summaryrefslogtreecommitdiff
path: root/rts/gmp/mpn/generic/gcd.c
diff options
context:
space:
mode:
Diffstat (limited to 'rts/gmp/mpn/generic/gcd.c')
-rw-r--r--rts/gmp/mpn/generic/gcd.c414
1 files changed, 414 insertions, 0 deletions
diff --git a/rts/gmp/mpn/generic/gcd.c b/rts/gmp/mpn/generic/gcd.c
new file mode 100644
index 0000000000..059e219a06
--- /dev/null
+++ b/rts/gmp/mpn/generic/gcd.c
@@ -0,0 +1,414 @@
+/* mpn/gcd.c: mpn_gcd for gcd of two odd integers.
+
+Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 2000 Free Software
+Foundation, Inc.
+
+This file is part of the GNU MP Library.
+
+The GNU MP Library is free software; you can redistribute it and/or modify
+it under the terms of the GNU Lesser General Public License as published by
+the Free Software Foundation; either version 2.1 of the License, or (at your
+option) any later version.
+
+The GNU MP Library is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
+License for more details.
+
+You should have received a copy of the GNU Lesser General Public License
+along with the GNU MP Library; see the file COPYING.LIB. If not, write to
+the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
+MA 02111-1307, USA. */
+
+/* Integer greatest common divisor of two unsigned integers, using
+ the accelerated algorithm (see reference below).
+
+ mp_size_t mpn_gcd (up, usize, vp, vsize).
+
+ Preconditions [U = (up, usize) and V = (vp, vsize)]:
+
+ 1. V is odd.
+ 2. numbits(U) >= numbits(V).
+
+ Both U and V are destroyed by the operation. The result is left at vp,
+ and its size is returned.
+
+ Ken Weber (kweber@mat.ufrgs.br, kweber@mcs.kent.edu)
+
+ Funding for this work has been partially provided by Conselho Nacional
+ de Desenvolvimento Cienti'fico e Tecnolo'gico (CNPq) do Brazil, Grant
+ 301314194-2, and was done while I was a visiting reseacher in the Instituto
+ de Matema'tica at Universidade Federal do Rio Grande do Sul (UFRGS).
+
+ Refer to
+ K. Weber, The accelerated integer GCD algorithm, ACM Transactions on
+ Mathematical Software, v. 21 (March), 1995, pp. 111-122. */
+
+#include "gmp.h"
+#include "gmp-impl.h"
+#include "longlong.h"
+
+/* If MIN (usize, vsize) >= GCD_ACCEL_THRESHOLD, then the accelerated
+ algorithm is used, otherwise the binary algorithm is used. This may be
+ adjusted for different architectures. */
+#ifndef GCD_ACCEL_THRESHOLD
+#define GCD_ACCEL_THRESHOLD 5
+#endif
+
+/* When U and V differ in size by more than BMOD_THRESHOLD, the accelerated
+ algorithm reduces using the bmod operation. Otherwise, the k-ary reduction
+ is used. 0 <= BMOD_THRESHOLD < BITS_PER_MP_LIMB. */
+enum
+ {
+ BMOD_THRESHOLD = BITS_PER_MP_LIMB/2
+ };
+
+
+/* Use binary algorithm to compute V <-- GCD (V, U) for usize, vsize == 2.
+ Both U and V must be odd. */
+static __gmp_inline mp_size_t
+#if __STDC__
+gcd_2 (mp_ptr vp, mp_srcptr up)
+#else
+gcd_2 (vp, up)
+ mp_ptr vp;
+ mp_srcptr up;
+#endif
+{
+ mp_limb_t u0, u1, v0, v1;
+ mp_size_t vsize;
+
+ u0 = up[0], u1 = up[1], v0 = vp[0], v1 = vp[1];
+
+ while (u1 != v1 && u0 != v0)
+ {
+ unsigned long int r;
+ if (u1 > v1)
+ {
+ u1 -= v1 + (u0 < v0), u0 -= v0;
+ count_trailing_zeros (r, u0);
+ u0 = u1 << (BITS_PER_MP_LIMB - r) | u0 >> r;
+ u1 >>= r;
+ }
+ else /* u1 < v1. */
+ {
+ v1 -= u1 + (v0 < u0), v0 -= u0;
+ count_trailing_zeros (r, v0);
+ v0 = v1 << (BITS_PER_MP_LIMB - r) | v0 >> r;
+ v1 >>= r;
+ }
+ }
+
+ vp[0] = v0, vp[1] = v1, vsize = 1 + (v1 != 0);
+
+ /* If U == V == GCD, done. Otherwise, compute GCD (V, |U - V|). */
+ if (u1 == v1 && u0 == v0)
+ return vsize;
+
+ v0 = (u0 == v0) ? (u1 > v1) ? u1-v1 : v1-u1 : (u0 > v0) ? u0-v0 : v0-u0;
+ vp[0] = mpn_gcd_1 (vp, vsize, v0);
+
+ return 1;
+}
+
+/* The function find_a finds 0 < N < 2^BITS_PER_MP_LIMB such that there exists
+ 0 < |D| < 2^BITS_PER_MP_LIMB, and N == D * C mod 2^(2*BITS_PER_MP_LIMB).
+ In the reference article, D was computed along with N, but it is better to
+ compute D separately as D <-- N / C mod 2^(BITS_PER_MP_LIMB + 1), treating
+ the result as a twos' complement signed integer.
+
+ Initialize N1 to C mod 2^(2*BITS_PER_MP_LIMB). According to the reference
+ article, N2 should be initialized to 2^(2*BITS_PER_MP_LIMB), but we use
+ 2^(2*BITS_PER_MP_LIMB) - N1 to start the calculations within double
+ precision. If N2 > N1 initially, the first iteration of the while loop
+ will swap them. In all other situations, N1 >= N2 is maintained. */
+
+static
+#if ! defined (__i386__)
+__gmp_inline /* don't inline this for the x86 */
+#endif
+mp_limb_t
+#if __STDC__
+find_a (mp_srcptr cp)
+#else
+find_a (cp)
+ mp_srcptr cp;
+#endif
+{
+ unsigned long int leading_zero_bits = 0;
+
+ mp_limb_t n1_l = cp[0]; /* N1 == n1_h * 2^BITS_PER_MP_LIMB + n1_l. */
+ mp_limb_t n1_h = cp[1];
+
+ mp_limb_t n2_l = -n1_l; /* N2 == n2_h * 2^BITS_PER_MP_LIMB + n2_l. */
+ mp_limb_t n2_h = ~n1_h;
+
+ /* Main loop. */
+ while (n2_h) /* While N2 >= 2^BITS_PER_MP_LIMB. */
+ {
+ /* N1 <-- N1 % N2. */
+ if ((MP_LIMB_T_HIGHBIT >> leading_zero_bits & n2_h) == 0)
+ {
+ unsigned long int i;
+ count_leading_zeros (i, n2_h);
+ i -= leading_zero_bits, leading_zero_bits += i;
+ n2_h = n2_h<<i | n2_l>>(BITS_PER_MP_LIMB - i), n2_l <<= i;
+ do
+ {
+ if (n1_h > n2_h || (n1_h == n2_h && n1_l >= n2_l))
+ n1_h -= n2_h + (n1_l < n2_l), n1_l -= n2_l;
+ n2_l = n2_l>>1 | n2_h<<(BITS_PER_MP_LIMB - 1), n2_h >>= 1;
+ i -= 1;
+ }
+ while (i);
+ }
+ if (n1_h > n2_h || (n1_h == n2_h && n1_l >= n2_l))
+ n1_h -= n2_h + (n1_l < n2_l), n1_l -= n2_l;
+
+ MP_LIMB_T_SWAP (n1_h, n2_h);
+ MP_LIMB_T_SWAP (n1_l, n2_l);
+ }
+
+ return n2_l;
+}
+
+mp_size_t
+#if __STDC__
+mpn_gcd (mp_ptr gp, mp_ptr up, mp_size_t usize, mp_ptr vp, mp_size_t vsize)
+#else
+mpn_gcd (gp, up, usize, vp, vsize)
+ mp_ptr gp;
+ mp_ptr up;
+ mp_size_t usize;
+ mp_ptr vp;
+ mp_size_t vsize;
+#endif
+{
+ mp_ptr orig_vp = vp;
+ mp_size_t orig_vsize = vsize;
+ int binary_gcd_ctr; /* Number of times binary gcd will execute. */
+ TMP_DECL (marker);
+
+ TMP_MARK (marker);
+
+ /* Use accelerated algorithm if vsize is over GCD_ACCEL_THRESHOLD.
+ Two EXTRA limbs for U and V are required for kary reduction. */
+ if (vsize >= GCD_ACCEL_THRESHOLD)
+ {
+ unsigned long int vbitsize, d;
+ mp_ptr orig_up = up;
+ mp_size_t orig_usize = usize;
+ mp_ptr anchor_up = (mp_ptr) TMP_ALLOC ((usize + 2) * BYTES_PER_MP_LIMB);
+
+ MPN_COPY (anchor_up, orig_up, usize);
+ up = anchor_up;
+
+ count_leading_zeros (d, up[usize-1]);
+ d = usize * BITS_PER_MP_LIMB - d;
+ count_leading_zeros (vbitsize, vp[vsize-1]);
+ vbitsize = vsize * BITS_PER_MP_LIMB - vbitsize;
+ d = d - vbitsize + 1;
+
+ /* Use bmod reduction to quickly discover whether V divides U. */
+ up[usize++] = 0; /* Insert leading zero. */
+ mpn_bdivmod (up, up, usize, vp, vsize, d);
+
+ /* Now skip U/V mod 2^d and any low zero limbs. */
+ d /= BITS_PER_MP_LIMB, up += d, usize -= d;
+ while (usize != 0 && up[0] == 0)
+ up++, usize--;
+
+ if (usize == 0) /* GCD == ORIG_V. */
+ goto done;
+
+ vp = (mp_ptr) TMP_ALLOC ((vsize + 2) * BYTES_PER_MP_LIMB);
+ MPN_COPY (vp, orig_vp, vsize);
+
+ do /* Main loop. */
+ {
+ /* mpn_com_n can't be used here because anchor_up and up may
+ partially overlap */
+ if (up[usize-1] & MP_LIMB_T_HIGHBIT) /* U < 0; take twos' compl. */
+ {
+ mp_size_t i;
+ anchor_up[0] = -up[0];
+ for (i = 1; i < usize; i++)
+ anchor_up[i] = ~up[i];
+ up = anchor_up;
+ }
+
+ MPN_NORMALIZE_NOT_ZERO (up, usize);
+
+ if ((up[0] & 1) == 0) /* Result even; remove twos. */
+ {
+ unsigned int r;
+ count_trailing_zeros (r, up[0]);
+ mpn_rshift (anchor_up, up, usize, r);
+ usize -= (anchor_up[usize-1] == 0);
+ }
+ else if (anchor_up != up)
+ MPN_COPY_INCR (anchor_up, up, usize);
+
+ MPN_PTR_SWAP (anchor_up,usize, vp,vsize);
+ up = anchor_up;
+
+ if (vsize <= 2) /* Kary can't handle < 2 limbs and */
+ break; /* isn't efficient for == 2 limbs. */
+
+ d = vbitsize;
+ count_leading_zeros (vbitsize, vp[vsize-1]);
+ vbitsize = vsize * BITS_PER_MP_LIMB - vbitsize;
+ d = d - vbitsize + 1;
+
+ if (d > BMOD_THRESHOLD) /* Bmod reduction. */
+ {
+ up[usize++] = 0;
+ mpn_bdivmod (up, up, usize, vp, vsize, d);
+ d /= BITS_PER_MP_LIMB, up += d, usize -= d;
+ }
+ else /* Kary reduction. */
+ {
+ mp_limb_t bp[2], cp[2];
+
+ /* C <-- V/U mod 2^(2*BITS_PER_MP_LIMB). */
+ {
+ mp_limb_t u_inv, hi, lo;
+ modlimb_invert (u_inv, up[0]);
+ cp[0] = vp[0] * u_inv;
+ umul_ppmm (hi, lo, cp[0], up[0]);
+ cp[1] = (vp[1] - hi - cp[0] * up[1]) * u_inv;
+ }
+
+ /* U <-- find_a (C) * U. */
+ up[usize] = mpn_mul_1 (up, up, usize, find_a (cp));
+ usize++;
+
+ /* B <-- A/C == U/V mod 2^(BITS_PER_MP_LIMB + 1).
+ bp[0] <-- U/V mod 2^BITS_PER_MP_LIMB and
+ bp[1] <-- ( (U - bp[0] * V)/2^BITS_PER_MP_LIMB ) / V mod 2
+
+ Like V/U above, but simplified because only the low bit of
+ bp[1] is wanted. */
+ {
+ mp_limb_t v_inv, hi, lo;
+ modlimb_invert (v_inv, vp[0]);
+ bp[0] = up[0] * v_inv;
+ umul_ppmm (hi, lo, bp[0], vp[0]);
+ bp[1] = (up[1] + hi + (bp[0]&vp[1])) & 1;
+ }
+
+ up[usize++] = 0;
+ if (bp[1]) /* B < 0: U <-- U + (-B) * V. */
+ {
+ mp_limb_t c = mpn_addmul_1 (up, vp, vsize, -bp[0]);
+ mpn_add_1 (up + vsize, up + vsize, usize - vsize, c);
+ }
+ else /* B >= 0: U <-- U - B * V. */
+ {
+ mp_limb_t b = mpn_submul_1 (up, vp, vsize, bp[0]);
+ mpn_sub_1 (up + vsize, up + vsize, usize - vsize, b);
+ }
+
+ up += 2, usize -= 2; /* At least two low limbs are zero. */
+ }
+
+ /* Must remove low zero limbs before complementing. */
+ while (usize != 0 && up[0] == 0)
+ up++, usize--;
+ }
+ while (usize);
+
+ /* Compute GCD (ORIG_V, GCD (ORIG_U, V)). Binary will execute twice. */
+ up = orig_up, usize = orig_usize;
+ binary_gcd_ctr = 2;
+ }
+ else
+ binary_gcd_ctr = 1;
+
+ /* Finish up with the binary algorithm. Executes once or twice. */
+ for ( ; binary_gcd_ctr--; up = orig_vp, usize = orig_vsize)
+ {
+ if (usize > 2) /* First make U close to V in size. */
+ {
+ unsigned long int vbitsize, d;
+ count_leading_zeros (d, up[usize-1]);
+ d = usize * BITS_PER_MP_LIMB - d;
+ count_leading_zeros (vbitsize, vp[vsize-1]);
+ vbitsize = vsize * BITS_PER_MP_LIMB - vbitsize;
+ d = d - vbitsize - 1;
+ if (d != -(unsigned long int)1 && d > 2)
+ {
+ mpn_bdivmod (up, up, usize, vp, vsize, d); /* Result > 0. */
+ d /= (unsigned long int)BITS_PER_MP_LIMB, up += d, usize -= d;
+ }
+ }
+
+ /* Start binary GCD. */
+ do
+ {
+ mp_size_t zeros;
+
+ /* Make sure U is odd. */
+ MPN_NORMALIZE (up, usize);
+ while (up[0] == 0)
+ up += 1, usize -= 1;
+ if ((up[0] & 1) == 0)
+ {
+ unsigned int r;
+ count_trailing_zeros (r, up[0]);
+ mpn_rshift (up, up, usize, r);
+ usize -= (up[usize-1] == 0);
+ }
+
+ /* Keep usize >= vsize. */
+ if (usize < vsize)
+ MPN_PTR_SWAP (up, usize, vp, vsize);
+
+ if (usize <= 2) /* Double precision. */
+ {
+ if (vsize == 1)
+ vp[0] = mpn_gcd_1 (up, usize, vp[0]);
+ else
+ vsize = gcd_2 (vp, up);
+ break; /* Binary GCD done. */
+ }
+
+ /* Count number of low zero limbs of U - V. */
+ for (zeros = 0; up[zeros] == vp[zeros] && ++zeros != vsize; )
+ continue;
+
+ /* If U < V, swap U and V; in any case, subtract V from U. */
+ if (zeros == vsize) /* Subtract done. */
+ up += zeros, usize -= zeros;
+ else if (usize == vsize)
+ {
+ mp_size_t size = vsize;
+ do
+ size--;
+ while (up[size] == vp[size]);
+ if (up[size] < vp[size]) /* usize == vsize. */
+ MP_PTR_SWAP (up, vp);
+ up += zeros, usize = size + 1 - zeros;
+ mpn_sub_n (up, up, vp + zeros, usize);
+ }
+ else
+ {
+ mp_size_t size = vsize - zeros;
+ up += zeros, usize -= zeros;
+ if (mpn_sub_n (up, up, vp + zeros, size))
+ {
+ while (up[size] == 0) /* Propagate borrow. */
+ up[size++] = -(mp_limb_t)1;
+ up[size] -= 1;
+ }
+ }
+ }
+ while (usize); /* End binary GCD. */
+ }
+
+done:
+ if (vp != gp)
+ MPN_COPY (gp, vp, vsize);
+ TMP_FREE (marker);
+ return vsize;
+}