcd (n2, n);
- if (n2 == 1)
- {
- TMP_FREE (marker);
- return 0;
- }
-
- /* As soon as n2 becomes a prime number, stop factoring.
- Either we have u=x^n2 or u is not a perfect power. */
- if (isprime (n2))
- goto n2prime;
- }
- }
-
- if (mpz_cmp_ui (u2, 1) == 0)
- {
- TMP_FREE (marker);
- return 1;
- }
-
- if (n2 == 0)
- {
- unsigned long int nth;
- /* We did not find any factors above. We have to consider all values
- of n. */
- for (nth = 2;; nth++)
- {
- if (! isprime (nth))
- continue;
-#if 0
- exact = mpz_padic_root (q, u2, nth, PTH);
- if (exact)
-#endif
- exact = mpz_root (q, u2, nth);
- if (exact)
- {
- TMP_FREE (marker);
- return 1;
- }
- if (mpz_cmp_ui (q, SMALLEST_OMITTED_PRIME) < 0)
- {
- TMP_FREE (marker);
- return 0;
- }
- }
- }
- else
- {
- unsigned long int nth;
- /* We found some factors above. We just need to consider values of n
- that divides n2. */
- for (nth = 2; nth <= n2; nth++)
- {
- if (! isprime (nth))
- continue;
- if (n2 % nth != 0)
- continue;
-#if 0
- exact = mpz_padic_root (q, u2, nth, PTH);
- if (exact)
-#endif
- exact = mpz_root (q, u2, nth);
- if (exact)
- {
- TMP_FREE (marker);
- return 1;
- }
- if (mpz_cmp_ui (q, SMALLEST_OMITTED_PRIME) < 0)
- {
- TMP_FREE (marker);
- return 0;
- }
- }
-
- TMP_FREE (marker);
- return 0;
- }
-
-n2prime:
- exact = mpz_root (NULL, u2, n2);
- TMP_FREE (marker);
- return exact;
-}
-
-static unsigned long int
-#if __STDC__
-gcd (unsigned long int a, unsigned long int b)
-#else
-gcd (a, b)
- unsigned long int a, b;
-#endif
-{
- int an2, bn2, n2;
-
- if (a == 0)
- return b;
- if (b == 0)
- return a;
-
- count_trailing_zeros (an2, a);
- a >>= an2;
-
- count_trailing_zeros (bn2, b);
- b >>= bn2;
-
- n2 = MIN (an2, bn2);
-
- while (a != b)
- {
- if (a > b)
- {
- a -= b;
- do
- a >>= 1;
- while ((a & 1) == 0);
- }
- else /* b > a. */
- {
- b -= a;
- do
- b >>= 1;
- while ((b & 1) == 0);
- }
- }
-
- return a << n2;
-}
-
-static int
-#if __STDC__
-isprime (unsigned long int t)
-#else
-isprime (t)
- unsigned long int t;
-#endif
-{
- unsigned long int q, r, d;
-
- if (t < 3 || (t & 1) == 0)
- return t == 2;
-
- for (d = 3, r = 1; r != 0; d += 2)
- {
- q = t / d;
- r = t - q * d;
- if (q < d)
- return 1;
- }
- return 0;
-}