summaryrefslogtreecommitdiff
path: root/rts/RtsAPI.c
diff options
context:
space:
mode:
Diffstat (limited to 'rts/RtsAPI.c')
-rw-r--r--rts/RtsAPI.c184
1 files changed, 177 insertions, 7 deletions
diff --git a/rts/RtsAPI.c b/rts/RtsAPI.c
index 1d8e0bc1c8..bf58f53735 100644
--- a/rts/RtsAPI.c
+++ b/rts/RtsAPI.c
@@ -423,6 +423,10 @@ createStrictIOThread(Capability *cap, W_ stack_size, StgClosure *closure)
/* ----------------------------------------------------------------------------
Evaluating Haskell expressions
+
+ The running task (capability->running_task) must be bounded i.e. you must
+ call newBoundTask() before calling these functions. Note that rts_lock() and
+ rts_pause() both call newBoundTask().
------------------------------------------------------------------------- */
void rts_eval (/* inout */ Capability **cap,
@@ -597,12 +601,23 @@ rts_getSchedStatus (Capability *cap)
return cap->running_task->incall->rstat;
}
+#if defined(THREADED_RTS)
+// The task that paused the RTS. The rts_pausing_task variable is owned by the
+// task that owns all capabilities (there is at most one such task).
+//
+// It's possible to remove this and instead define the pausing task as whichever
+// task owns all capabilities, but using `rts_pausing_task` leads to marginally
+// cleaner code/API and better error messages.
+Task * rts_pausing_task = NULL;
+#endif
+
Capability *
rts_lock (void)
{
Capability *cap;
Task *task;
+ // Bound the current task. This is necessary to support rts_eval* functions.
task = newBoundTask();
if (task->running_finalizers) {
@@ -613,6 +628,14 @@ rts_lock (void)
stg_exit(EXIT_FAILURE);
}
+#if defined(THREADED_RTS)
+ if (rts_pausing_task == task) {
+ errorBelch("error: rts_lock: The RTS is already paused by this thread.\n"
+ " There is no need to call rts_lock if you have already called rts_pause.");
+ stg_exit(EXIT_FAILURE);
+ }
+#endif
+
cap = NULL;
waitForCapability(&cap, task);
@@ -640,21 +663,21 @@ rts_unlock (Capability *cap)
task = cap->running_task;
ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);
- // Now release the Capability. With the capability released, GC
- // may happen. NB. does not try to put the current Task on the
+ // Now release the Capability. With the capability released, GC
+ // may happen. NB. does not try to put the current Task on the
// worker queue.
- // NB. keep cap->lock held while we call boundTaskExiting(). This
+ // NB. keep cap->lock held while we call exitMyTask(). This
// is necessary during shutdown, where we want the invariant that
// after shutdownCapability(), all the Tasks associated with the
- // Capability have completed their shutdown too. Otherwise we
- // could have boundTaskExiting()/workerTaskStop() running at some
+ // Capability have completed their shutdown too. Otherwise we
+ // could have exitMyTask()/workerTaskStop() running at some
// random point in the future, which causes problems for
// freeTaskManager().
ACQUIRE_LOCK(&cap->lock);
releaseCapability_(cap,false);
// Finally, we can release the Task to the free list.
- boundTaskExiting(task);
+ exitMyTask();
RELEASE_LOCK(&cap->lock);
if (task->incall == NULL) {
@@ -665,6 +688,153 @@ rts_unlock (Capability *cap)
}
}
+struct PauseToken_ {
+ Capability *capability;
+};
+
+Capability *pauseTokenCapability(PauseToken *pauseToken) {
+ return pauseToken->capability;
+}
+
+#if defined(THREADED_RTS)
+
+// See Note [Locking and Pausing the RTS]
+PauseToken *rts_pause (void)
+{
+ // It is an error if this thread already paused the RTS. If another
+ // thread has paused the RTS, then rts_pause will block until rts_resume is
+ // called (and compete with other threads calling rts_pause). The blocking
+ // behavior is implied by the use of `stopAllCapabilities`.
+ Task * task = getMyTask();
+ if (rts_pausing_task == task)
+ {
+ // This task already pased the RTS.
+ errorBelch("error: rts_pause: This thread has already paused the RTS.");
+ stg_exit(EXIT_FAILURE);
+ }
+
+ // The current task must not own a capability. This is true for non-worker
+ // threads e.g. when making a safe FFI call. We allow pausing when
+ // `task->cap->running_task != task` because the capability can be taken by
+ // other capabilities. Doing this check is justified because rts_pause is a
+ // user facing function and we want good error reporting. We also don't
+ // expect rts_pause to be performance critical.
+ if (task->cap && task->cap->running_task == task)
+ {
+ // This task owns a capability (and it can't be taken by other capabilities).
+ errorBelch(task->cap->in_haskell
+ ? ("error: rts_pause: attempting to pause via an unsafe FFI call.\n"
+ " Perhaps a 'foreign import unsafe' should be 'safe'?")
+ : ("error: rts_pause: attempting to pause from a Task that owns a capability.\n"
+ " Have you already acquired a capability e.g. with rts_lock?"));
+ stg_exit(EXIT_FAILURE);
+ }
+
+ // Bound the current task. This is necessary to support rts_eval* functions.
+ task = newBoundTask();
+ stopAllCapabilities(NULL, task);
+
+ // Now we own all capabilities so we own rts_pausing_task and may set it.
+ rts_pausing_task = task;
+
+ PauseToken *token = malloc(sizeof(PauseToken));
+ token->capability = task->cap;
+ return token;
+}
+
+static void assert_isPausedOnMyTask(const char *functionName);
+
+// See Note [Locking and Pausing the RTS]. The pauseToken argument is here just
+// for symmetry with rts_pause and to match the pattern of rts_lock/rts_unlock.
+void rts_resume (PauseToken *pauseToken)
+{
+ assert_isPausedOnMyTask("rts_resume");
+ Task * task = getMyTask();
+
+ // Now we own all capabilities so we own rts_pausing_task and may write to
+ // it.
+ rts_pausing_task = NULL;
+
+ // releaseAllCapabilities will not block because the current task owns all
+ // capabilities.
+ releaseAllCapabilities(n_capabilities, NULL, task);
+ exitMyTask();
+ free(pauseToken);
+}
+
+// See RtsAPI.h
+bool rts_isPaused(void)
+{
+ return rts_pausing_task != NULL;
+}
+
+// Check that the rts_pause was called on this thread/task and this thread owns
+// all capabilities. If not, outputs an error and exits with EXIT_FAILURE.
+static void assert_isPausedOnMyTask(const char *functionName)
+{
+ Task * task = getMyTask();
+ if (rts_pausing_task == NULL)
+ {
+ errorBelch (
+ "error: %s: the rts is not paused. Did you forget to call rts_pause?",
+ functionName);
+ stg_exit(EXIT_FAILURE);
+ }
+
+ if (task != rts_pausing_task)
+ {
+ // We don't have ownership of rts_pausing_task, so it may have changed
+ // just after the above read. Still, we are garanteed that
+ // rts_pausing_task won't be set to the current task (because the
+ // current task is here now!), so the error messages are still correct.
+ errorBelch (
+ "error: %s: called from a different OS thread than rts_pause.",
+ functionName);
+
+ stg_exit(EXIT_FAILURE);
+ }
+
+ // Check that we own all capabilities.
+ for (unsigned int i = 0; i < n_capabilities; i++)
+ {
+ Capability *cap = capabilities[i];
+ if (cap->running_task != task)
+ {
+ errorBelch (
+ "error: %s: the pausing thread does not own all capabilities.\n"
+ " Have you manually released a capability after calling rts_pause?",
+ functionName);
+ stg_exit(EXIT_FAILURE);
+ }
+ }
+}
+
+
+#else
+PauseToken GNU_ATTRIBUTE(__noreturn__)
+*rts_pause (void)
+{
+ errorBelch("Warning: Pausing the RTS is only possible for "
+ "multithreaded RTS.");
+ stg_exit(EXIT_FAILURE);
+}
+
+void GNU_ATTRIBUTE(__noreturn__)
+rts_resume (PauseToken *pauseToken STG_UNUSED)
+{
+ errorBelch("Warning: Resuming the RTS is only possible for "
+ "multithreaded RTS.");
+ stg_exit(EXIT_FAILURE);
+}
+
+bool rts_isPaused()
+{
+ errorBelch("Warning: Pausing/Resuming the RTS is only possible for "
+ "multithreaded RTS.");
+ return false;
+}
+#endif
+
void rts_done (void)
{
freeMyTask();
@@ -700,7 +870,7 @@ void rts_done (void)
void hs_try_putmvar (/* in */ int capability,
/* in */ HsStablePtr mvar)
{
- Task *task = getTask();
+ Task *task = getMyTask();
Capability *cap;
Capability *task_old_cap USED_IF_THREADS;