summaryrefslogtreecommitdiff
path: root/libraries/integer-gmp/src
diff options
context:
space:
mode:
Diffstat (limited to 'libraries/integer-gmp/src')
-rw-r--r--libraries/integer-gmp/src/GHC/Integer.hs75
-rw-r--r--libraries/integer-gmp/src/GHC/Integer/GMP/Internals.hs358
-rw-r--r--libraries/integer-gmp/src/GHC/Integer/Logarithms.hs74
-rw-r--r--libraries/integer-gmp/src/GHC/Integer/Logarithms/Internals.hs118
-rw-r--r--libraries/integer-gmp/src/GHC/Integer/Type.hs2202
5 files changed, 54 insertions, 2773 deletions
diff --git a/libraries/integer-gmp/src/GHC/Integer.hs b/libraries/integer-gmp/src/GHC/Integer.hs
deleted file mode 100644
index 6a0d16d553..0000000000
--- a/libraries/integer-gmp/src/GHC/Integer.hs
+++ /dev/null
@@ -1,75 +0,0 @@
-{-# LANGUAGE CPP #-}
-{-# LANGUAGE MagicHash #-}
-{-# LANGUAGE NoImplicitPrelude #-}
-
-#include "MachDeps.h"
-
--- |
--- Module : GHC.Integer.Type
--- Copyright : (c) Herbert Valerio Riedel 2014
--- License : BSD3
---
--- Maintainer : ghc-devs@haskell.org
--- Stability : provisional
--- Portability : non-portable (GHC Extensions)
---
--- The 'Integer' type.
---
--- This module exposes the /portable/ 'Integer' API. See
--- "GHC.Integer.GMP.Internals" for the @integer-gmp@-specific internal
--- representation of 'Integer' as well as optimized GMP-specific
--- operations.
-
-module GHC.Integer (
- Integer,
-
- -- * Construct 'Integer's
- mkInteger, smallInteger, wordToInteger,
-#if WORD_SIZE_IN_BITS < 64
- word64ToInteger, int64ToInteger,
-#endif
- -- * Conversion to other integral types
- integerToWord, integerToInt,
-#if WORD_SIZE_IN_BITS < 64
- integerToWord64, integerToInt64,
-#endif
-
- -- * Helpers for 'RealFloat' type-class operations
- encodeFloatInteger, floatFromInteger,
- encodeDoubleInteger, decodeDoubleInteger, doubleFromInteger,
-
- -- * Arithmetic operations
- plusInteger, minusInteger, timesInteger, negateInteger,
- absInteger, signumInteger,
-
- divModInteger, divInteger, modInteger,
- quotRemInteger, quotInteger, remInteger,
-
- -- * Comparison predicates
- eqInteger, neqInteger, leInteger, gtInteger, ltInteger, geInteger,
- compareInteger,
-
- -- ** 'Int#'-boolean valued versions of comparison predicates
- --
- -- | These operations return @0#@ and @1#@ instead of 'False' and
- -- 'True' respectively. See
- -- <https://gitlab.haskell.org/ghc/ghc/wikis/prim-bool PrimBool wiki-page>
- -- for more details
- eqInteger#, neqInteger#, leInteger#, gtInteger#, ltInteger#, geInteger#,
-
-
- -- * Bit-operations
- andInteger, orInteger, xorInteger,
-
- complementInteger,
- shiftLInteger, shiftRInteger, testBitInteger,
-
- popCountInteger, bitInteger,
-
- -- * Hashing
- hashInteger,
- ) where
-
-import GHC.Integer.Type
-
-default ()
diff --git a/libraries/integer-gmp/src/GHC/Integer/GMP/Internals.hs b/libraries/integer-gmp/src/GHC/Integer/GMP/Internals.hs
index 6eb88bd943..3af21e7e74 100644
--- a/libraries/integer-gmp/src/GHC/Integer/GMP/Internals.hs
+++ b/libraries/integer-gmp/src/GHC/Integer/GMP/Internals.hs
@@ -1,13 +1,10 @@
{-# LANGUAGE BangPatterns #-}
-{-# LANGUAGE CApiFFI #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}
-{-# LANGUAGE UnliftedFFITypes #-}
-{-# LANGUAGE DeriveDataTypeable #-}
-{-# LANGUAGE GHCForeignImportPrim #-}
{-# LANGUAGE CPP #-}
-{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE NoImplicitPrelude #-}
+{-# LANGUAGE PatternSynonyms #-}
+{-# LANGUAGE ViewPatterns #-}
#include "MachDeps.h"
@@ -20,20 +17,9 @@
-- Stability : provisional
-- Portability : non-portable (GHC Extensions)
--
--- This modules provides access to the 'Integer' constructors and
--- exposes some highly optimized GMP-operations.
---
--- Note that since @integer-gmp@ does not depend on `base`, error
--- reporting via exceptions, 'error', or 'undefined' is not
--- available. Instead, the low-level functions will crash the runtime
--- if called with invalid arguments.
---
--- See also
--- <https://gitlab.haskell.org/ghc/ghc/wikis/commentary/libraries/integer GHC Commentary: Libraries/Integer>.
-
module GHC.Integer.GMP.Internals
( -- * The 'Integer' type
- Integer(..)
+ Integer (S#,Jn#,Jp#)
, isValidInteger#
-- ** Basic 'Integer' operations
@@ -42,12 +28,8 @@ module GHC.Integer.GMP.Internals
-- ** Additional 'Integer' operations
, gcdInteger
- , gcdExtInteger
, lcmInteger
, sqrInteger
- , powModInteger
- , powModSecInteger
- , recipModInteger
-- ** Additional conversion operations to 'Integer'
, wordToNegInteger
@@ -60,305 +42,73 @@ module GHC.Integer.GMP.Internals
, GmpLimb, GmpLimb#
, GmpSize, GmpSize#
- -- **
-
- , isValidBigNat#
- , sizeofBigNat#
- , zeroBigNat
- , oneBigNat
- , nullBigNat
-
- -- ** Conversions to/from 'BigNat'
-
- , byteArrayToBigNat#
- , wordToBigNat
- , wordToBigNat2
- , bigNatToInt
- , bigNatToWord
- , indexBigNat#
-
- -- ** 'BigNat' arithmetic operations
- , plusBigNat
- , plusBigNatWord
- , minusBigNat
- , minusBigNatWord
- , timesBigNat
- , timesBigNatWord
- , sqrBigNat
-
- , quotRemBigNat
- , quotRemBigNatWord
- , quotBigNatWord
- , quotBigNat
- , remBigNat
- , remBigNatWord
-
- , gcdBigNat
- , gcdBigNatWord
-
- , powModBigNat
- , powModBigNatWord
-
- , recipModBigNat
-
- -- ** 'BigNat' logic operations
- , shiftRBigNat
- , shiftLBigNat
- , testBitBigNat
- , clearBitBigNat
- , complementBitBigNat
- , setBitBigNat
- , andBigNat
- , xorBigNat
- , popCountBigNat
- , orBigNat
- , bitBigNat
-
- -- ** 'BigNat' comparison predicates
- , isZeroBigNat
- , isNullBigNat#
-
- , compareBigNatWord
- , compareBigNat
- , eqBigNatWord
- , eqBigNatWord#
- , eqBigNat
- , eqBigNat#
- , gtBigNatWord#
-
- -- * Miscellaneous GMP-provided operations
- , gcdInt
- , gcdWord
- , powModWord
- , recipModWord
-
- -- * Primality tests
- , testPrimeInteger
- , testPrimeBigNat
- , testPrimeWord#
-
- , nextPrimeInteger
- , nextPrimeBigNat
- , nextPrimeWord#
-
- -- * Import/export functions
- -- ** Compute size of serialisation
- , sizeInBaseBigNat
- , sizeInBaseInteger
- , sizeInBaseWord#
-
- -- ** Export
- , exportBigNatToAddr
- , exportIntegerToAddr
- , exportWordToAddr
-
- , exportBigNatToMutableByteArray
- , exportIntegerToMutableByteArray
- , exportWordToMutableByteArray
-
- -- ** Import
-
- , importBigNatFromAddr
- , importIntegerFromAddr
-
- , importBigNatFromByteArray
- , importIntegerFromByteArray
) where
-import GHC.Integer.Type
import GHC.Integer
-import GHC.Prim
+import GHC.Natural
+import GHC.Num.Integer (Integer(..))
+import qualified GHC.Num.Integer as I
import GHC.Types
+import GHC.Prim
-default ()
-
-
--- | Compute number of digits (without sign) in given @/base/@.
---
--- This function wraps @mpz_sizeinbase()@ which has some
--- implementation pecularities to take into account:
---
--- * \"@'sizeInBaseInteger' 0 /base/ = 1@\"
--- (see also comment in 'exportIntegerToMutableByteArray').
---
--- * This function is only defined if @/base/ >= 2#@ and @/base/ <= 256#@
--- (Note: the documentation claims that only @/base/ <= 62#@ is
--- supported, however the actual implementation supports up to base 256).
---
--- * If @/base/@ is a power of 2, the result will be exact. In other
--- cases (e.g. for @/base/ = 10#@), the result /may/ be 1 digit too large
--- sometimes.
---
--- * \"@'sizeInBaseInteger' /i/ 2#@\" can be used to determine the most
--- significant bit of @/i/@.
---
--- @since 0.5.1.0
-sizeInBaseInteger :: Integer -> Int# -> Word#
-sizeInBaseInteger (S# i#) = sizeInBaseWord# (int2Word# (absI# i#))
-sizeInBaseInteger (Jp# bn) = sizeInBaseBigNat bn
-sizeInBaseInteger (Jn# bn) = sizeInBaseBigNat bn
-
--- | Version of 'sizeInBaseInteger' operating on 'BigNat'
---
--- @since 1.0.0.0
-sizeInBaseBigNat :: BigNat -> Int# -> Word#
-sizeInBaseBigNat bn@(BN# ba#) = c_mpn_sizeinbase# ba# (sizeofBigNat# bn)
-
-foreign import ccall unsafe "integer_gmp_mpn_sizeinbase"
- c_mpn_sizeinbase# :: ByteArray# -> GmpSize# -> Int# -> Word#
-
--- | Version of 'sizeInBaseInteger' operating on 'Word#'
---
--- @since 1.0.0.0
-foreign import ccall unsafe "integer_gmp_mpn_sizeinbase1"
- sizeInBaseWord# :: Word# -> Int# -> Word#
-
--- | Dump 'Integer' (without sign) to @/addr/@ in base-256 representation.
---
--- @'exportIntegerToAddr' /i/ /addr/ /e/@
---
--- See description of 'exportIntegerToMutableByteArray' for more details.
---
--- @since 1.0.0.0
-exportIntegerToAddr :: Integer -> Addr# -> Int# -> IO Word
-exportIntegerToAddr (S# i#) = exportWordToAddr (W# (int2Word# (absI# i#)))
-exportIntegerToAddr (Jp# bn) = exportBigNatToAddr bn
-exportIntegerToAddr (Jn# bn) = exportBigNatToAddr bn
-
--- | Version of 'exportIntegerToAddr' operating on 'BigNat's.
-exportBigNatToAddr :: BigNat -> Addr# -> Int# -> IO Word
-exportBigNatToAddr bn@(BN# ba#) addr e
- = c_mpn_exportToAddr# ba# (sizeofBigNat# bn) addr 0# e
-
-foreign import ccall unsafe "integer_gmp_mpn_export"
- c_mpn_exportToAddr# :: ByteArray# -> GmpSize# -> Addr# -> Int# -> Int#
- -> IO Word
-
--- | Version of 'exportIntegerToAddr' operating on 'Word's.
-exportWordToAddr :: Word -> Addr# -> Int# -> IO Word
-exportWordToAddr (W# w#) addr
- = c_mpn_export1ToAddr# w# addr 0# -- TODO: we don't calling GMP for that
+{-# COMPLETE S#, Jp#, Jn# #-}
-foreign import ccall unsafe "integer_gmp_mpn_export1"
- c_mpn_export1ToAddr# :: GmpLimb# -> Addr# -> Int# -> Int#
- -> IO Word
+{-# DEPRECATED S# "Use IS constructor instead" #-}
+pattern S# :: Int# -> Integer
+pattern S# i = IS i
--- | Dump 'Integer' (without sign) to mutable byte-array in base-256
--- representation.
---
--- The call
---
--- @'exportIntegerToMutableByteArray' /i/ /mba/ /offset/ /msbf/@
---
--- writes
---
--- * the 'Integer' @/i/@
---
--- * into the 'MutableByteArray#' @/mba/@ starting at @/offset/@
---
--- * with most significant byte first if @msbf@ is @1#@ or least
--- significant byte first if @msbf@ is @0#@, and
---
--- * returns number of bytes written.
---
--- Use \"@'sizeInBaseInteger' /i/ 256#@\" to compute the exact number of
--- bytes written in advance for @/i/ /= 0@. In case of @/i/ == 0@,
--- 'exportIntegerToMutableByteArray' will write and report zero bytes
--- written, whereas 'sizeInBaseInteger' report one byte.
---
--- It's recommended to avoid calling 'exportIntegerToMutableByteArray' for small
--- integers as this function would currently convert those to big
--- integers in msbf to call @mpz_export()@.
---
--- @since 1.0.0.0
-exportIntegerToMutableByteArray :: Integer -> MutableByteArray# RealWorld
- -> Word# -> Int# -> IO Word
-exportIntegerToMutableByteArray (S# i#)
- = exportWordToMutableByteArray (W# (int2Word# (absI# i#)))
-exportIntegerToMutableByteArray (Jp# bn) = exportBigNatToMutableByteArray bn
-exportIntegerToMutableByteArray (Jn# bn) = exportBigNatToMutableByteArray bn
+fromBN# :: BigNat -> ByteArray#
+fromBN# (BN# x) = x
--- | Version of 'exportIntegerToMutableByteArray' operating on 'BigNat's.
---
--- @since 1.0.0.0
-exportBigNatToMutableByteArray :: BigNat -> MutableByteArray# RealWorld -> Word#
- -> Int# -> IO Word
-exportBigNatToMutableByteArray bn@(BN# ba#)
- = c_mpn_exportToMutableByteArray# ba# (sizeofBigNat# bn)
+fromIP :: Integer -> (# () | BigNat #)
+fromIP (IP x) = (# | BN# x #)
+fromIP _ = (# () | #)
-foreign import ccall unsafe "integer_gmp_mpn_export"
- c_mpn_exportToMutableByteArray# :: ByteArray# -> GmpSize#
- -> MutableByteArray# RealWorld -> Word#
- -> Int# -> IO Word
+fromIN :: Integer -> (# () | BigNat #)
+fromIN (IN x) = (# | BN# x #)
+fromIN _ = (# () | #)
--- | Version of 'exportIntegerToMutableByteArray' operating on 'Word's.
---
--- @since 1.0.0.0
-exportWordToMutableByteArray :: Word -> MutableByteArray# RealWorld -> Word#
- -> Int# -> IO Word
-exportWordToMutableByteArray (W# w#) = c_mpn_export1ToMutableByteArray# w#
+{-# DEPRECATED Jp# "Use IP constructor instead" #-}
+pattern Jp# :: BigNat -> Integer
+pattern Jp# i <- (fromIP -> (# | i #))
+ where
+ Jp# i = IP (fromBN# i)
-foreign import ccall unsafe "integer_gmp_mpn_export1"
- c_mpn_export1ToMutableByteArray# :: GmpLimb# -> MutableByteArray# RealWorld
- -> Word# -> Int# -> IO Word
+{-# DEPRECATED Jn# "Use IN constructor instead" #-}
+pattern Jn# :: BigNat -> Integer
+pattern Jn# i <- (fromIN -> (# | i #))
+ where
+ Jn# i = IN (fromBN# i)
+{-# DEPRECATED isValidInteger# "Use integerCheck# instead" #-}
+isValidInteger# :: Integer -> Int#
+isValidInteger# = I.integerCheck#
--- | Probalistic Miller-Rabin primality test.
---
--- \"@'testPrimeInteger' /n/ /k/@\" determines whether @/n/@ is prime
--- and returns one of the following results:
---
--- * @2#@ is returned if @/n/@ is definitely prime,
---
--- * @1#@ if @/n/@ is a /probable prime/, or
---
--- * @0#@ if @/n/@ is definitely not a prime.
---
--- The @/k/@ argument controls how many test rounds are performed for
--- determining a /probable prime/. For more details, see
--- <http://gmplib.org/manual/Number-Theoretic-Functions.html#index-mpz_005fprobab_005fprime_005fp-360 GMP documentation for `mpz_probab_prime_p()`>.
---
--- @since 0.5.1.0
-{-# NOINLINE testPrimeInteger #-}
-testPrimeInteger :: Integer -> Int# -> Int#
-testPrimeInteger (S# i#) = testPrimeWord# (int2Word# (absI# i#))
-testPrimeInteger (Jp# n) = testPrimeBigNat n
-testPrimeInteger (Jn# n) = testPrimeBigNat n
+{-# DEPRECATED gcdInteger "Use integerGcd instead" #-}
+gcdInteger :: Integer -> Integer -> Integer
+gcdInteger = I.integerGcd
--- | Version of 'testPrimeInteger' operating on 'BigNat's
---
--- @since 1.0.0.0
-testPrimeBigNat :: BigNat -> Int# -> Int#
-testPrimeBigNat bn@(BN# ba#) = c_integer_gmp_test_prime# ba# (sizeofBigNat# bn)
+{-# DEPRECATED lcmInteger "Use integerLcm instead" #-}
+lcmInteger :: Integer -> Integer -> Integer
+lcmInteger = I.integerLcm
-foreign import ccall unsafe "integer_gmp_test_prime"
- c_integer_gmp_test_prime# :: ByteArray# -> GmpSize# -> Int# -> Int#
+{-# DEPRECATED sqrInteger "Use integerSqr instead" #-}
+sqrInteger :: Integer -> Integer
+sqrInteger = I.integerSqr
--- | Version of 'testPrimeInteger' operating on 'Word#'s
---
--- @since 1.0.0.0
-foreign import ccall unsafe "integer_gmp_test_prime1"
- testPrimeWord# :: GmpLimb# -> Int# -> Int#
+{-# DEPRECATED wordToNegInteger "Use integerFromWordNeg# instead" #-}
+wordToNegInteger :: Word# -> Integer
+wordToNegInteger = I.integerFromWordNeg#
+{-# DEPRECATED bigNatToInteger "Use integerFromBigNat instead" #-}
+bigNatToInteger :: BigNat -> Integer
+bigNatToInteger (BN# i) = I.integerFromBigNat i
--- | Compute next prime greater than @/n/@ probalistically.
---
--- According to the GMP documentation, the underlying function
--- @mpz_nextprime()@ \"uses a probabilistic algorithm to identify
--- primes. For practical purposes it's adequate, the chance of a
--- composite passing will be extremely small.\"
---
--- @since 0.5.1.0
-{-# NOINLINE nextPrimeInteger #-}
-nextPrimeInteger :: Integer -> Integer
-nextPrimeInteger (S# i#)
- | isTrue# (i# ># 1#) = wordToInteger (nextPrimeWord# (int2Word# i#))
- | True = S# 2#
-nextPrimeInteger (Jp# bn) = Jp# (nextPrimeBigNat bn)
-nextPrimeInteger (Jn# _) = S# 2#
+{-# DEPRECATED bigNatToNegInteger "Use integerFromBigNatNeg instead" #-}
+bigNatToNegInteger :: BigNat -> Integer
+bigNatToNegInteger (BN# i) = I.integerFromBigNatNeg i
--- | Version of 'nextPrimeInteger' operating on 'Word#'s
---
--- @since 1.0.0.0
-foreign import ccall unsafe "integer_gmp_next_prime1"
- nextPrimeWord# :: GmpLimb# -> GmpLimb#
+type GmpLimb = Word
+type GmpLimb# = Word#
+type GmpSize = Int
+type GmpSize# = Int#
diff --git a/libraries/integer-gmp/src/GHC/Integer/Logarithms.hs b/libraries/integer-gmp/src/GHC/Integer/Logarithms.hs
deleted file mode 100644
index 76467e18a7..0000000000
--- a/libraries/integer-gmp/src/GHC/Integer/Logarithms.hs
+++ /dev/null
@@ -1,74 +0,0 @@
-{-# LANGUAGE NoImplicitPrelude #-}
-{-# LANGUAGE MagicHash #-}
-{-# LANGUAGE UnboxedTuples #-}
-{-# LANGUAGE UnliftedFFITypes #-}
-{-# LANGUAGE CPP #-}
-{-# LANGUAGE BangPatterns #-}
-
-module GHC.Integer.Logarithms
- ( wordLog2#
- , integerLog2#
- , integerLogBase#
- ) where
-
-#include "MachDeps.h"
-
-#if WORD_SIZE_IN_BITS == 32
-# define LD_WORD_SIZE_IN_BITS 5
-#elif WORD_SIZE_IN_BITS == 64
-# define LD_WORD_SIZE_IN_BITS 6
-#else
-# error unsupported WORD_SIZE_IN_BITS
-#endif
-
-import GHC.Integer.Type
-
-import GHC.Prim
-
-default ()
-
--- | Calculate the integer logarithm for an arbitrary base.
---
--- The base must be greater than @1@, the second argument, the number
--- whose logarithm is sought, shall be positive, otherwise the
--- result is meaningless.
---
--- The following property holds
---
--- @base ^ 'integerLogBase#' base m <= m < base ^('integerLogBase#' base m + 1)@
---
--- for @base > 1@ and @m > 0@.
---
--- Note: Internally uses 'integerLog2#' for base 2
-integerLogBase# :: Integer -> Integer -> Int#
-integerLogBase# (S# 2#) m = integerLog2# m
-integerLogBase# b m = e'
- where
- !(# _, e' #) = go b
-
- go pw | m `ltInteger` pw = (# m, 0# #)
- go pw = case go (sqrInteger pw) of
- (# q, e #) | q `ltInteger` pw -> (# q, 2# *# e #)
- (# q, e #) -> (# q `quotInteger` pw, 2# *# e +# 1# #)
-
-
--- | Calculate the integer base 2 logarithm of an 'Integer'. The
--- calculation is more efficient than for the general case, on
--- platforms with 32- or 64-bit words much more efficient.
---
--- The argument must be strictly positive, that condition is /not/ checked.
-integerLog2# :: Integer -> Int#
-integerLog2# (S# i#) = wordLog2# (int2Word# i#)
-integerLog2# (Jn# _) = -1#
-integerLog2# (Jp# bn) = go (s -# 1#)
- where
- s = sizeofBigNat# bn
- go i = case indexBigNat# bn i of
- 0## -> go (i -# 1#)
- w -> wordLog2# w +# (uncheckedIShiftL# i LD_WORD_SIZE_IN_BITS#)
-
--- | Compute base-2 log of 'Word#'
---
--- This is internally implemented as count-leading-zeros machine instruction.
-wordLog2# :: Word# -> Int#
-wordLog2# w# = (WORD_SIZE_IN_BITS# -# 1#) -# (word2Int# (clz# w#))
diff --git a/libraries/integer-gmp/src/GHC/Integer/Logarithms/Internals.hs b/libraries/integer-gmp/src/GHC/Integer/Logarithms/Internals.hs
deleted file mode 100644
index 5f50c79e41..0000000000
--- a/libraries/integer-gmp/src/GHC/Integer/Logarithms/Internals.hs
+++ /dev/null
@@ -1,118 +0,0 @@
-{-# LANGUAGE NoImplicitPrelude #-}
-{-# LANGUAGE MagicHash #-}
-{-# LANGUAGE UnboxedTuples #-}
-{-# LANGUAGE CPP #-}
-
-{-# OPTIONS_HADDOCK not-home #-}
-
-#include "MachDeps.h"
-
-#if WORD_SIZE_IN_BITS == 32
-# define WSHIFT 5
-# define MMASK 31
-#elif WORD_SIZE_IN_BITS == 64
-# define WSHIFT 6
-# define MMASK 63
-#else
-# error unsupported WORD_SIZE_IN_BITS
-#endif
-
--- | Fast 'Integer' logarithms to base 2. 'integerLog2#' and
--- 'wordLog2#' are of general usefulness, the others are only needed
--- for a fast implementation of 'fromRational'. Since they are needed
--- in "GHC.Float", we must expose this module, but it should not show
--- up in the docs.
---
--- See https://gitlab.haskell.org/ghc/ghc/issues/5122
--- for the origin of the code in this module
-module GHC.Integer.Logarithms.Internals
- ( wordLog2#
- , integerLog2IsPowerOf2#
- , integerLog2#
- , roundingMode#
- ) where
-
-import GHC.Integer.Type
-import GHC.Integer.Logarithms
-
-import GHC.Types
-import GHC.Prim
-
-default ()
-
--- | Extended version of 'integerLog2#'
---
--- Assumption: Integer is strictly positive
---
--- First component of result is @log2 n@, second is @0#@ iff /n/ is a
--- power of two.
-integerLog2IsPowerOf2# :: Integer -> (# Int#, Int# #)
--- The power of 2 test is n&(n-1) == 0, thus powers of 2
--- are indicated bythe second component being zero.
-integerLog2IsPowerOf2# (S# i#) = case int2Word# i# of
- w -> (# wordLog2# w, word2Int# (w `and#` (w `minusWord#` 1##)) #)
-integerLog2IsPowerOf2# (Jn# _) = (# -1#, -1# #)
--- Find the log2 as above, test whether that word is a power
--- of 2, if so, check whether only zero bits follow.
-integerLog2IsPowerOf2# (Jp# bn) = check (s -# 1#)
- where
- s = sizeofBigNat# bn
- check :: Int# -> (# Int#, Int# #)
- check i = case indexBigNat# bn i of
- 0## -> check (i -# 1#)
- w -> (# wordLog2# w +# (uncheckedIShiftL# i WSHIFT#)
- , case w `and#` (w `minusWord#` 1##) of
- 0## -> test (i -# 1#)
- _ -> 1# #)
- test :: Int# -> Int#
- test i = if isTrue# (i <# 0#)
- then 0#
- else case indexBigNat# bn i of
- 0## -> test (i -# 1#)
- _ -> 1#
-
-
--- Assumption: Integer and Int# are strictly positive, Int# is less
--- than logBase 2 of Integer, otherwise havoc ensues.
--- Used only for the numerator in fromRational when the denominator
--- is a power of 2.
--- The Int# argument is log2 n minus the number of bits in the mantissa
--- of the target type, i.e. the index of the first non-integral bit in
--- the quotient.
---
--- 0# means round down (towards zero)
--- 1# means we have a half-integer, round to even
--- 2# means round up (away from zero)
-roundingMode# :: Integer -> Int# -> Int#
-roundingMode# (S# i#) t =
- case int2Word# i# `and#` ((uncheckedShiftL# 2## t) `minusWord#` 1##) of
- k -> case uncheckedShiftL# 1## t of
- c -> if isTrue# (c `gtWord#` k)
- then 0#
- else if isTrue# (c `ltWord#` k)
- then 2#
- else 1#
-
-roundingMode# (Jn# bn) t = roundingMode# (Jp# bn) t -- dummy
-roundingMode# (Jp# bn) t =
- case word2Int# (int2Word# t `and#` MMASK##) of
- j -> -- index of relevant bit in word
- case uncheckedIShiftRA# t WSHIFT# of
- k -> -- index of relevant word
- case indexBigNat# bn k `and#`
- ((uncheckedShiftL# 2## j) `minusWord#` 1##) of
- r ->
- case uncheckedShiftL# 1## j of
- c -> if isTrue# (c `gtWord#` r)
- then 0#
- else if isTrue# (c `ltWord#` r)
-
-
- then 2#
- else test (k -# 1#)
- where
- test i = if isTrue# (i <# 0#)
- then 1#
- else case indexBigNat# bn i of
- 0## -> test (i -# 1#)
- _ -> 2#
diff --git a/libraries/integer-gmp/src/GHC/Integer/Type.hs b/libraries/integer-gmp/src/GHC/Integer/Type.hs
deleted file mode 100644
index cc94089828..0000000000
--- a/libraries/integer-gmp/src/GHC/Integer/Type.hs
+++ /dev/null
@@ -1,2202 +0,0 @@
-{-# LANGUAGE NoImplicitPrelude #-}
-{-# LANGUAGE BangPatterns #-}
-{-# LANGUAGE CPP #-}
-{-# LANGUAGE DeriveDataTypeable #-}
-{-# LANGUAGE GHCForeignImportPrim #-}
-{-# LANGUAGE MagicHash #-}
-{-# LANGUAGE UnboxedTuples #-}
-{-# LANGUAGE UnliftedFFITypes #-}
-{-# LANGUAGE RebindableSyntax #-}
-{-# LANGUAGE NegativeLiterals #-}
-{-# LANGUAGE ExplicitForAll #-}
-
--- |
--- Module : GHC.Integer.Type
--- Copyright : (c) Herbert Valerio Riedel 2014
--- License : BSD3
---
--- Maintainer : ghc-devs@haskell.org
--- Stability : provisional
--- Portability : non-portable (GHC Extensions)
---
--- GHC needs this module to be named "GHC.Integer.Type" and provide
--- all the low-level 'Integer' operations.
-
-module GHC.Integer.Type where
-
-#include "MachDeps.h"
-#include "HsIntegerGmp.h"
-
--- Sanity check as CPP defines are implicitly 0-valued when undefined
-#if !(defined(SIZEOF_LONG) && defined(SIZEOF_HSWORD) \
- && defined(WORD_SIZE_IN_BITS))
-# error missing defines
-#endif
-
-import GHC.Classes
-import GHC.Magic
-import GHC.Prim
-import GHC.Types
-#if WORD_SIZE_IN_BITS < 64
-import GHC.IntWord64
-#endif
-
-default ()
-
--- Most high-level operations need to be marked `NOINLINE` as
--- otherwise GHC doesn't recognize them and fails to apply constant
--- folding to `Integer`-typed expression.
---
--- To this end, the CPP hack below allows to write the pseudo-pragma
---
--- {-# CONSTANT_FOLDED plusInteger #-}
---
--- which is simply expanded into a
---
--- {-# NOINLINE plusInteger #-}
---
-#define CONSTANT_FOLDED NOINLINE
-
-----------------------------------------------------------------------------
--- type definitions
-
--- NB: all code assumes GMP_LIMB_BITS == WORD_SIZE_IN_BITS
--- The C99 code in cbits/wrappers.c will fail to compile if this doesn't hold
-
--- | Type representing a GMP Limb
-type GmpLimb = Word -- actually, 'CULong'
-type GmpLimb# = Word#
-
--- | Count of 'GmpLimb's, must be positive (unless specified otherwise).
-type GmpSize = Int -- actually, a 'CLong'
-type GmpSize# = Int#
-
-narrowGmpSize# :: Int# -> Int#
-#if SIZEOF_LONG == SIZEOF_HSWORD
-narrowGmpSize# x = x
-#elif (SIZEOF_LONG == 4) && (SIZEOF_HSWORD == 8)
--- On IL32P64 (i.e. Win64), we have to be careful with CLong not being
--- 64bit. This is mostly an issue on values returned from C functions
--- due to sign-extension.
-narrowGmpSize# = narrow32Int#
-#endif
-
-
-type GmpBitCnt = Word -- actually, 'CULong'
-type GmpBitCnt# = Word# -- actually, 'CULong'
-
--- Pseudo FFI CType
-type CInt = Int
-type CInt# = Int#
-
-narrowCInt# :: Int# -> Int#
-narrowCInt# = narrow32Int#
-
--- | Bits in a 'GmpLimb'. Same as @WORD_SIZE_IN_BITS@.
-gmpLimbBits :: Word -- 8 `shiftL` gmpLimbShift
-gmpLimbBits = W# WORD_SIZE_IN_BITS##
-
-#if WORD_SIZE_IN_BITS == 64
-# define GMP_LIMB_SHIFT 3
-# define GMP_LIMB_BYTES 8
-# define GMP_LIMB_BITS 64
-# define INT_MINBOUND -0x8000000000000000
-# define INT_MAXBOUND 0x7fffffffffffffff
-# define ABS_INT_MINBOUND 0x8000000000000000
-# define SQRT_INT_MAXBOUND 0xb504f333
-#elif WORD_SIZE_IN_BITS == 32
-# define GMP_LIMB_SHIFT 2
-# define GMP_LIMB_BYTES 4
-# define GMP_LIMB_BITS 32
-# define INT_MINBOUND -0x80000000
-# define INT_MAXBOUND 0x7fffffff
-# define ABS_INT_MINBOUND 0x80000000
-# define SQRT_INT_MAXBOUND 0xb504
-#else
-# error unsupported WORD_SIZE_IN_BITS config
-#endif
-
--- | Type representing /raw/ arbitrary-precision Naturals
---
--- This is common type used by 'Natural' and 'Integer'. As this type
--- consists of a single constructor wrapping a 'ByteArray#' it can be
--- unpacked.
---
--- Essential invariants:
---
--- - 'ByteArray#' size is an exact multiple of 'Word#' size
--- - limbs are stored in least-significant-limb-first order,
--- - the most-significant limb must be non-zero, except for
--- - @0@ which is represented as a 1-limb.
-data BigNat = BN# ByteArray#
-
-instance Eq BigNat where
- (==) = eqBigNat
-
-instance Ord BigNat where
- compare = compareBigNat
-
--- [Implementation notes]
---
--- Invariant: 'Jn#' and 'Jp#' are used iff value doesn't fit in 'S#'
---
--- Useful properties resulting from the invariants:
---
--- - @abs ('S#' _) <= abs ('Jp#' _)@
--- - @abs ('S#' _) < abs ('Jn#' _)@
-
--- | Arbitrary precision integers. In contrast with fixed-size integral types
--- such as 'Int', the 'Integer' type represents the entire infinite range of
--- integers.
---
--- For more information about this type's representation, see the comments in
--- its implementation.
-data Integer = S# !Int#
- -- ^ iff value in @[minBound::'Int', maxBound::'Int']@ range
- | Jp# {-# UNPACK #-} !BigNat
- -- ^ iff value in @]maxBound::'Int', +inf[@ range
- | Jn# {-# UNPACK #-} !BigNat
- -- ^ iff value in @]-inf, minBound::'Int'[@ range
-
--- NOTE: the above representation is baked into the GHCi debugger in
--- GHC.Runtime.Heap.Inspect. If you change it here, fixes
--- will be required over there too. Tests for this are in
--- testsuite/tests/ghci.debugger.
-
--- TODO: experiment with different constructor-ordering
-
-instance Eq Integer where
- (==) = eqInteger
- (/=) = neqInteger
-
-instance Ord Integer where
- compare = compareInteger
- (>) = gtInteger
- (>=) = geInteger
- (<) = ltInteger
- (<=) = leInteger
-
-----------------------------------------------------------------------------
-
--- | Construct 'Integer' value from list of 'Int's.
---
--- This function is used by GHC for constructing 'Integer' literals.
-mkInteger :: Bool -- ^ sign of integer ('True' if non-negative)
- -> [Int] -- ^ absolute value expressed in 31 bit chunks, least
- -- significant first (ideally these would be machine-word
- -- 'Word's rather than 31-bit truncated 'Int's)
- -> Integer
-mkInteger nonNegative is
- | nonNegative = f is
- | True = negateInteger (f is)
- where
- f [] = S# 0#
- f (I# i : is') = smallInteger (i `andI#` 0x7fffffff#) `orInteger`
- shiftLInteger (f is') 31#
-{-# CONSTANT_FOLDED mkInteger #-}
-
--- | Test whether all internal invariants are satisfied by 'Integer' value
---
--- Returns @1#@ if valid, @0#@ otherwise.
---
--- This operation is mostly useful for test-suites and/or code which
--- constructs 'Integer' values directly.
-isValidInteger# :: Integer -> Int#
-isValidInteger# (S# _) = 1#
-isValidInteger# (Jp# bn)
- = isValidBigNat# bn `andI#` (bn `gtBigNatWord#` INT_MAXBOUND##)
-isValidInteger# (Jn# bn)
- = isValidBigNat# bn `andI#` (bn `gtBigNatWord#` ABS_INT_MINBOUND##)
-
--- | Should rather be called @intToInteger@
-smallInteger :: Int# -> Integer
-smallInteger i# = S# i#
-{-# CONSTANT_FOLDED smallInteger #-}
-
-----------------------------------------------------------------------------
--- Int64/Word64 specific primitives
-
-#if WORD_SIZE_IN_BITS < 64
-int64ToInteger :: Int64# -> Integer
-int64ToInteger i
- | isTrue# (i `leInt64#` intToInt64# 0x7FFFFFFF#)
- , isTrue# (i `geInt64#` intToInt64# -0x80000000#)
- = S# (int64ToInt# i)
- | isTrue# (i `geInt64#` intToInt64# 0#)
- = Jp# (word64ToBigNat (int64ToWord64# i))
- | True
- = Jn# (word64ToBigNat (int64ToWord64# (negateInt64# i)))
-{-# CONSTANT_FOLDED int64ToInteger #-}
-
-word64ToInteger :: Word64# -> Integer
-word64ToInteger w
- | isTrue# (w `leWord64#` wordToWord64# 0x7FFFFFFF##)
- = S# (int64ToInt# (word64ToInt64# w))
- | True
- = Jp# (word64ToBigNat w)
-{-# CONSTANT_FOLDED word64ToInteger #-}
-
-integerToInt64 :: Integer -> Int64#
-integerToInt64 (S# i#) = intToInt64# i#
-integerToInt64 (Jp# bn) = word64ToInt64# (bigNatToWord64 bn)
-integerToInt64 (Jn# bn) = negateInt64# (word64ToInt64# (bigNatToWord64 bn))
-{-# CONSTANT_FOLDED integerToInt64 #-}
-
-integerToWord64 :: Integer -> Word64#
-integerToWord64 (S# i#) = int64ToWord64# (intToInt64# i#)
-integerToWord64 (Jp# bn) = bigNatToWord64 bn
-integerToWord64 (Jn# bn)
- = int64ToWord64# (negateInt64# (word64ToInt64# (bigNatToWord64 bn)))
-{-# CONSTANT_FOLDED integerToWord64 #-}
-
-#if GMP_LIMB_BITS == 32
-word64ToBigNat :: Word64# -> BigNat
-word64ToBigNat w64 = wordToBigNat2 wh# wl#
- where
- wh# = word64ToWord# (uncheckedShiftRL64# w64 32#)
- wl# = word64ToWord# w64
-
-bigNatToWord64 :: BigNat -> Word64#
-bigNatToWord64 bn
- | isTrue# (sizeofBigNat# bn ># 1#)
- = let wh# = wordToWord64# (indexBigNat# bn 1#)
- in uncheckedShiftL64# wh# 32# `or64#` wl#
- | True = wl#
- where
- wl# = wordToWord64# (bigNatToWord bn)
-#endif
-#endif
-
--- End of Int64/Word64 specific primitives
-----------------------------------------------------------------------------
-
--- | Truncates 'Integer' to least-significant 'Int#'
-integerToInt :: Integer -> Int#
-integerToInt (S# i#) = i#
-integerToInt (Jp# bn) = bigNatToInt bn
-integerToInt (Jn# bn) = negateInt# (bigNatToInt bn)
-{-# CONSTANT_FOLDED integerToInt #-}
-
-hashInteger :: Integer -> Int#
-hashInteger = integerToInt -- emulating what integer-{simple,gmp} already do
-
-integerToWord :: Integer -> Word#
-integerToWord (S# i#) = int2Word# i#
-integerToWord (Jp# bn) = bigNatToWord bn
-integerToWord (Jn# bn) = int2Word# (negateInt# (bigNatToInt bn))
-{-# CONSTANT_FOLDED integerToWord #-}
-
-wordToInteger :: Word# -> Integer
-wordToInteger w#
- | isTrue# (i# >=# 0#) = S# i#
- | True = Jp# (wordToBigNat w#)
- where
- i# = word2Int# w#
-{-# CONSTANT_FOLDED wordToInteger #-}
-
-wordToNegInteger :: Word# -> Integer
-wordToNegInteger w#
- | isTrue# (i# <=# 0#) = S# i#
- | True = Jn# (wordToBigNat w#)
- where
- i# = negateInt# (word2Int# w#)
-
--- we could almost auto-derive Ord if it wasn't for the Jn#-Jn# case
-compareInteger :: Integer -> Integer -> Ordering
-compareInteger (Jn# x) (Jn# y) = compareBigNat y x
-compareInteger (S# x) (S# y) = compareInt# x y
-compareInteger (Jp# x) (Jp# y) = compareBigNat x y
-compareInteger (Jn# _) _ = LT
-compareInteger (S# _) (Jp# _) = LT
-compareInteger (S# _) (Jn# _) = GT
-compareInteger (Jp# _) _ = GT
-{-# CONSTANT_FOLDED compareInteger #-}
-
-isNegInteger# :: Integer -> Int#
-isNegInteger# (S# i#) = i# <# 0#
-isNegInteger# (Jp# _) = 0#
-isNegInteger# (Jn# _) = 1#
-
--- | Not-equal predicate.
-neqInteger :: Integer -> Integer -> Bool
-neqInteger x y = isTrue# (neqInteger# x y)
-
-eqInteger, leInteger, ltInteger, gtInteger, geInteger
- :: Integer -> Integer -> Bool
-eqInteger x y = isTrue# (eqInteger# x y)
-leInteger x y = isTrue# (leInteger# x y)
-ltInteger x y = isTrue# (ltInteger# x y)
-gtInteger x y = isTrue# (gtInteger# x y)
-geInteger x y = isTrue# (geInteger# x y)
-
-eqInteger#, neqInteger#, leInteger#, ltInteger#, gtInteger#, geInteger#
- :: Integer -> Integer -> Int#
-eqInteger# (S# x#) (S# y#) = x# ==# y#
-eqInteger# (Jn# x) (Jn# y) = eqBigNat# x y
-eqInteger# (Jp# x) (Jp# y) = eqBigNat# x y
-eqInteger# _ _ = 0#
-{-# CONSTANT_FOLDED eqInteger# #-}
-
-neqInteger# (S# x#) (S# y#) = x# /=# y#
-neqInteger# (Jn# x) (Jn# y) = neqBigNat# x y
-neqInteger# (Jp# x) (Jp# y) = neqBigNat# x y
-neqInteger# _ _ = 1#
-{-# CONSTANT_FOLDED neqInteger# #-}
-
-
-gtInteger# (S# x#) (S# y#) = x# ># y#
-gtInteger# x y | inline compareInteger x y == GT = 1#
-gtInteger# _ _ = 0#
-{-# CONSTANT_FOLDED gtInteger# #-}
-
-leInteger# (S# x#) (S# y#) = x# <=# y#
-leInteger# x y | inline compareInteger x y /= GT = 1#
-leInteger# _ _ = 0#
-{-# CONSTANT_FOLDED leInteger# #-}
-
-ltInteger# (S# x#) (S# y#) = x# <# y#
-ltInteger# x y | inline compareInteger x y == LT = 1#
-ltInteger# _ _ = 0#
-{-# CONSTANT_FOLDED ltInteger# #-}
-
-geInteger# (S# x#) (S# y#) = x# >=# y#
-geInteger# x y | inline compareInteger x y /= LT = 1#
-geInteger# _ _ = 0#
-{-# CONSTANT_FOLDED geInteger# #-}
-
--- | Compute absolute value of an 'Integer'
-absInteger :: Integer -> Integer
-absInteger (Jn# n) = Jp# n
-absInteger (S# INT_MINBOUND#) = Jp# (wordToBigNat ABS_INT_MINBOUND##)
-absInteger (S# i#) | isTrue# (i# <# 0#) = S# (negateInt# i#)
-absInteger i@(S# _) = i
-absInteger i@(Jp# _) = i
-{-# CONSTANT_FOLDED absInteger #-}
-
--- | Return @-1@, @0@, and @1@ depending on whether argument is
--- negative, zero, or positive, respectively
-signumInteger :: Integer -> Integer
-signumInteger j = S# (signumInteger# j)
-{-# CONSTANT_FOLDED signumInteger #-}
-
--- | Return @-1#@, @0#@, and @1#@ depending on whether argument is
--- negative, zero, or positive, respectively
-signumInteger# :: Integer -> Int#
-signumInteger# (Jn# _) = -1#
-signumInteger# (S# i#) = sgnI# i#
-signumInteger# (Jp# _ ) = 1#
-
--- | Negate 'Integer'
-negateInteger :: Integer -> Integer
-negateInteger (Jn# n) = Jp# n
-negateInteger (S# INT_MINBOUND#) = Jp# (wordToBigNat ABS_INT_MINBOUND##)
-negateInteger (S# i#) = S# (negateInt# i#)
-negateInteger (Jp# bn)
- | isTrue# (eqBigNatWord# bn ABS_INT_MINBOUND##) = S# INT_MINBOUND#
- | True = Jn# bn
-{-# CONSTANT_FOLDED negateInteger #-}
-
--- one edge-case issue to take into account is that Int's range is not
--- symmetric around 0. I.e. @minBound+maxBound = -1@
---
--- Jp# is used iff n > maxBound::Int
--- Jn# is used iff n < minBound::Int
-
--- | Add two 'Integer's
-plusInteger :: Integer -> Integer -> Integer
-plusInteger x (S# 0#) = x
-plusInteger (S# 0#) y = y
-plusInteger (S# x#) (S# y#)
- = case addIntC# x# y# of
- (# z#, 0# #) -> S# z#
- (# 0#, _ #) -> Jn# (wordToBigNat2 1## 0##) -- 2*minBound::Int
- (# z#, _ #)
- | isTrue# (z# ># 0#) -> Jn# (wordToBigNat ( (int2Word# (negateInt# z#))))
- | True -> Jp# (wordToBigNat ( (int2Word# z#)))
-plusInteger y@(S# _) x = plusInteger x y
--- no S# as first arg from here on
-plusInteger (Jp# x) (Jp# y) = Jp# (plusBigNat x y)
-plusInteger (Jn# x) (Jn# y) = Jn# (plusBigNat x y)
-plusInteger (Jp# x) (S# y#) -- edge-case: @(maxBound+1) + minBound == 0@
- | isTrue# (y# >=# 0#) = Jp# (plusBigNatWord x (int2Word# y#))
- | True = bigNatToInteger (minusBigNatWord x (int2Word#
- (negateInt# y#)))
-plusInteger (Jn# x) (S# y#) -- edge-case: @(minBound-1) + maxBound == -2@
- | isTrue# (y# >=# 0#) = bigNatToNegInteger (minusBigNatWord x (int2Word# y#))
- | True = Jn# (plusBigNatWord x (int2Word# (negateInt# y#)))
-plusInteger y@(Jn# _) x@(Jp# _) = plusInteger x y
-plusInteger (Jp# x) (Jn# y)
- = case compareBigNat x y of
- LT -> bigNatToNegInteger (minusBigNat y x)
- EQ -> S# 0#
- GT -> bigNatToInteger (minusBigNat x y)
-{-# CONSTANT_FOLDED plusInteger #-}
-
--- | Subtract one 'Integer' from another.
-minusInteger :: Integer -> Integer -> Integer
-minusInteger x (S# 0#) = x
-minusInteger (S# x#) (S# y#)
- = case subIntC# x# y# of
- (# z#, 0# #) -> S# z#
- (# 0#, _ #) -> Jn# (wordToBigNat2 1## 0##)
- (# z#, _ #)
- | isTrue# (z# ># 0#) -> Jn# (wordToBigNat ( (int2Word# (negateInt# z#))))
- | True -> Jp# (wordToBigNat ( (int2Word# z#)))
-minusInteger (S# x#) (Jp# y)
- | isTrue# (x# >=# 0#) = bigNatToNegInteger (minusBigNatWord y (int2Word# x#))
- | True = Jn# (plusBigNatWord y (int2Word# (negateInt# x#)))
-minusInteger (S# x#) (Jn# y)
- | isTrue# (x# >=# 0#) = Jp# (plusBigNatWord y (int2Word# x#))
- | True = bigNatToInteger (minusBigNatWord y (int2Word#
- (negateInt# x#)))
-minusInteger (Jp# x) (Jp# y)
- = case compareBigNat x y of
- LT -> bigNatToNegInteger (minusBigNat y x)
- EQ -> S# 0#
- GT -> bigNatToInteger (minusBigNat x y)
-minusInteger (Jp# x) (Jn# y) = Jp# (plusBigNat x y)
-minusInteger (Jn# x) (Jp# y) = Jn# (plusBigNat x y)
-minusInteger (Jn# x) (Jn# y)
- = case compareBigNat x y of
- LT -> bigNatToInteger (minusBigNat y x)
- EQ -> S# 0#
- GT -> bigNatToNegInteger (minusBigNat x y)
-minusInteger (Jp# x) (S# y#)
- | isTrue# (y# >=# 0#) = bigNatToInteger (minusBigNatWord x (int2Word# y#))
- | True = Jp# (plusBigNatWord x (int2Word# (negateInt# y#)))
-minusInteger (Jn# x) (S# y#)
- | isTrue# (y# >=# 0#) = Jn# (plusBigNatWord x (int2Word# y#))
- | True = bigNatToNegInteger (minusBigNatWord x
- (int2Word# (negateInt# y#)))
-{-# CONSTANT_FOLDED minusInteger #-}
-
--- | Multiply two 'Integer's
-timesInteger :: Integer -> Integer -> Integer
-timesInteger !_ (S# 0#) = S# 0#
-timesInteger (S# 0#) _ = S# 0#
-timesInteger x (S# 1#) = x
-timesInteger (S# 1#) y = y
-timesInteger x (S# -1#) = negateInteger x
-timesInteger (S# -1#) y = negateInteger y
-timesInteger (S# x#) (S# y#) = case timesInt2# x# y# of
- (# 0#, _h, l #) -> S# l
- (# _ , h, l #) -> int2ToInteger h l
-timesInteger x@(S# _) y = timesInteger y x
--- no S# as first arg from here on
-timesInteger (Jp# x) (Jp# y) = Jp# (timesBigNat x y)
-timesInteger (Jp# x) (Jn# y) = Jn# (timesBigNat x y)
-timesInteger (Jp# x) (S# y#)
- | isTrue# (y# >=# 0#) = Jp# (timesBigNatWord x (int2Word# y#))
- | True = Jn# (timesBigNatWord x (int2Word# (negateInt# y#)))
-timesInteger (Jn# x) (Jn# y) = Jp# (timesBigNat x y)
-timesInteger (Jn# x) (Jp# y) = Jn# (timesBigNat x y)
-timesInteger (Jn# x) (S# y#)
- | isTrue# (y# >=# 0#) = Jn# (timesBigNatWord x (int2Word# y#))
- | True = Jp# (timesBigNatWord x (int2Word# (negateInt# y#)))
-{-# CONSTANT_FOLDED timesInteger #-}
-
--- | Square 'Integer'
-sqrInteger :: Integer -> Integer
-sqrInteger (S# INT_MINBOUND#) = timesInt2Integer INT_MINBOUND# INT_MINBOUND#
-sqrInteger (S# j#) | isTrue# (absI# j# <=# SQRT_INT_MAXBOUND#) = S# (j# *# j#)
-sqrInteger (S# j#) = timesInt2Integer j# j#
-sqrInteger (Jp# bn) = Jp# (sqrBigNat bn)
-sqrInteger (Jn# bn) = Jp# (sqrBigNat bn)
-
--- | Convert two Int# (resp. high and low bits of a double-word Int#) into an
--- Integer
---
--- Warning: currently it doesn't handle the case where high=minBound and low=0
--- (i.e. high:low = 100......00 = minBound for a double-word Int)
-int2ToInteger :: Int# -> Int# -> Integer
-int2ToInteger h l
- | isTrue# (h <# 0#) =
- case addWordC# (not# (int2Word# l)) 1## of -- two's complement...
- (# lw,c #) -> Jn# (wordToBigNat2
- -- add the carry to the high word
- (int2Word# c `plusWord#` not# (int2Word# h))
- lw
- )
- | True = Jp# (wordToBigNat2 (int2Word# h) (int2Word# l))
-
--- | Construct 'Integer' from the product of two 'Int#'s
-timesInt2Integer :: Int# -> Int# -> Integer
-timesInt2Integer x# y# = case (# isTrue# (x# >=# 0#), isTrue# (y# >=# 0#) #) of
- (# False, False #) -> case timesWord2# (int2Word# (negateInt# x#))
- (int2Word# (negateInt# y#)) of
- (# 0##,l #) -> inline wordToInteger l
- (# h ,l #) -> Jp# (wordToBigNat2 h l)
-
- (# True, False #) -> case timesWord2# (int2Word# x#)
- (int2Word# (negateInt# y#)) of
- (# 0##,l #) -> wordToNegInteger l
- (# h ,l #) -> Jn# (wordToBigNat2 h l)
-
- (# False, True #) -> case timesWord2# (int2Word# (negateInt# x#))
- (int2Word# y#) of
- (# 0##,l #) -> wordToNegInteger l
- (# h ,l #) -> Jn# (wordToBigNat2 h l)
-
- (# True, True #) -> case timesWord2# (int2Word# x#)
- (int2Word# y#) of
- (# 0##,l #) -> inline wordToInteger l
- (# h ,l #) -> Jp# (wordToBigNat2 h l)
-
-bigNatToInteger :: BigNat -> Integer
-bigNatToInteger bn
- | isTrue# ((sizeofBigNat# bn ==# 1#) `andI#` (i# >=# 0#)) = S# i#
- | True = Jp# bn
- where
- i# = word2Int# (bigNatToWord bn)
-
-bigNatToNegInteger :: BigNat -> Integer
-bigNatToNegInteger bn
- | isTrue# ((sizeofBigNat# bn ==# 1#) `andI#` (i# <=# 0#)) = S# i#
- | True = Jn# bn
- where
- i# = negateInt# (word2Int# (bigNatToWord bn))
-
--- | Count number of set bits. For negative arguments returns negative
--- population count of negated argument.
-popCountInteger :: Integer -> Int#
-popCountInteger (S# i#)
- | isTrue# (i# >=# 0#) = popCntI# i#
- | True = negateInt# (popCntI# (negateInt# i#))
-popCountInteger (Jp# bn) = popCountBigNat bn
-popCountInteger (Jn# bn) = negateInt# (popCountBigNat bn)
-{-# CONSTANT_FOLDED popCountInteger #-}
-
--- | 'Integer' for which only /n/-th bit is set. Undefined behaviour
--- for negative /n/ values.
-bitInteger :: Int# -> Integer
-bitInteger i#
- | isTrue# (i# <# (GMP_LIMB_BITS# -# 1#)) = S# (uncheckedIShiftL# 1# i#)
- | True = Jp# (bitBigNat i#)
-{-# CONSTANT_FOLDED bitInteger #-}
-
--- | Test if /n/-th bit is set.
-testBitInteger :: Integer -> Int# -> Bool
-testBitInteger !_ n# | isTrue# (n# <# 0#) = False
-testBitInteger (S# i#) n#
- | isTrue# (n# <# GMP_LIMB_BITS#) = isTrue# (((uncheckedIShiftL# 1# n#)
- `andI#` i#) /=# 0#)
- | True = isTrue# (i# <# 0#)
-testBitInteger (Jp# bn) n = testBitBigNat bn n
-testBitInteger (Jn# bn) n = testBitNegBigNat bn n
-{-# CONSTANT_FOLDED testBitInteger #-}
-
--- | Bitwise @NOT@ operation
-complementInteger :: Integer -> Integer
-complementInteger (S# i#) = S# (notI# i#)
-complementInteger (Jp# bn) = Jn# (plusBigNatWord bn 1##)
-complementInteger (Jn# bn) = Jp# (minusBigNatWord bn 1##)
-{-# CONSTANT_FOLDED complementInteger #-}
-
--- | Arithmetic shift-right operation
---
--- Even though the shift-amount is expressed as `Int#`, the result is
--- undefined for negative shift-amounts.
-shiftRInteger :: Integer -> Int# -> Integer
-shiftRInteger x 0# = x
-shiftRInteger (S# i#) n# = S# (iShiftRA# i# n#)
- where
- iShiftRA# a b
- | isTrue# (b >=# WORD_SIZE_IN_BITS#) = (a <# 0#) *# (-1#)
- | True = a `uncheckedIShiftRA#` b
-shiftRInteger (Jp# bn) n# = bigNatToInteger (shiftRBigNat bn n#)
-shiftRInteger (Jn# bn) n#
- = case bigNatToNegInteger (shiftRNegBigNat bn n#) of
- S# 0# -> S# -1#
- r -> r
-{-# CONSTANT_FOLDED shiftRInteger #-}
-
--- | Shift-left operation
---
--- Even though the shift-amount is expressed as `Int#`, the result is
--- undefined for negative shift-amounts.
-shiftLInteger :: Integer -> Int# -> Integer
-shiftLInteger x 0# = x
-shiftLInteger (S# 0#) _ = S# 0#
-shiftLInteger (S# 1#) n# = bitInteger n#
-shiftLInteger (S# i#) n#
- | isTrue# (i# >=# 0#) = bigNatToInteger (shiftLBigNat
- (wordToBigNat (int2Word# i#)) n#)
- | True = bigNatToNegInteger (shiftLBigNat
- (wordToBigNat (int2Word#
- (negateInt# i#))) n#)
-shiftLInteger (Jp# bn) n# = Jp# (shiftLBigNat bn n#)
-shiftLInteger (Jn# bn) n# = Jn# (shiftLBigNat bn n#)
-{-# CONSTANT_FOLDED shiftLInteger #-}
-
--- | Bitwise OR operation
-orInteger :: Integer -> Integer -> Integer
--- short-cuts
-orInteger (S# 0#) y = y
-orInteger x (S# 0#) = x
-orInteger (S# -1#) _ = S# -1#
-orInteger _ (S# -1#) = S# -1#
--- base-cases
-orInteger (S# x#) (S# y#) = S# (orI# x# y#)
-orInteger (Jp# x) (Jp# y) = Jp# (orBigNat x y)
-orInteger (Jn# x) (Jn# y)
- = bigNatToNegInteger (plusBigNatWord (andBigNat
- (minusBigNatWord x 1##)
- (minusBigNatWord y 1##)) 1##)
-orInteger x@(Jn# _) y@(Jp# _) = orInteger y x -- retry with swapped args
-orInteger (Jp# x) (Jn# y)
- = bigNatToNegInteger (plusBigNatWord (andnBigNat (minusBigNatWord y 1##) x)
- 1##)
--- TODO/FIXpromotion-hack
-orInteger x@(S# _) y = orInteger (unsafePromote x) y
-orInteger x y {- S# -}= orInteger x (unsafePromote y)
-{-# CONSTANT_FOLDED orInteger #-}
-
--- | Bitwise XOR operation
-xorInteger :: Integer -> Integer -> Integer
--- short-cuts
-xorInteger (S# 0#) y = y
-xorInteger x (S# 0#) = x
--- TODO: (S# -1) cases
--- base-cases
-xorInteger (S# x#) (S# y#) = S# (xorI# x# y#)
-xorInteger (Jp# x) (Jp# y) = bigNatToInteger (xorBigNat x y)
-xorInteger (Jn# x) (Jn# y)
- = bigNatToInteger (xorBigNat (minusBigNatWord x 1##)
- (minusBigNatWord y 1##))
-xorInteger x@(Jn# _) y@(Jp# _) = xorInteger y x -- retry with swapped args
-xorInteger (Jp# x) (Jn# y)
- = bigNatToNegInteger (plusBigNatWord (xorBigNat x (minusBigNatWord y 1##))
- 1##)
--- TODO/FIXME promotion-hack
-xorInteger x@(S# _) y = xorInteger (unsafePromote x) y
-xorInteger x y {- S# -} = xorInteger x (unsafePromote y)
-{-# CONSTANT_FOLDED xorInteger #-}
-
--- | Bitwise AND operation
-andInteger :: Integer -> Integer -> Integer
--- short-cuts
-andInteger (S# 0#) !_ = S# 0#
-andInteger _ (S# 0#) = S# 0#
-andInteger (S# -1#) y = y
-andInteger x (S# -1#) = x
--- base-cases
-andInteger (S# x#) (S# y#) = S# (andI# x# y#)
-andInteger (Jp# x) (Jp# y) = bigNatToInteger (andBigNat x y)
-andInteger (Jn# x) (Jn# y)
- = bigNatToNegInteger (plusBigNatWord (orBigNat (minusBigNatWord x 1##)
- (minusBigNatWord y 1##)) 1##)
-andInteger x@(Jn# _) y@(Jp# _) = andInteger y x
-andInteger (Jp# x) (Jn# y)
- = bigNatToInteger (andnBigNat x (minusBigNatWord y 1##))
--- TODO/FIXME promotion-hack
-andInteger x@(S# _) y = andInteger (unsafePromote x) y
-andInteger x y {- S# -}= andInteger x (unsafePromote y)
-{-# CONSTANT_FOLDED andInteger #-}
-
--- HACK warning! breaks invariant on purpose
-unsafePromote :: Integer -> Integer
-unsafePromote (S# x#)
- | isTrue# (x# >=# 0#) = Jp# (wordToBigNat (int2Word# x#))
- | True = Jn# (wordToBigNat (int2Word# (negateInt# x#)))
-unsafePromote x = x
-
--- | Simultaneous 'quotInteger' and 'remInteger'.
---
--- Divisor must be non-zero otherwise the GHC runtime will terminate
--- with a division-by-zero fault.
-quotRemInteger :: Integer -> Integer -> (# Integer, Integer #)
-quotRemInteger n (S# 1#) = (# n, S# 0# #)
-quotRemInteger n (S# -1#) = let !q = negateInteger n in (# q, (S# 0#) #)
-quotRemInteger !_ (S# 0#) = (# S# (quotInt# 0# 0#),S# (remInt# 0# 0#) #)
-quotRemInteger (S# 0#) _ = (# S# 0#, S# 0# #)
-quotRemInteger (S# n#) (S# d#) = case quotRemInt# n# d# of
- (# q#, r# #) -> (# S# q#, S# r# #)
-quotRemInteger (Jp# n) (Jp# d) = case quotRemBigNat n d of
- (# q, r #) -> (# bigNatToInteger q, bigNatToInteger r #)
-quotRemInteger (Jp# n) (Jn# d) = case quotRemBigNat n d of
- (# q, r #) -> (# bigNatToNegInteger q, bigNatToInteger r #)
-quotRemInteger (Jn# n) (Jn# d) = case quotRemBigNat n d of
- (# q, r #) -> (# bigNatToInteger q, bigNatToNegInteger r #)
-quotRemInteger (Jn# n) (Jp# d) = case quotRemBigNat n d of
- (# q, r #) -> (# bigNatToNegInteger q, bigNatToNegInteger r #)
-quotRemInteger (Jp# n) (S# d#)
- | isTrue# (d# >=# 0#) = case quotRemBigNatWord n (int2Word# d#) of
- (# q, r# #) -> (# bigNatToInteger q, inline wordToInteger r# #)
- | True = case quotRemBigNatWord n (int2Word# (negateInt# d#)) of
- (# q, r# #) -> (# bigNatToNegInteger q, inline wordToInteger r# #)
-quotRemInteger (Jn# n) (S# d#)
- | isTrue# (d# >=# 0#) = case quotRemBigNatWord n (int2Word# d#) of
- (# q, r# #) -> (# bigNatToNegInteger q, wordToNegInteger r# #)
- | True = case quotRemBigNatWord n (int2Word# (negateInt# d#)) of
- (# q, r# #) -> (# bigNatToInteger q, wordToNegInteger r# #)
-quotRemInteger n@(S# _) (Jn# _) = (# S# 0#, n #) -- since @n < d@
-quotRemInteger n@(S# n#) (Jp# d) -- need to account for (S# minBound)
- | isTrue# (n# ># 0#) = (# S# 0#, n #)
- | isTrue# (gtBigNatWord# d (int2Word# (negateInt# n#))) = (# S# 0#, n #)
- | True {- abs(n) == d -} = (# S# -1#, S# 0# #)
-{-# CONSTANT_FOLDED quotRemInteger #-}
-
-
-quotInteger :: Integer -> Integer -> Integer
-quotInteger n (S# 1#) = n
-quotInteger n (S# -1#) = negateInteger n
-quotInteger !_ (S# 0#) = S# (quotInt# 0# 0#)
-quotInteger (S# 0#) _ = S# 0#
-quotInteger (S# n#) (S# d#) = S# (quotInt# n# d#)
-quotInteger (Jp# n) (S# d#)
- | isTrue# (d# >=# 0#) = bigNatToInteger (quotBigNatWord n (int2Word# d#))
- | True = bigNatToNegInteger (quotBigNatWord n
- (int2Word# (negateInt# d#)))
-quotInteger (Jn# n) (S# d#)
- | isTrue# (d# >=# 0#) = bigNatToNegInteger (quotBigNatWord n (int2Word# d#))
- | True = bigNatToInteger (quotBigNatWord n
- (int2Word# (negateInt# d#)))
-quotInteger (Jp# n) (Jp# d) = bigNatToInteger (quotBigNat n d)
-quotInteger (Jp# n) (Jn# d) = bigNatToNegInteger (quotBigNat n d)
-quotInteger (Jn# n) (Jp# d) = bigNatToNegInteger (quotBigNat n d)
-quotInteger (Jn# n) (Jn# d) = bigNatToInteger (quotBigNat n d)
--- handle remaining non-allocating cases
-quotInteger n d = case inline quotRemInteger n d of (# q, _ #) -> q
-{-# CONSTANT_FOLDED quotInteger #-}
-
-remInteger :: Integer -> Integer -> Integer
-remInteger !_ (S# 1#) = S# 0#
-remInteger _ (S# -1#) = S# 0#
-remInteger _ (S# 0#) = S# (remInt# 0# 0#)
-remInteger (S# 0#) _ = S# 0#
-remInteger (S# n#) (S# d#) = S# (remInt# n# d#)
-remInteger (Jp# n) (S# d#)
- = wordToInteger (remBigNatWord n (int2Word# (absI# d#)))
-remInteger (Jn# n) (S# d#)
- = wordToNegInteger (remBigNatWord n (int2Word# (absI# d#)))
-remInteger (Jp# n) (Jp# d) = bigNatToInteger (remBigNat n d)
-remInteger (Jp# n) (Jn# d) = bigNatToInteger (remBigNat n d)
-remInteger (Jn# n) (Jp# d) = bigNatToNegInteger (remBigNat n d)
-remInteger (Jn# n) (Jn# d) = bigNatToNegInteger (remBigNat n d)
--- handle remaining non-allocating cases
-remInteger n d = case inline quotRemInteger n d of (# _, r #) -> r
-{-# CONSTANT_FOLDED remInteger #-}
-
--- | Simultaneous 'divInteger' and 'modInteger'.
---
--- Divisor must be non-zero otherwise the GHC runtime will terminate
--- with a division-by-zero fault.
-divModInteger :: Integer -> Integer -> (# Integer, Integer #)
-divModInteger n d
- | isTrue# (signumInteger# r ==# negateInt# (signumInteger# d))
- = let !q' = plusInteger q (S# -1#) -- TODO: optimize
- !r' = plusInteger r d
- in (# q', r' #)
- | True = qr
- where
- !qr@(# q, r #) = quotRemInteger n d
-{-# CONSTANT_FOLDED divModInteger #-}
-
-divInteger :: Integer -> Integer -> Integer
--- same-sign ops can be handled by more efficient 'quotInteger'
-divInteger n d | isTrue# (isNegInteger# n ==# isNegInteger# d) = quotInteger n d
-divInteger n d = case inline divModInteger n d of (# q, _ #) -> q
-{-# CONSTANT_FOLDED divInteger #-}
-
-modInteger :: Integer -> Integer -> Integer
--- same-sign ops can be handled by more efficient 'remInteger'
-modInteger n d | isTrue# (isNegInteger# n ==# isNegInteger# d) = remInteger n d
-modInteger n d = case inline divModInteger n d of (# _, r #) -> r
-{-# CONSTANT_FOLDED modInteger #-}
-
--- | Compute greatest common divisor.
-gcdInteger :: Integer -> Integer -> Integer
-gcdInteger (S# 0#) b = absInteger b
-gcdInteger a (S# 0#) = absInteger a
-gcdInteger (S# 1#) _ = S# 1#
-gcdInteger (S# -1#) _ = S# 1#
-gcdInteger _ (S# 1#) = S# 1#
-gcdInteger _ (S# -1#) = S# 1#
-gcdInteger (S# a#) (S# b#)
- = wordToInteger (gcdWord# (int2Word# (absI# a#)) (int2Word# (absI# b#)))
-gcdInteger a@(S# _) b = gcdInteger b a
-gcdInteger (Jn# a) b = gcdInteger (Jp# a) b
-gcdInteger (Jp# a) (Jp# b) = bigNatToInteger (gcdBigNat a b)
-gcdInteger (Jp# a) (Jn# b) = bigNatToInteger (gcdBigNat a b)
-gcdInteger (Jp# a) (S# b#)
- = wordToInteger (gcdBigNatWord a (int2Word# (absI# b#)))
-{-# CONSTANT_FOLDED gcdInteger #-}
-
--- | Compute least common multiple.
-lcmInteger :: Integer -> Integer -> Integer
-lcmInteger (S# 0#) !_ = S# 0#
-lcmInteger (S# 1#) b = absInteger b
-lcmInteger (S# -1#) b = absInteger b
-lcmInteger _ (S# 0#) = S# 0#
-lcmInteger a (S# 1#) = absInteger a
-lcmInteger a (S# -1#) = absInteger a
-lcmInteger a b = (aa `quotInteger` (aa `gcdInteger` ab)) `timesInteger` ab
- where
- aa = absInteger a
- ab = absInteger b
-{-# CONSTANT_FOLDED lcmInteger #-}
-
--- | Compute greatest common divisor.
---
--- __Warning__: result may become negative if (at least) one argument
--- is 'minBound'
-gcdInt :: Int# -> Int# -> Int#
-gcdInt x# y#
- = word2Int# (gcdWord# (int2Word# (absI# x#)) (int2Word# (absI# y#)))
-
--- | Compute greatest common divisor.
---
--- @since 1.0.0.0
-gcdWord :: Word# -> Word# -> Word#
-gcdWord = gcdWord#
-
-----------------------------------------------------------------------------
--- BigNat operations
-
-compareBigNat :: BigNat -> BigNat -> Ordering
-compareBigNat x@(BN# x#) y@(BN# y#)
- | isTrue# (nx# ==# ny#)
- = compareInt# (narrowCInt# (c_mpn_cmp x# y# nx#)) 0#
- | isTrue# (nx# <# ny#) = LT
- | True = GT
- where
- nx# = sizeofBigNat# x
- ny# = sizeofBigNat# y
-
-compareBigNatWord :: BigNat -> GmpLimb# -> Ordering
-compareBigNatWord bn w#
- | isTrue# (sizeofBigNat# bn ==# 1#) = cmpW# (bigNatToWord bn) w#
- | True = GT
-
-gtBigNatWord# :: BigNat -> GmpLimb# -> Int#
-gtBigNatWord# bn w#
- = (sizeofBigNat# bn ># 1#) `orI#` (bigNatToWord bn `gtWord#` w#)
-
-eqBigNat :: BigNat -> BigNat -> Bool
-eqBigNat x y = isTrue# (eqBigNat# x y)
-
-eqBigNat# :: BigNat -> BigNat -> Int#
-eqBigNat# x@(BN# x#) y@(BN# y#)
- | isTrue# (nx# ==# ny#) = c_mpn_cmp x# y# nx# ==# 0#
- | True = 0#
- where
- nx# = sizeofBigNat# x
- ny# = sizeofBigNat# y
-
-neqBigNat# :: BigNat -> BigNat -> Int#
-neqBigNat# x@(BN# x#) y@(BN# y#)
- | isTrue# (nx# ==# ny#) = c_mpn_cmp x# y# nx# /=# 0#
- | True = 1#
- where
- nx# = sizeofBigNat# x
- ny# = sizeofBigNat# y
-
-eqBigNatWord :: BigNat -> GmpLimb# -> Bool
-eqBigNatWord bn w# = isTrue# (eqBigNatWord# bn w#)
-
-eqBigNatWord# :: BigNat -> GmpLimb# -> Int#
-eqBigNatWord# bn w#
- = (sizeofBigNat# bn ==# 1#) `andI#` (bigNatToWord bn `eqWord#` w#)
-
-
--- | Same as @'indexBigNat#' bn 0\#@
-bigNatToWord :: BigNat -> Word#
-bigNatToWord bn = indexBigNat# bn 0#
-
--- | Equivalent to @'word2Int#' . 'bigNatToWord'@
-bigNatToInt :: BigNat -> Int#
-bigNatToInt (BN# ba#) = indexIntArray# ba# 0#
-
--- | CAF representing the value @0 :: BigNat@
-zeroBigNat :: BigNat
-zeroBigNat = runS $ do
- mbn <- newBigNat# 1#
- _ <- svoid (writeBigNat# mbn 0# 0##)
- unsafeFreezeBigNat# mbn
-{-# NOINLINE zeroBigNat #-}
-
--- | Test if 'BigNat' value is equal to zero.
-isZeroBigNat :: BigNat -> Bool
-isZeroBigNat bn = eqBigNatWord bn 0##
-
--- | CAF representing the value @1 :: BigNat@
-oneBigNat :: BigNat
-oneBigNat = runS $ do
- mbn <- newBigNat# 1#
- _ <- svoid (writeBigNat# mbn 0# 1##)
- unsafeFreezeBigNat# mbn
-{-# NOINLINE oneBigNat #-}
-
-czeroBigNat :: BigNat
-czeroBigNat = runS $ do
- mbn <- newBigNat# 1#
- _ <- svoid (writeBigNat# mbn 0# (not# 0##))
- unsafeFreezeBigNat# mbn
-{-# NOINLINE czeroBigNat #-}
-
--- | Special 0-sized bigNat returned in case of arithmetic underflow
---
--- This is currently only returned by the following operations:
---
--- - 'minusBigNat'
--- - 'minusBigNatWord'
---
--- Other operations such as 'quotBigNat' may return 'nullBigNat' as
--- well as a dummy/place-holder value instead of 'undefined' since we
--- can't throw exceptions. But that behaviour should not be relied
--- upon.
---
--- NB: @isValidBigNat# nullBigNat@ is false
-nullBigNat :: BigNat
-nullBigNat = runS (newBigNat# 0# >>= unsafeFreezeBigNat#)
-{-# NOINLINE nullBigNat #-}
-
--- | Test for special 0-sized 'BigNat' representing underflows.
-isNullBigNat# :: BigNat -> Int#
-isNullBigNat# (BN# ba#) = sizeofByteArray# ba# ==# 0#
-
--- | Construct 1-limb 'BigNat' from 'Word#'
-wordToBigNat :: Word# -> BigNat
-wordToBigNat 0## = zeroBigNat
-wordToBigNat 1## = oneBigNat
-wordToBigNat w#
- | isTrue# (not# w# `eqWord#` 0##) = czeroBigNat
- | True = runS $ do
- mbn <- newBigNat# 1#
- _ <- svoid (writeBigNat# mbn 0# w#)
- unsafeFreezeBigNat# mbn
-
--- | Construct BigNat from 2 limbs.
--- The first argument is the most-significant limb.
-wordToBigNat2 :: Word# -> Word# -> BigNat
-wordToBigNat2 0## lw# = wordToBigNat lw#
-wordToBigNat2 hw# lw# = runS $ do
- mbn <- newBigNat# 2#
- _ <- svoid (writeBigNat# mbn 0# lw#)
- _ <- svoid (writeBigNat# mbn 1# hw#)
- unsafeFreezeBigNat# mbn
-
-plusBigNat :: BigNat -> BigNat -> BigNat
-plusBigNat x y
- | isTrue# (eqBigNatWord# x 0##) = y
- | isTrue# (eqBigNatWord# y 0##) = x
- | isTrue# (nx# >=# ny#) = go x nx# y ny#
- | True = go y ny# x nx#
- where
- go (BN# a#) na# (BN# b#) nb# = runS $ do
- mbn@(MBN# mba#) <- newBigNat# na#
- (W# c#) <- liftIO (c_mpn_add mba# a# na# b# nb#)
- case c# of
- 0## -> unsafeFreezeBigNat# mbn
- _ -> unsafeSnocFreezeBigNat# mbn c#
-
- nx# = sizeofBigNat# x
- ny# = sizeofBigNat# y
-
-plusBigNatWord :: BigNat -> GmpLimb# -> BigNat
-plusBigNatWord x 0## = x
-plusBigNatWord x@(BN# x#) y# = runS $ do
- mbn@(MBN# mba#) <- newBigNat# nx#
- (W# c#) <- liftIO (c_mpn_add_1 mba# x# nx# y#)
- case c# of
- 0## -> unsafeFreezeBigNat# mbn
- _ -> unsafeSnocFreezeBigNat# mbn c#
- where
- nx# = sizeofBigNat# x
-
--- | Returns 'nullBigNat' (see 'isNullBigNat#') in case of underflow
-minusBigNat :: BigNat -> BigNat -> BigNat
-minusBigNat x@(BN# x#) y@(BN# y#)
- | isZeroBigNat y = x
- | isTrue# (nx# >=# ny#) = runS $ do
- mbn@(MBN# mba#) <- newBigNat# nx#
- (W# b#) <- liftIO (c_mpn_sub mba# x# nx# y# ny#)
- case b# of
- 0## -> unsafeRenormFreezeBigNat# mbn
- _ -> return nullBigNat
-
- | True = nullBigNat
- where
- nx# = sizeofBigNat# x
- ny# = sizeofBigNat# y
-
--- | Returns 'nullBigNat' (see 'isNullBigNat#') in case of underflow
-minusBigNatWord :: BigNat -> GmpLimb# -> BigNat
-minusBigNatWord x 0## = x
-minusBigNatWord x@(BN# x#) y# = runS $ do
- mbn@(MBN# mba#) <- newBigNat# nx#
- (W# b#) <- liftIO $ c_mpn_sub_1 mba# x# nx# y#
- case b# of
- 0## -> unsafeRenormFreezeBigNat# mbn
- _ -> return nullBigNat
- where
- nx# = sizeofBigNat# x
-
-
-timesBigNat :: BigNat -> BigNat -> BigNat
-timesBigNat x y
- | isZeroBigNat x = zeroBigNat
- | isZeroBigNat y = zeroBigNat
- | isTrue# (nx# >=# ny#) = go x nx# y ny#
- | True = go y ny# x nx#
- where
- go (BN# a#) na# (BN# b#) nb# = runS $ do
- let n# = nx# +# ny#
- mbn@(MBN# mba#) <- newBigNat# n#
- (W# msl#) <- liftIO (c_mpn_mul mba# a# na# b# nb#)
- case msl# of
- 0## -> unsafeShrinkFreezeBigNat# mbn (n# -# 1#)
- _ -> unsafeFreezeBigNat# mbn
-
- nx# = sizeofBigNat# x
- ny# = sizeofBigNat# y
-
--- | Square 'BigNat'
-sqrBigNat :: BigNat -> BigNat
-sqrBigNat x
- | isZeroBigNat x = zeroBigNat
- -- TODO: 1-limb BigNats below sqrt(maxBound::GmpLimb)
-sqrBigNat x = timesBigNat x x -- TODO: mpn_sqr
-
-timesBigNatWord :: BigNat -> GmpLimb# -> BigNat
-timesBigNatWord !_ 0## = zeroBigNat
-timesBigNatWord x 1## = x
-timesBigNatWord x@(BN# x#) y#
- | isTrue# (nx# ==# 1#) =
- let !(# !h#, !l# #) = timesWord2# (bigNatToWord x) y#
- in wordToBigNat2 h# l#
- | True = runS $ do
- mbn@(MBN# mba#) <- newBigNat# nx#
- (W# msl#) <- liftIO (c_mpn_mul_1 mba# x# nx# y#)
- case msl# of
- 0## -> unsafeFreezeBigNat# mbn
- _ -> unsafeSnocFreezeBigNat# mbn msl#
-
- where
- nx# = sizeofBigNat# x
-
--- | Specialised version of
---
--- > bitBigNat = shiftLBigNat (wordToBigNat 1##)
---
--- avoiding a few redundant allocations
-bitBigNat :: Int# -> BigNat
-bitBigNat i#
- | isTrue# (i# <# 0#) = zeroBigNat -- or maybe 'nullBigNat'?
- | isTrue# (i# ==# 0#) = oneBigNat
- | True = runS $ do
- mbn@(MBN# mba#) <- newBigNat# (li# +# 1#)
- -- FIXME: do we really need to zero-init MBAs returned by 'newByteArray#'?
- -- clear all limbs (except for the most-significant limb)
- _ <- svoid (clearWordArray# mba# 0# li#)
- -- set single bit in most-significant limb
- _ <- svoid (writeBigNat# mbn li# (uncheckedShiftL# 1## bi#))
- unsafeFreezeBigNat# mbn
- where
- !(# li#, bi# #) = quotRemInt# i# GMP_LIMB_BITS#
-
-testBitBigNat :: BigNat -> Int# -> Bool
-testBitBigNat bn i#
- | isTrue# (i# <# 0#) = False
- | isTrue# (li# <# nx#) = isTrue# (testBitWord# (indexBigNat# bn li#) bi#)
- | True = False
- where
- !(# li#, bi# #) = quotRemInt# i# GMP_LIMB_BITS#
- nx# = sizeofBigNat# bn
-
-testBitNegBigNat :: BigNat -> Int# -> Bool
-testBitNegBigNat bn i#
- | isTrue# (i# <# 0#) = False
- | isTrue# (li# >=# nx#) = True
- | allZ li# = isTrue# ((testBitWord#
- (indexBigNat# bn li# `minusWord#` 1##) bi#) ==# 0#)
- | True = isTrue# ((testBitWord# (indexBigNat# bn li#) bi#) ==# 0#)
- where
- !(# li#, bi# #) = quotRemInt# i# GMP_LIMB_BITS#
- nx# = sizeofBigNat# bn
-
- allZ 0# = True
- allZ j | isTrue# (indexBigNat# bn (j -# 1#) `eqWord#` 0##) = allZ (j -# 1#)
- | True = False
-
-
-clearBitBigNat :: BigNat -> Int# -> BigNat
-clearBitBigNat bn i#
- | not (inline testBitBigNat bn i#) = bn
- | isTrue# (nx# ==# 1#) = wordToBigNat (bigNatToWord bn `xor#` bitWord# bi#)
- | isTrue# (li# +# 1# ==# nx#) = -- special case, operating on most-sig limb
- case indexBigNat# bn li# `xor#` bitWord# bi# of
- 0## -> do -- most-sig limb became zero -> result has less limbs
- case fmssl bn (li# -# 1#) of
- 0# -> zeroBigNat
- n# -> runS $ do
- mbn <- newBigNat# n#
- _ <- copyWordArray bn 0# mbn 0# n#
- unsafeFreezeBigNat# mbn
- newlimb# -> runS $ do -- no shrinking
- mbn <- newBigNat# nx#
- _ <- copyWordArray bn 0# mbn 0# li#
- _ <- svoid (writeBigNat# mbn li# newlimb#)
- unsafeFreezeBigNat# mbn
-
- | True = runS $ do
- mbn <- newBigNat# nx#
- _ <- copyWordArray bn 0# mbn 0# nx#
- let newlimb# = indexBigNat# bn li# `xor#` bitWord# bi#
- _ <- svoid (writeBigNat# mbn li# newlimb#)
- unsafeFreezeBigNat# mbn
-
- where
- !(# li#, bi# #) = quotRemInt# i# GMP_LIMB_BITS#
- nx# = sizeofBigNat# bn
-
-
-
-setBitBigNat :: BigNat -> Int# -> BigNat
-setBitBigNat bn i#
- | inline testBitBigNat bn i# = bn
- | isTrue# (d# ># 0#) = runS $ do -- result BigNat will have more limbs
- mbn@(MBN# mba#) <- newBigNat# (li# +# 1#)
- _ <- copyWordArray bn 0# mbn 0# nx#
- _ <- svoid (clearWordArray# mba# nx# (d# -# 1#))
- _ <- svoid (writeBigNat# mbn li# (bitWord# bi#))
- unsafeFreezeBigNat# mbn
-
- | True = runS $ do
- mbn <- newBigNat# nx#
- _ <- copyWordArray bn 0# mbn 0# nx#
- _ <- svoid (writeBigNat# mbn li# (indexBigNat# bn li#
- `or#` bitWord# bi#))
- unsafeFreezeBigNat# mbn
-
- where
- !(# li#, bi# #) = quotRemInt# i# GMP_LIMB_BITS#
- nx# = sizeofBigNat# bn
- d# = li# +# 1# -# nx#
-
-
-complementBitBigNat :: BigNat -> Int# -> BigNat
-complementBitBigNat bn i#
- | testBitBigNat bn i# = clearBitBigNat bn i#
- | True = setBitBigNat bn i#
-
-popCountBigNat :: BigNat -> Int#
-popCountBigNat bn@(BN# ba#) = word2Int# (c_mpn_popcount ba# (sizeofBigNat# bn))
-
-
-shiftLBigNat :: BigNat -> Int# -> BigNat
-shiftLBigNat x 0# = x
-shiftLBigNat x _ | isZeroBigNat x = zeroBigNat
-shiftLBigNat x@(BN# xba#) n# = runS $ do
- ymbn@(MBN# ymba#) <- newBigNat# yn#
- W# ymsl <- liftIO (c_mpn_lshift ymba# xba# xn# (int2Word# n#))
- case ymsl of
- 0## -> unsafeShrinkFreezeBigNat# ymbn (yn# -# 1#)
- _ -> unsafeFreezeBigNat# ymbn
- where
- xn# = sizeofBigNat# x
- yn# = xn# +# nlimbs# +# (nbits# /=# 0#)
- !(# nlimbs#, nbits# #) = quotRemInt# n# GMP_LIMB_BITS#
-
-
-
-shiftRBigNat :: BigNat -> Int# -> BigNat
-shiftRBigNat x 0# = x
-shiftRBigNat x _ | isZeroBigNat x = zeroBigNat
-shiftRBigNat x@(BN# xba#) n#
- | isTrue# (nlimbs# >=# xn#) = zeroBigNat
- | True = runS $ do
- ymbn@(MBN# ymba#) <- newBigNat# yn#
- W# ymsl <- liftIO (c_mpn_rshift ymba# xba# xn# (int2Word# n#))
- case ymsl of
- 0## -> unsafeRenormFreezeBigNat# ymbn -- may shrink more than one
- _ -> unsafeFreezeBigNat# ymbn
- where
- xn# = sizeofBigNat# x
- yn# = xn# -# nlimbs#
- nlimbs# = quotInt# n# GMP_LIMB_BITS#
-
-shiftRNegBigNat :: BigNat -> Int# -> BigNat
-shiftRNegBigNat x 0# = x
-shiftRNegBigNat x _ | isZeroBigNat x = zeroBigNat
-shiftRNegBigNat x@(BN# xba#) n#
- | isTrue# (nlimbs# >=# xn#) = zeroBigNat
- | True = runS $ do
- ymbn@(MBN# ymba#) <- newBigNat# yn#
- W# ymsl <- liftIO (c_mpn_rshift_2c ymba# xba# xn# (int2Word# n#))
- case ymsl of
- 0## -> unsafeRenormFreezeBigNat# ymbn -- may shrink more than one
- _ -> unsafeFreezeBigNat# ymbn
- where
- xn# = sizeofBigNat# x
- yn# = xn# -# nlimbs#
- nlimbs# = quotInt# (n# -# 1#) GMP_LIMB_BITS#
-
-
-orBigNat :: BigNat -> BigNat -> BigNat
-orBigNat x@(BN# x#) y@(BN# y#)
- | isZeroBigNat x = y
- | isZeroBigNat y = x
- | isTrue# (nx# >=# ny#) = runS (ior' x# nx# y# ny#)
- | True = runS (ior' y# ny# x# nx#)
- where
- ior' a# na# b# nb# = do -- na >= nb
- mbn@(MBN# mba#) <- newBigNat# na#
- _ <- liftIO (c_mpn_ior_n mba# a# b# nb#)
- _ <- case isTrue# (na# ==# nb#) of
- False -> svoid (copyWordArray# a# nb# mba# nb# (na# -# nb#))
- True -> return ()
- unsafeFreezeBigNat# mbn
-
- nx# = sizeofBigNat# x
- ny# = sizeofBigNat# y
-
-
-xorBigNat :: BigNat -> BigNat -> BigNat
-xorBigNat x@(BN# x#) y@(BN# y#)
- | isZeroBigNat x = y
- | isZeroBigNat y = x
- | isTrue# (nx# >=# ny#) = runS (xor' x# nx# y# ny#)
- | True = runS (xor' y# ny# x# nx#)
- where
- xor' a# na# b# nb# = do -- na >= nb
- mbn@(MBN# mba#) <- newBigNat# na#
- _ <- liftIO (c_mpn_xor_n mba# a# b# nb#)
- case isTrue# (na# ==# nb#) of
- False -> do _ <- svoid (copyWordArray# a# nb# mba# nb# (na# -# nb#))
- unsafeFreezeBigNat# mbn
- True -> unsafeRenormFreezeBigNat# mbn
-
- nx# = sizeofBigNat# x
- ny# = sizeofBigNat# y
-
--- | aka @\x y -> x .&. (complement y)@
-andnBigNat :: BigNat -> BigNat -> BigNat
-andnBigNat x@(BN# x#) y@(BN# y#)
- | isZeroBigNat x = zeroBigNat
- | isZeroBigNat y = x
- | True = runS $ do
- mbn@(MBN# mba#) <- newBigNat# nx#
- _ <- liftIO (c_mpn_andn_n mba# x# y# n#)
- _ <- case isTrue# (nx# ==# n#) of
- False -> svoid (copyWordArray# x# n# mba# n# (nx# -# n#))
- True -> return ()
- unsafeRenormFreezeBigNat# mbn
- where
- n# | isTrue# (nx# <# ny#) = nx#
- | True = ny#
- nx# = sizeofBigNat# x
- ny# = sizeofBigNat# y
-
-
-andBigNat :: BigNat -> BigNat -> BigNat
-andBigNat x@(BN# x#) y@(BN# y#)
- | isZeroBigNat x = zeroBigNat
- | isZeroBigNat y = zeroBigNat
- | True = runS $ do
- mbn@(MBN# mba#) <- newBigNat# n#
- _ <- liftIO (c_mpn_and_n mba# x# y# n#)
- unsafeRenormFreezeBigNat# mbn
- where
- n# | isTrue# (nx# <# ny#) = nx#
- | True = ny#
- nx# = sizeofBigNat# x
- ny# = sizeofBigNat# y
-
--- | If divisor is zero, @(\# 'nullBigNat', 'nullBigNat' \#)@ is returned
-quotRemBigNat :: BigNat -> BigNat -> (# BigNat,BigNat #)
-quotRemBigNat n@(BN# nba#) d@(BN# dba#)
- | isZeroBigNat d = (# nullBigNat, nullBigNat #)
- | eqBigNatWord d 1## = (# n, zeroBigNat #)
- | n < d = (# zeroBigNat, n #)
- | True = case runS go of (!q,!r) -> (# q, r #)
- where
- nn# = sizeofBigNat# n
- dn# = sizeofBigNat# d
- qn# = 1# +# nn# -# dn#
- rn# = dn#
-
- go = do
- qmbn@(MBN# qmba#) <- newBigNat# qn#
- rmbn@(MBN# rmba#) <- newBigNat# rn#
-
- _ <- liftIO (c_mpn_tdiv_qr qmba# rmba# 0# nba# nn# dba# dn#)
-
- q <- unsafeRenormFreezeBigNat# qmbn
- r <- unsafeRenormFreezeBigNat# rmbn
- return (q, r)
-
-quotBigNat :: BigNat -> BigNat -> BigNat
-quotBigNat n@(BN# nba#) d@(BN# dba#)
- | isZeroBigNat d = nullBigNat
- | eqBigNatWord d 1## = n
- | n < d = zeroBigNat
- | True = runS $ do
- let nn# = sizeofBigNat# n
- let dn# = sizeofBigNat# d
- let qn# = 1# +# nn# -# dn#
- qmbn@(MBN# qmba#) <- newBigNat# qn#
- _ <- liftIO (c_mpn_tdiv_q qmba# nba# nn# dba# dn#)
- unsafeRenormFreezeBigNat# qmbn
-
-remBigNat :: BigNat -> BigNat -> BigNat
-remBigNat n@(BN# nba#) d@(BN# dba#)
- | isZeroBigNat d = nullBigNat
- | eqBigNatWord d 1## = zeroBigNat
- | n < d = n
- | True = runS $ do
- let nn# = sizeofBigNat# n
- let dn# = sizeofBigNat# d
- rmbn@(MBN# rmba#) <- newBigNat# dn#
- _ <- liftIO (c_mpn_tdiv_r rmba# nba# nn# dba# dn#)
- unsafeRenormFreezeBigNat# rmbn
-
--- | Note: Result of div/0 undefined
-quotRemBigNatWord :: BigNat -> GmpLimb# -> (# BigNat, GmpLimb# #)
-quotRemBigNatWord !_ 0## = (# nullBigNat, 0## #)
-quotRemBigNatWord n 1## = (# n, 0## #)
-quotRemBigNatWord n@(BN# nba#) d# = case compareBigNatWord n d# of
- LT -> (# zeroBigNat, bigNatToWord n #)
- EQ -> (# oneBigNat, 0## #)
- GT -> case runS go of (!q,!(W# r#)) -> (# q, r# #) -- TODO: handle word/word
- where
- go = do
- let nn# = sizeofBigNat# n
- qmbn@(MBN# qmba#) <- newBigNat# nn#
- r <- liftIO (c_mpn_divrem_1 qmba# 0# nba# nn# d#)
- q <- unsafeRenormFreezeBigNat# qmbn
- return (q,r)
-
-quotBigNatWord :: BigNat -> GmpLimb# -> BigNat
-quotBigNatWord n d# = case inline quotRemBigNatWord n d# of (# q, _ #) -> q
-
--- | div/0 not checked
-remBigNatWord :: BigNat -> GmpLimb# -> Word#
-remBigNatWord n@(BN# nba#) d# = c_mpn_mod_1 nba# (sizeofBigNat# n) d#
-
-gcdBigNatWord :: BigNat -> Word# -> Word#
-gcdBigNatWord bn@(BN# ba#) = c_mpn_gcd_1# ba# (sizeofBigNat# bn)
-
-gcdBigNat :: BigNat -> BigNat -> BigNat
-gcdBigNat x@(BN# x#) y@(BN# y#)
- | isZeroBigNat x = y
- | isZeroBigNat y = x
- | isTrue# (nx# >=# ny#) = runS (gcd' x# nx# y# ny#)
- | True = runS (gcd' y# ny# x# nx#)
- where
- gcd' a# na# b# nb# = do -- na >= nb
- mbn@(MBN# mba#) <- newBigNat# nb#
- I# rn'# <- liftIO (c_mpn_gcd# mba# a# na# b# nb#)
- let rn# = narrowGmpSize# rn'#
- case isTrue# (rn# ==# nb#) of
- False -> unsafeShrinkFreezeBigNat# mbn rn#
- True -> unsafeFreezeBigNat# mbn
-
- nx# = sizeofBigNat# x
- ny# = sizeofBigNat# y
-
--- | Extended euclidean algorithm.
---
--- For @/a/@ and @/b/@, compute their greatest common divisor @/g/@
--- and the coefficient @/s/@ satisfying @/a//s/ + /b//t/ = /g/@.
---
--- @since 0.5.1.0
-{-# NOINLINE gcdExtInteger #-}
-gcdExtInteger :: Integer -> Integer -> (# Integer, Integer #)
-gcdExtInteger a b = case gcdExtSBigNat a' b' of
- (# g, s #) -> let !g' = bigNatToInteger g
- !s' = sBigNatToInteger s
- in (# g', s' #)
- where
- a' = integerToSBigNat a
- b' = integerToSBigNat b
-
--- internal helper
-gcdExtSBigNat :: SBigNat -> SBigNat -> (# BigNat, SBigNat #)
-gcdExtSBigNat x y = case runS go of (g,s) -> (# g, s #)
- where
- go = do
- g@(MBN# g#) <- newBigNat# gn0#
- -- According to https://gmplib.org/manual/Number-Theoretic-Functions.html#index-mpz_005fgcdext
- -- abs(s) < abs(y) / (2 g)
- s@(MBN# s#) <- newBigNat# (absI# yn#)
- I# ssn_# <- liftIO (integer_gmp_gcdext# s# g# x# xn# y# yn#)
- let ssn# = narrowGmpSize# ssn_#
- sn# = absI# ssn#
- s' <- unsafeShrinkFreezeBigNat# s sn#
- g' <- unsafeRenormFreezeBigNat# g
- case isTrue# (ssn# >=# 0#) of
- False -> return ( g', NegBN s' )
- True -> return ( g', PosBN s' )
-
- !(BN# x#) = absSBigNat x
- !(BN# y#) = absSBigNat y
- xn# = ssizeofSBigNat# x
- yn# = ssizeofSBigNat# y
-
- gn0# = minI# (absI# xn#) (absI# yn#)
-
-----------------------------------------------------------------------------
--- modular exponentiation
-
--- | \"@'powModInteger' /b/ /e/ /m/@\" computes base @/b/@ raised to
--- exponent @/e/@ modulo @abs(/m/)@.
---
--- Negative exponents are supported if an inverse modulo @/m/@
--- exists.
---
--- __Warning__: It's advised to avoid calling this primitive with
--- negative exponents unless it is guaranteed the inverse exists, as
--- failure to do so will likely cause program abortion due to a
--- divide-by-zero fault. See also 'recipModInteger'.
---
--- Future versions of @integer_gmp@ may not support negative @/e/@
--- values anymore.
---
--- @since 0.5.1.0
-{-# NOINLINE powModInteger #-}
-powModInteger :: Integer -> Integer -> Integer -> Integer
-powModInteger (S# b#) (S# e#) (S# m#)
- | isTrue# (b# >=# 0#), isTrue# (e# >=# 0#)
- = wordToInteger (powModWord (int2Word# b#) (int2Word# e#)
- (int2Word# (absI# m#)))
-powModInteger b e m = case m of
- (S# m#) -> wordToInteger (powModSBigNatWord b' e' (int2Word# (absI# m#)))
- (Jp# m') -> bigNatToInteger (powModSBigNat b' e' m')
- (Jn# m') -> bigNatToInteger (powModSBigNat b' e' m')
- where
- b' = integerToSBigNat b
- e' = integerToSBigNat e
-
--- | \"@'powModSecInteger' /b/ /e/ /m/@\" computes base @/b/@ raised to
--- exponent @/e/@ modulo @/m/@. It is required that @/e/ >= 0@ and
--- @/m/@ is odd.
---
--- This is a \"secure\" variant of 'powModInteger' using the
--- @mpz_powm_sec()@ function which is designed to be resilient to side
--- channel attacks and is therefore intended for cryptographic
--- applications.
---
--- This primitive is only available when the underlying GMP library
--- supports it (GMP >= 5). Otherwise, it internally falls back to
--- @'powModInteger'@, and a warning will be emitted when used.
---
--- @since 1.0.2.0
-{-# NOINLINE powModSecInteger #-}
-powModSecInteger :: Integer -> Integer -> Integer -> Integer
-powModSecInteger b e m = bigNatToInteger (powModSecSBigNat b' e' m')
- where
- b' = integerToSBigNat b
- e' = integerToSBigNat e
- m' = absSBigNat (integerToSBigNat m)
-
-#if HAVE_SECURE_POWM == 0
-{-# WARNING powModSecInteger "The underlying GMP library does not support a secure version of powModInteger which is side-channel resistant - you need at least GMP version 5 to support this" #-}
-#endif
-
--- | Version of 'powModInteger' operating on 'BigNat's
---
--- @since 1.0.0.0
-powModBigNat :: BigNat -> BigNat -> BigNat -> BigNat
-powModBigNat b e m = inline powModSBigNat (PosBN b) (PosBN e) m
-
--- | Version of 'powModInteger' for 'Word#'-sized moduli
---
--- @since 1.0.0.0
-powModBigNatWord :: BigNat -> BigNat -> GmpLimb# -> GmpLimb#
-powModBigNatWord b e m# = inline powModSBigNatWord (PosBN b) (PosBN e) m#
-
--- | Version of 'powModInteger' operating on 'Word#'s
---
--- @since 1.0.0.0
-foreign import ccall unsafe "integer_gmp_powm_word"
- powModWord :: GmpLimb# -> GmpLimb# -> GmpLimb# -> GmpLimb#
-
--- internal non-exported helper
-powModSBigNat :: SBigNat -> SBigNat -> BigNat -> BigNat
-powModSBigNat b e m@(BN# m#) = runS $ do
- r@(MBN# r#) <- newBigNat# mn#
- I# rn_# <- liftIO (integer_gmp_powm# r# b# bn# e# en# m# mn#)
- let rn# = narrowGmpSize# rn_#
- case isTrue# (rn# ==# mn#) of
- False -> unsafeShrinkFreezeBigNat# r rn#
- True -> unsafeFreezeBigNat# r
- where
- !(BN# b#) = absSBigNat b
- !(BN# e#) = absSBigNat e
- bn# = ssizeofSBigNat# b
- en# = ssizeofSBigNat# e
- mn# = sizeofBigNat# m
-
-foreign import ccall unsafe "integer_gmp_powm"
- integer_gmp_powm# :: MutableByteArray# RealWorld
- -> ByteArray# -> GmpSize# -> ByteArray# -> GmpSize#
- -> ByteArray# -> GmpSize# -> IO GmpSize
-
--- internal non-exported helper
-powModSBigNatWord :: SBigNat -> SBigNat -> GmpLimb# -> GmpLimb#
-powModSBigNatWord b e m# = integer_gmp_powm1# b# bn# e# en# m#
- where
- !(BN# b#) = absSBigNat b
- !(BN# e#) = absSBigNat e
- bn# = ssizeofSBigNat# b
- en# = ssizeofSBigNat# e
-
-foreign import ccall unsafe "integer_gmp_powm1"
- integer_gmp_powm1# :: ByteArray# -> GmpSize# -> ByteArray# -> GmpSize#
- -> GmpLimb# -> GmpLimb#
-
--- internal non-exported helper
-powModSecSBigNat :: SBigNat -> SBigNat -> BigNat -> BigNat
-powModSecSBigNat b e m@(BN# m#) = runS $ do
- r@(MBN# r#) <- newBigNat# mn#
- I# rn_# <- liftIO (integer_gmp_powm_sec# r# b# bn# e# en# m# mn#)
- let rn# = narrowGmpSize# rn_#
- case isTrue# (rn# ==# mn#) of
- False -> unsafeShrinkFreezeBigNat# r rn#
- True -> unsafeFreezeBigNat# r
- where
- !(BN# b#) = absSBigNat b
- !(BN# e#) = absSBigNat e
- bn# = ssizeofSBigNat# b
- en# = ssizeofSBigNat# e
- mn# = sizeofBigNat# m
-
-foreign import ccall unsafe "integer_gmp_powm_sec"
- integer_gmp_powm_sec# :: MutableByteArray# RealWorld
- -> ByteArray# -> GmpSize# -> ByteArray# -> GmpSize#
- -> ByteArray# -> GmpSize# -> IO GmpSize
-
-
--- | \"@'recipModInteger' /x/ /m/@\" computes the inverse of @/x/@ modulo @/m/@. If
--- the inverse exists, the return value @/y/@ will satisfy @0 < /y/ <
--- abs(/m/)@, otherwise the result is @0@.
---
--- @since 0.5.1.0
-{-# NOINLINE recipModInteger #-}
-recipModInteger :: Integer -> Integer -> Integer
-recipModInteger (S# x#) (S# m#)
- | isTrue# (x# >=# 0#)
- = wordToInteger (recipModWord (int2Word# x#) (int2Word# (absI# m#)))
-recipModInteger x m = bigNatToInteger (recipModSBigNat x' m')
- where
- x' = integerToSBigNat x
- m' = absSBigNat (integerToSBigNat m)
-
--- | Version of 'recipModInteger' operating on 'BigNat's
---
--- @since 1.0.0.0
-recipModBigNat :: BigNat -> BigNat -> BigNat
-recipModBigNat x m = inline recipModSBigNat (PosBN x) m
-
--- | Version of 'recipModInteger' operating on 'Word#'s
---
--- @since 1.0.0.0
-foreign import ccall unsafe "integer_gmp_invert_word"
- recipModWord :: GmpLimb# -> GmpLimb# -> GmpLimb#
-
--- internal non-exported helper
-recipModSBigNat :: SBigNat -> BigNat -> BigNat
-recipModSBigNat x m@(BN# m#) = runS $ do
- r@(MBN# r#) <- newBigNat# mn#
- I# rn_# <- liftIO (integer_gmp_invert# r# x# xn# m# mn#)
- let rn# = narrowGmpSize# rn_#
- case isTrue# (rn# ==# mn#) of
- False -> unsafeShrinkFreezeBigNat# r rn#
- True -> unsafeFreezeBigNat# r
- where
- !(BN# x#) = absSBigNat x
- xn# = ssizeofSBigNat# x
- mn# = sizeofBigNat# m
-
-foreign import ccall unsafe "integer_gmp_invert"
- integer_gmp_invert# :: MutableByteArray# RealWorld
- -> ByteArray# -> GmpSize#
- -> ByteArray# -> GmpSize# -> IO GmpSize
-
-----------------------------------------------------------------------------
--- Conversions to/from floating point
-
-decodeDoubleInteger :: Double# -> (# Integer, Int# #)
--- decodeDoubleInteger 0.0## = (# S# 0#, 0# #)
-#if WORD_SIZE_IN_BITS == 64
-decodeDoubleInteger x = case decodeDouble_Int64# x of
- (# m#, e# #) -> (# S# m#, e# #)
-#elif WORD_SIZE_IN_BITS == 32
-decodeDoubleInteger x = case decodeDouble_Int64# x of
- (# m#, e# #) -> (# int64ToInteger m#, e# #)
-#endif
-{-# CONSTANT_FOLDED decodeDoubleInteger #-}
-
--- provided by GHC's RTS
-foreign import ccall unsafe "__int_encodeDouble"
- int_encodeDouble# :: Int# -> Int# -> Double#
-
-encodeDoubleInteger :: Integer -> Int# -> Double#
-encodeDoubleInteger (S# m#) 0# = int2Double# m#
-encodeDoubleInteger (S# m#) e# = int_encodeDouble# m# e#
-encodeDoubleInteger (Jp# bn@(BN# bn#)) e#
- = c_mpn_get_d bn# (sizeofBigNat# bn) e#
-encodeDoubleInteger (Jn# bn@(BN# bn#)) e#
- = c_mpn_get_d bn# (negateInt# (sizeofBigNat# bn)) e#
-{-# CONSTANT_FOLDED encodeDoubleInteger #-}
-
--- double integer_gmp_mpn_get_d (const mp_limb_t sp[], const mp_size_t sn)
-foreign import ccall unsafe "integer_gmp_mpn_get_d"
- c_mpn_get_d :: ByteArray# -> GmpSize# -> Int# -> Double#
-
-doubleFromInteger :: Integer -> Double#
-doubleFromInteger (S# m#) = int2Double# m#
-doubleFromInteger (Jp# bn@(BN# bn#))
- = c_mpn_get_d bn# (sizeofBigNat# bn) 0#
-doubleFromInteger (Jn# bn@(BN# bn#))
- = c_mpn_get_d bn# (negateInt# (sizeofBigNat# bn)) 0#
-{-# CONSTANT_FOLDED doubleFromInteger #-}
-
--- TODO: Not sure if it's worth to write 'Float' optimized versions here
-floatFromInteger :: Integer -> Float#
-floatFromInteger i = double2Float# (doubleFromInteger i)
-
-encodeFloatInteger :: Integer -> Int# -> Float#
-encodeFloatInteger m e = double2Float# (encodeDoubleInteger m e)
-
-----------------------------------------------------------------------------
--- FFI ccall imports
-
-foreign import ccall unsafe "integer_gmp_gcd_word"
- gcdWord# :: GmpLimb# -> GmpLimb# -> GmpLimb#
-
-foreign import ccall unsafe "integer_gmp_mpn_gcd_1"
- c_mpn_gcd_1# :: ByteArray# -> GmpSize# -> GmpLimb# -> GmpLimb#
-
-foreign import ccall unsafe "integer_gmp_mpn_gcd"
- c_mpn_gcd# :: MutableByteArray# s -> ByteArray# -> GmpSize#
- -> ByteArray# -> GmpSize# -> IO GmpSize
-
-foreign import ccall unsafe "integer_gmp_gcdext"
- integer_gmp_gcdext# :: MutableByteArray# s -> MutableByteArray# s
- -> ByteArray# -> GmpSize#
- -> ByteArray# -> GmpSize# -> IO GmpSize
-
--- mp_limb_t mpn_add_1 (mp_limb_t *rp, const mp_limb_t *s1p, mp_size_t n,
--- mp_limb_t s2limb)
-foreign import ccall unsafe "gmp.h __gmpn_add_1"
- c_mpn_add_1 :: MutableByteArray# s -> ByteArray# -> GmpSize# -> GmpLimb#
- -> IO GmpLimb
-
--- mp_limb_t mpn_sub_1 (mp_limb_t *rp, const mp_limb_t *s1p, mp_size_t n,
--- mp_limb_t s2limb)
-foreign import ccall unsafe "gmp.h __gmpn_sub_1"
- c_mpn_sub_1 :: MutableByteArray# s -> ByteArray# -> GmpSize# -> GmpLimb#
- -> IO GmpLimb
-
--- mp_limb_t mpn_mul_1 (mp_limb_t *rp, const mp_limb_t *s1p, mp_size_t n,
--- mp_limb_t s2limb)
-foreign import ccall unsafe "gmp.h __gmpn_mul_1"
- c_mpn_mul_1 :: MutableByteArray# s -> ByteArray# -> GmpSize# -> GmpLimb#
- -> IO GmpLimb
-
--- mp_limb_t mpn_add (mp_limb_t *rp, const mp_limb_t *s1p, mp_size_t s1n,
--- const mp_limb_t *s2p, mp_size_t s2n)
-foreign import ccall unsafe "gmp.h __gmpn_add"
- c_mpn_add :: MutableByteArray# s -> ByteArray# -> GmpSize#
- -> ByteArray# -> GmpSize# -> IO GmpLimb
-
--- mp_limb_t mpn_sub (mp_limb_t *rp, const mp_limb_t *s1p, mp_size_t s1n,
--- const mp_limb_t *s2p, mp_size_t s2n)
-foreign import ccall unsafe "gmp.h __gmpn_sub"
- c_mpn_sub :: MutableByteArray# s -> ByteArray# -> GmpSize# -> ByteArray#
- -> GmpSize# -> IO GmpLimb
-
--- mp_limb_t mpn_mul (mp_limb_t *rp, const mp_limb_t *s1p, mp_size_t s1n,
--- const mp_limb_t *s2p, mp_size_t s2n)
-foreign import ccall unsafe "gmp.h __gmpn_mul"
- c_mpn_mul :: MutableByteArray# s -> ByteArray# -> GmpSize# -> ByteArray#
- -> GmpSize# -> IO GmpLimb
-
--- int mpn_cmp (const mp_limb_t *s1p, const mp_limb_t *s2p, mp_size_t n)
-foreign import ccall unsafe "gmp.h __gmpn_cmp"
- c_mpn_cmp :: ByteArray# -> ByteArray# -> GmpSize# -> CInt#
-
--- void mpn_tdiv_qr (mp_limb_t *qp, mp_limb_t *rp, mp_size_t qxn,
--- const mp_limb_t *np, mp_size_t nn,
--- const mp_limb_t *dp, mp_size_t dn)
-foreign import ccall unsafe "gmp.h __gmpn_tdiv_qr"
- c_mpn_tdiv_qr :: MutableByteArray# s -> MutableByteArray# s -> GmpSize#
- -> ByteArray# -> GmpSize# -> ByteArray# -> GmpSize# -> IO ()
-
-foreign import ccall unsafe "integer_gmp_mpn_tdiv_q"
- c_mpn_tdiv_q :: MutableByteArray# s -> ByteArray# -> GmpSize# -> ByteArray#
- -> GmpSize# -> IO ()
-
-foreign import ccall unsafe "integer_gmp_mpn_tdiv_r"
- c_mpn_tdiv_r :: MutableByteArray# s -> ByteArray# -> GmpSize# -> ByteArray#
- -> GmpSize# -> IO ()
-
--- mp_limb_t mpn_divrem_1 (mp_limb_t *r1p, mp_size_t qxn, mp_limb_t *s2p,
--- mp_size_t s2n, mp_limb_t s3limb)
-foreign import ccall unsafe "gmp.h __gmpn_divrem_1"
- c_mpn_divrem_1 :: MutableByteArray# s -> GmpSize# -> ByteArray# -> GmpSize#
- -> GmpLimb# -> IO GmpLimb
-
--- mp_limb_t mpn_mod_1 (const mp_limb_t *s1p, mp_size_t s1n, mp_limb_t s2limb)
-foreign import ccall unsafe "gmp.h __gmpn_mod_1"
- c_mpn_mod_1 :: ByteArray# -> GmpSize# -> GmpLimb# -> GmpLimb#
-
--- mp_limb_t integer_gmp_mpn_rshift (mp_limb_t rp[], const mp_limb_t sp[],
--- mp_size_t sn, mp_bitcnt_t count)
-foreign import ccall unsafe "integer_gmp_mpn_rshift"
- c_mpn_rshift :: MutableByteArray# s -> ByteArray# -> GmpSize# -> GmpBitCnt#
- -> IO GmpLimb
-
--- mp_limb_t integer_gmp_mpn_rshift (mp_limb_t rp[], const mp_limb_t sp[],
--- mp_size_t sn, mp_bitcnt_t count)
-foreign import ccall unsafe "integer_gmp_mpn_rshift_2c"
- c_mpn_rshift_2c :: MutableByteArray# s -> ByteArray# -> GmpSize# -> GmpBitCnt#
- -> IO GmpLimb
-
--- mp_limb_t integer_gmp_mpn_lshift (mp_limb_t rp[], const mp_limb_t sp[],
--- mp_size_t sn, mp_bitcnt_t count)
-foreign import ccall unsafe "integer_gmp_mpn_lshift"
- c_mpn_lshift :: MutableByteArray# s -> ByteArray# -> GmpSize# -> GmpBitCnt#
- -> IO GmpLimb
-
--- void mpn_and_n (mp_limb_t *rp, const mp_limb_t *s1p, const mp_limb_t *s2p,
--- mp_size_t n)
-foreign import ccall unsafe "integer_gmp_mpn_and_n"
- c_mpn_and_n :: MutableByteArray# s -> ByteArray# -> ByteArray# -> GmpSize#
- -> IO ()
-
--- void mpn_andn_n (mp_limb_t *rp, const mp_limb_t *s1p, const mp_limb_t *s2p,
--- mp_size_t n)
-foreign import ccall unsafe "integer_gmp_mpn_andn_n"
- c_mpn_andn_n :: MutableByteArray# s -> ByteArray# -> ByteArray# -> GmpSize#
- -> IO ()
-
--- void mpn_ior_n (mp_limb_t *rp, const mp_limb_t *s1p, const mp_limb_t *s2p,
--- mp_size_t n)
-foreign import ccall unsafe "integer_gmp_mpn_ior_n"
- c_mpn_ior_n :: MutableByteArray# s -> ByteArray# -> ByteArray# -> GmpSize#
- -> IO ()
-
--- void mpn_xor_n (mp_limb_t *rp, const mp_limb_t *s1p, const mp_limb_t *s2p,
--- mp_size_t n)
-foreign import ccall unsafe "integer_gmp_mpn_xor_n"
- c_mpn_xor_n :: MutableByteArray# s -> ByteArray# -> ByteArray# -> GmpSize#
- -> IO ()
-
--- mp_bitcnt_t mpn_popcount (const mp_limb_t *s1p, mp_size_t n)
-foreign import ccall unsafe "gmp.h __gmpn_popcount"
- c_mpn_popcount :: ByteArray# -> GmpSize# -> GmpBitCnt#
-
-----------------------------------------------------------------------------
--- BigNat-wrapped ByteArray#-primops
-
--- | Return number of limbs contained in 'BigNat'.
---
--- The result is always @>= 1@ since even zero is encoded with 1 limb.
-sizeofBigNat# :: BigNat -> GmpSize#
-sizeofBigNat# (BN# x#)
- = sizeofByteArray# x# `uncheckedIShiftRL#` GMP_LIMB_SHIFT#
-
-data MutBigNat s = MBN# !(MutableByteArray# s)
-
-getSizeofMutBigNat# :: MutBigNat s -> State# s -> (# State# s, GmpSize# #)
---getSizeofMutBigNat# :: MutBigNat s -> S s GmpSize#
-getSizeofMutBigNat# (MBN# x#) s =
- case getSizeofMutableByteArray# x# s of
- (# s', n# #) -> (# s', n# `uncheckedIShiftRL#` GMP_LIMB_SHIFT# #)
-
-newBigNat# :: GmpSize# -> S s (MutBigNat s)
-newBigNat# limbs# s =
- case newByteArray# (limbs# `uncheckedIShiftL#` GMP_LIMB_SHIFT#) s of
- (# s', mba# #) -> (# s', MBN# mba# #)
-
-writeBigNat# :: MutBigNat s -> GmpSize# -> GmpLimb# -> State# s -> State# s
-writeBigNat# (MBN# mba#) = writeWordArray# mba#
-
--- | Extract /n/-th (0-based) limb in 'BigNat'.
--- /n/ must be less than size as reported by 'sizeofBigNat#'.
-indexBigNat# :: BigNat -> GmpSize# -> GmpLimb#
-indexBigNat# (BN# ba#) = indexWordArray# ba#
-
-unsafeFreezeBigNat# :: MutBigNat s -> S s BigNat
-unsafeFreezeBigNat# (MBN# mba#) s = case unsafeFreezeByteArray# mba# s of
- (# s', ba# #) -> (# s', BN# ba# #)
-
-resizeMutBigNat# :: MutBigNat s -> GmpSize# -> S s (MutBigNat s)
-resizeMutBigNat# (MBN# mba0#) nsz# s
- | isTrue# (bsz# ==# n#) = (# s', MBN# mba0# #)
- | True =
- case resizeMutableByteArray# mba0# bsz# s' of
- (# s'', mba# #) -> (# s'', MBN# mba# #)
- where
- bsz# = nsz# `uncheckedIShiftL#` GMP_LIMB_SHIFT#
- !(# s', n# #) = getSizeofMutableByteArray# mba0# s
-
-shrinkMutBigNat# :: MutBigNat s -> GmpSize# -> State# s -> State# s
-shrinkMutBigNat# (MBN# mba0#) nsz# s
- | isTrue# (bsz# ==# n#) = s' -- no-op
- | True = shrinkMutableByteArray# mba0# bsz# s'
- where
- bsz# = nsz# `uncheckedIShiftL#` GMP_LIMB_SHIFT#
- !(# s', n# #) = getSizeofMutableByteArray# mba0# s
-
-unsafeSnocFreezeBigNat# :: MutBigNat s -> GmpLimb# -> S s BigNat
-unsafeSnocFreezeBigNat# mbn0@(MBN# mba0#) limb# s = go s'
- where
- n# = nb0# `uncheckedIShiftRL#` GMP_LIMB_SHIFT#
- !(# s', nb0# #) = getSizeofMutableByteArray# mba0# s
- go = do
- (MBN# mba#) <- resizeMutBigNat# mbn0 (n# +# 1#)
- _ <- svoid (writeWordArray# mba# n# limb#)
- unsafeFreezeBigNat# (MBN# mba#)
-
--- | May shrink underlying 'ByteArray#' if needed to satisfy BigNat invariant
-unsafeRenormFreezeBigNat# :: MutBigNat s -> S s BigNat
-unsafeRenormFreezeBigNat# mbn s
- | isTrue# (n0# ==# 0#) = (# s'', nullBigNat #)
- | isTrue# (n# ==# 0#) = (# s'', zeroBigNat #)
- | isTrue# (n# ==# n0#) = (unsafeFreezeBigNat# mbn) s''
- | True = (unsafeShrinkFreezeBigNat# mbn n#) s''
- where
- !(# s', n0# #) = getSizeofMutBigNat# mbn s
- !(# s'', n# #) = normSizeofMutBigNat'# mbn n0# s'
-
--- | Shrink MBN
-unsafeShrinkFreezeBigNat# :: MutBigNat s -> GmpSize# -> S s BigNat
-unsafeShrinkFreezeBigNat# x@(MBN# xmba) 1#
- = \s -> case readWordArray# xmba 0# s of
- (# s', w# #) -> freezeOneLimb w# s'
- where
- freezeOneLimb 0## = return zeroBigNat
- freezeOneLimb 1## = return oneBigNat
- freezeOneLimb w# | isTrue# (not# w# `eqWord#` 0##) = return czeroBigNat
- freezeOneLimb _ = do
- _ <- svoid (shrinkMutBigNat# x 1#)
- unsafeFreezeBigNat# x
-unsafeShrinkFreezeBigNat# x y# = do
- _ <- svoid (shrinkMutBigNat# x y#)
- unsafeFreezeBigNat# x
-
-
-copyWordArray# :: ByteArray# -> Int# -> MutableByteArray# s -> Int# -> Int#
- -> State# s -> State# s
-copyWordArray# src src_ofs dst dst_ofs len
- = copyByteArray# src (src_ofs `uncheckedIShiftL#` GMP_LIMB_SHIFT#)
- dst (dst_ofs `uncheckedIShiftL#` GMP_LIMB_SHIFT#)
- (len `uncheckedIShiftL#` GMP_LIMB_SHIFT#)
-
-copyWordArray :: BigNat -> Int# -> MutBigNat s -> Int# -> Int# -> S s ()
-copyWordArray (BN# ba#) ofs_ba# (MBN# mba#) ofs_mba# len#
- = svoid (copyWordArray# ba# ofs_ba# mba# ofs_mba# len#)
-
-clearWordArray# :: MutableByteArray# s -> Int# -> Int# -> State# s -> State# s
-clearWordArray# mba ofs len
- = setByteArray# mba (ofs `uncheckedIShiftL#` GMP_LIMB_SHIFT#)
- (len `uncheckedIShiftL#` GMP_LIMB_SHIFT#) 0#
-
--- | Version of 'normSizeofMutBigNat'#' which scans all allocated 'MutBigNat#'
-normSizeofMutBigNat# :: MutBigNat s -> State# s -> (# State# s, Int# #)
-normSizeofMutBigNat# mbn@(MBN# mba) s = normSizeofMutBigNat'# mbn sz# s'
- where
- !(# s', n# #) = getSizeofMutableByteArray# mba s
- sz# = n# `uncheckedIShiftRA#` GMP_LIMB_SHIFT#
-
--- | Find most-significant non-zero limb and return its index-position
--- plus one. Start scanning downward from the initial limb-size
--- (i.e. start-index plus one) given as second argument.
---
--- NB: The 'normSizeofMutBigNat' of 'zeroBigNat' would be @0#@
-normSizeofMutBigNat'# :: MutBigNat s -> GmpSize#
- -> State# s -> (# State# s, GmpSize# #)
-normSizeofMutBigNat'# (MBN# mba) = go
- where
- go 0# s = (# s, 0# #)
- go i0# s = case readWordArray# mba (i0# -# 1#) s of
- (# s', 0## #) -> go (i0# -# 1#) s'
- (# s', _ #) -> (# s', i0# #)
-
--- | Construct 'BigNat' from existing 'ByteArray#' containing /n/
--- 'GmpLimb's in least-significant-first order.
---
--- If possible 'ByteArray#', will be used directly (i.e. shared
--- /without/ cloning the 'ByteArray#' into a newly allocated one)
---
--- Note: size parameter (times @sizeof(GmpLimb)@) must be less or
--- equal to its 'sizeofByteArray#'.
-byteArrayToBigNat# :: ByteArray# -> GmpSize# -> BigNat
-byteArrayToBigNat# ba# n0#
- | isTrue# (n# ==# 0#) = zeroBigNat
- | isTrue# (baszr# ==# 0#) -- i.e. ba# is multiple of limb-size
- , isTrue# (baszq# ==# n#) = (BN# ba#)
- | True = runS $ \s ->
- let !(# s', mbn@(MBN# mba#) #) = newBigNat# n# s
- !(# s'', ba_sz# #) = getSizeofMutableByteArray# mba# s'
- go = do _ <- svoid (copyByteArray# ba# 0# mba# 0# ba_sz# )
- unsafeFreezeBigNat# mbn
- in go s''
- where
- !(# baszq#, baszr# #) = quotRemInt# (sizeofByteArray# ba#) GMP_LIMB_BYTES#
-
- n# = fmssl (BN# ba#) (n0# -# 1#)
-
--- | Read 'Integer' (without sign) from memory location at @/addr/@ in
--- base-256 representation.
---
--- @'importIntegerFromAddr' /addr/ /size/ /msbf/@
---
--- See description of 'importIntegerFromByteArray' for more details.
---
--- @since 1.0.0.0
-importIntegerFromAddr :: Addr# -> Word# -> Int# -> IO Integer
-importIntegerFromAddr addr len msbf = IO $ do
- bn <- liftIO (importBigNatFromAddr addr len msbf)
- return (bigNatToInteger bn)
-
--- | Version of 'importIntegerFromAddr' constructing a 'BigNat'
-importBigNatFromAddr :: Addr# -> Word# -> Int# -> IO BigNat
-importBigNatFromAddr _ 0## _ = IO (\s -> (# s, zeroBigNat #))
-importBigNatFromAddr addr len0 1# = IO $ do -- MSBF
- W# ofs <- liftIO (c_scan_nzbyte_addr addr 0## len0)
- let len = len0 `minusWord#` ofs
- addr' = addr `plusAddr#` (word2Int# ofs)
- importBigNatFromAddr# addr' len 1#
-importBigNatFromAddr addr len0 _ = IO $ do -- LSBF
- W# len <- liftIO (c_rscan_nzbyte_addr addr 0## len0)
- importBigNatFromAddr# addr len 0#
-
-foreign import ccall unsafe "integer_gmp_scan_nzbyte"
- c_scan_nzbyte_addr :: Addr# -> Word# -> Word# -> IO Word
-
-foreign import ccall unsafe "integer_gmp_rscan_nzbyte"
- c_rscan_nzbyte_addr :: Addr# -> Word# -> Word# -> IO Word
-
--- | Helper for 'importBigNatFromAddr'
-importBigNatFromAddr# :: Addr# -> Word# -> Int# -> S RealWorld BigNat
-importBigNatFromAddr# _ 0## _ = return zeroBigNat
-importBigNatFromAddr# addr len msbf = do
- mbn@(MBN# mba#) <- newBigNat# n#
- () <- liftIO (c_mpn_import_addr mba# addr 0## len msbf)
- unsafeFreezeBigNat# mbn
- where
- -- n = ceiling(len / SIZEOF_HSWORD), i.e. number of limbs required
- n# = (word2Int# len +# (SIZEOF_HSWORD# -# 1#)) `quotInt#` SIZEOF_HSWORD#
-
-foreign import ccall unsafe "integer_gmp_mpn_import"
- c_mpn_import_addr :: MutableByteArray# RealWorld -> Addr# -> Word# -> Word#
- -> Int# -> IO ()
-
--- | Read 'Integer' (without sign) from byte-array in base-256 representation.
---
--- The call
---
--- @'importIntegerFromByteArray' /ba/ /offset/ /size/ /msbf/@
---
--- reads
---
--- * @/size/@ bytes from the 'ByteArray#' @/ba/@ starting at @/offset/@
---
--- * with most significant byte first if @/msbf/@ is @1#@ or least
--- significant byte first if @/msbf/@ is @0#@, and
---
--- * returns a new 'Integer'
---
--- @since 1.0.0.0
-importIntegerFromByteArray :: ByteArray# -> Word# -> Word# -> Int# -> Integer
-importIntegerFromByteArray ba ofs len msbf
- = bigNatToInteger (importBigNatFromByteArray ba ofs len msbf)
-
--- | Version of 'importIntegerFromByteArray' constructing a 'BigNat'
-importBigNatFromByteArray :: ByteArray# -> Word# -> Word# -> Int# -> BigNat
-importBigNatFromByteArray _ _ 0## _ = zeroBigNat
-importBigNatFromByteArray ba ofs0 len0 1# = runS $ do -- MSBF
- W# ofs <- liftIO (c_scan_nzbyte_bytearray ba ofs0 len0)
- let len = (len0 `plusWord#` ofs0) `minusWord#` ofs
- importBigNatFromByteArray# ba ofs len 1#
-importBigNatFromByteArray ba ofs len0 _ = runS $ do -- LSBF
- W# len <- liftIO (c_rscan_nzbyte_bytearray ba ofs len0)
- importBigNatFromByteArray# ba ofs len 0#
-
-foreign import ccall unsafe "integer_gmp_scan_nzbyte"
- c_scan_nzbyte_bytearray :: ByteArray# -> Word# -> Word# -> IO Word
-
-foreign import ccall unsafe "integer_gmp_rscan_nzbyte"
- c_rscan_nzbyte_bytearray :: ByteArray# -> Word# -> Word# -> IO Word
-
--- | Helper for 'importBigNatFromByteArray'
-importBigNatFromByteArray# :: ByteArray# -> Word# -> Word# -> Int#
- -> S RealWorld BigNat
-importBigNatFromByteArray# _ _ 0## _ = return zeroBigNat
-importBigNatFromByteArray# ba ofs len msbf = do
- mbn@(MBN# mba#) <- newBigNat# n#
- () <- liftIO (c_mpn_import_bytearray mba# ba ofs len msbf)
- unsafeFreezeBigNat# mbn
- where
- -- n = ceiling(len / SIZEOF_HSWORD), i.e. number of limbs required
- n# = (word2Int# len +# (SIZEOF_HSWORD# -# 1#)) `quotInt#` SIZEOF_HSWORD#
-
-foreign import ccall unsafe "integer_gmp_mpn_import"
- c_mpn_import_bytearray :: MutableByteArray# RealWorld -> ByteArray# -> Word#
- -> Word# -> Int# -> IO ()
-
--- | Test whether all internal invariants are satisfied by 'BigNat' value
---
--- Returns @1#@ if valid, @0#@ otherwise.
---
--- This operation is mostly useful for test-suites and/or code which
--- constructs 'Integer' values directly.
-isValidBigNat# :: BigNat -> Int#
-isValidBigNat# (BN# ba#)
- = (szq# ># 0#) `andI#` (szr# ==# 0#) `andI#` isNorm#
- where
- isNorm#
- | isTrue# (szq# ># 1#) = (indexWordArray# ba# (szq# -# 1#)) `neWord#` 0##
- | True = 1#
-
- sz# = sizeofByteArray# ba#
-
- !(# szq#, szr# #) = quotRemInt# sz# GMP_LIMB_BYTES#
-
--- | Version of 'nextPrimeInteger' operating on 'BigNat's
---
--- @since 1.0.0.0
-nextPrimeBigNat :: BigNat -> BigNat
-nextPrimeBigNat bn@(BN# ba#) = runS $ do
- mbn@(MBN# mba#) <- newBigNat# n#
- (W# c#) <- liftIO (nextPrime# mba# ba# n#)
- case c# of
- 0## -> unsafeFreezeBigNat# mbn
- _ -> unsafeSnocFreezeBigNat# mbn c#
- where
- n# = sizeofBigNat# bn
-
-foreign import ccall unsafe "integer_gmp_next_prime"
- nextPrime# :: MutableByteArray# RealWorld -> ByteArray# -> GmpSize#
- -> IO GmpLimb
-
-----------------------------------------------------------------------------
--- monadic combinators for low-level state threading
-
-type S s a = State# s -> (# State# s, a #)
-
-infixl 1 >>=
-infixl 1 >>
-infixr 0 $
-
-{-# INLINE ($) #-}
-($) :: (a -> b) -> a -> b
-f $ x = f x
-
-{-# INLINE (>>=) #-}
-(>>=) :: S s a -> (a -> S s b) -> S s b
-(>>=) m k = \s -> case m s of (# s', a #) -> k a s'
-
-{-# INLINE (>>) #-}
-(>>) :: S s a -> S s b -> S s b
-(>>) m k = \s -> case m s of (# s', _ #) -> k s'
-
-{-# INLINE svoid #-}
-svoid :: (State# s -> State# s) -> S s ()
-svoid m0 = \s -> case m0 s of s' -> (# s', () #)
-
-{-# INLINE return #-}
-return :: a -> S s a
-return a = \s -> (# s, a #)
-
-{-# INLINE liftIO #-}
-liftIO :: IO a -> S RealWorld a
-liftIO (IO m) = m
-
--- NB: equivalent of GHC.IO.unsafeDupablePerformIO, see notes there
-runS :: S RealWorld a -> a
-runS m = case runRW# m of (# _, a #) -> a
-
--- stupid hack
-fail :: [Char] -> S s a
-fail s = return (raise# s)
-
-----------------------------------------------------------------------------
-
--- | Internal helper type for "signed" 'BigNat's
---
--- This is a useful abstraction for operations which support negative
--- mp_size_t arguments.
-data SBigNat = NegBN !BigNat | PosBN !BigNat
-
--- | Absolute value of 'SBigNat'
-absSBigNat :: SBigNat -> BigNat
-absSBigNat (NegBN bn) = bn
-absSBigNat (PosBN bn) = bn
-
--- | /Signed/ limb count. Negative sizes denote negative integers
-ssizeofSBigNat# :: SBigNat -> GmpSize#
-ssizeofSBigNat# (NegBN bn) = negateInt# (sizeofBigNat# bn)
-ssizeofSBigNat# (PosBN bn) = sizeofBigNat# bn
-
--- | Construct 'SBigNat' from 'Int#' value
-intToSBigNat# :: Int# -> SBigNat
-intToSBigNat# 0# = PosBN zeroBigNat
-intToSBigNat# 1# = PosBN oneBigNat
-intToSBigNat# (-1#) = NegBN oneBigNat
-intToSBigNat# i# | isTrue# (i# ># 0#) = PosBN (wordToBigNat (int2Word# i#))
- | True = NegBN (wordToBigNat (int2Word# (negateInt# i#)))
-
--- | Convert 'Integer' into 'SBigNat'
-integerToSBigNat :: Integer -> SBigNat
-integerToSBigNat (S# i#) = intToSBigNat# i#
-integerToSBigNat (Jp# bn) = PosBN bn
-integerToSBigNat (Jn# bn) = NegBN bn
-
--- | Convert 'SBigNat' into 'Integer'
-sBigNatToInteger :: SBigNat -> Integer
-sBigNatToInteger (NegBN bn) = bigNatToNegInteger bn
-sBigNatToInteger (PosBN bn) = bigNatToInteger bn
-
-----------------------------------------------------------------------------
--- misc helpers, some of these should rather be primitives exported by ghc-prim
-
-cmpW# :: Word# -> Word# -> Ordering
-cmpW# x# y#
- | isTrue# (x# `ltWord#` y#) = LT
- | isTrue# (x# `eqWord#` y#) = EQ
- | True = GT
-{-# INLINE cmpW# #-}
-
-bitWord# :: Int# -> Word#
-bitWord# = uncheckedShiftL# 1##
-{-# INLINE bitWord# #-}
-
-testBitWord# :: Word# -> Int# -> Int#
-testBitWord# w# i# = (bitWord# i# `and#` w#) `neWord#` 0##
-{-# INLINE testBitWord# #-}
-
-popCntI# :: Int# -> Int#
-popCntI# i# = word2Int# (popCnt# (int2Word# i#))
-{-# INLINE popCntI# #-}
-
--- branchless version
-absI# :: Int# -> Int#
-absI# i# = (i# `xorI#` nsign) -# nsign
- where
- -- nsign = negateInt# (i# <# 0#)
- nsign = uncheckedIShiftRA# i# (WORD_SIZE_IN_BITS# -# 1#)
-
--- branchless version
-sgnI# :: Int# -> Int#
-sgnI# x# = (x# ># 0#) -# (x# <# 0#)
-
-cmpI# :: Int# -> Int# -> Int#
-cmpI# x# y# = (x# ># y#) -# (x# <# y#)
-
-minI# :: Int# -> Int# -> Int#
-minI# x# y# | isTrue# (x# <=# y#) = x#
- | True = y#
-
--- find most-sig set limb, starting at given index
-fmssl :: BigNat -> Int# -> Int#
-fmssl !bn i0# = go i0#
- where
- go i# | isTrue# (i# <# 0#) = 0#
- | isTrue# (neWord# (indexBigNat# bn i#) 0##) = i# +# 1#
- | True = go (i# -# 1#)