summaryrefslogtreecommitdiff
path: root/rts/gmp/mpz/perfpow.c
diff options
context:
space:
mode:
Diffstat (limited to 'rts/gmp/mpz/perfpow.c')
-rw-r--r--rts/gmp/mpz/perfpow.c272
1 files changed, 272 insertions, 0 deletions
diff --git a/rts/gmp/mpz/perfpow.c b/rts/gmp/mpz/perfpow.c
new file mode 100644
index 0000000000..e71670a0be
--- /dev/null
+++ b/rts/gmp/mpz/perfpow.c
@@ -0,0 +1,272 @@
+/* mpz_perfect_power_p(arg) -- Return non-zero if ARG is a perfect power,
+ zero otherwise.
+
+Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc.
+
+This file is part of the GNU MP Library.
+
+The GNU MP Library is free software; you can redistribute it and/or modify
+it under the terms of the GNU Lesser General Public License as published by
+the Free Software Foundation; either version 2.1 of the License, or (at your
+option) any later version.
+
+The GNU MP Library is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
+License for more details.
+
+You should have received a copy of the GNU Lesser General Public License
+along with the GNU MP Library; see the file COPYING.LIB. If not, write to
+the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
+MA 02111-1307, USA. */
+
+/*
+ We are to determine if c is a perfect power, c = a ^ b.
+ Assume c is divisible by 2^n and that codd = c/2^n is odd.
+ Assume a is divisible by 2^m and that aodd = a/2^m is odd.
+ It is always true that m divides n.
+
+ * If n is prime, either 1) a is 2*aodd and b = n
+ or 2) a = c and b = 1.
+ So for n prime, we readily have a solution.
+ * If n is factorable into the non-trivial factors p1,p2,...
+ Since m divides n, m has a subset of n's factors and b = n / m.
+
+ BUG: Should handle negative numbers, since they can be odd perfect powers.
+*/
+
+/* This is a naive approach to recognizing perfect powers.
+ Many things can be improved. In particular, we should use p-adic
+ arithmetic for computing possible roots. */
+
+#include <stdio.h> /* for NULL */
+#include "gmp.h"
+#include "gmp-impl.h"
+#include "longlong.h"
+
+static unsigned long int gcd _PROTO ((unsigned long int a, unsigned long int b));
+static int isprime _PROTO ((unsigned long int t));
+
+static const unsigned short primes[] =
+{ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
+ 59, 61, 67, 71, 73, 79, 83, 89, 97,101,103,107,109,113,127,131,
+ 137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,
+ 227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,
+ 313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,
+ 419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,
+ 509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,
+ 617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,
+ 727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,
+ 829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,
+ 947,953,967,971,977,983,991,997,0
+};
+#define SMALLEST_OMITTED_PRIME 1009
+
+
+int
+#if __STDC__
+mpz_perfect_power_p (mpz_srcptr u)
+#else
+mpz_perfect_power_p (u)
+ mpz_srcptr u;
+#endif
+{
+ unsigned long int prime;
+ unsigned long int n, n2;
+ int i;
+ unsigned long int rem;
+ mpz_t u2, q;
+ int exact;
+ mp_size_t uns;
+ TMP_DECL (marker);
+
+ if (mpz_cmp_ui (u, 1) <= 0)
+ return 0;
+
+ n2 = mpz_scan1 (u, 0);
+ if (n2 == 1)
+ return 0;
+
+ TMP_MARK (marker);
+
+ uns = ABSIZ (u) - n2 / BITS_PER_MP_LIMB;
+ MPZ_TMP_INIT (q, uns);
+ MPZ_TMP_INIT (u2, uns);
+
+ mpz_tdiv_q_2exp (u2, u, n2);
+
+ if (isprime (n2))
+ goto n2prime;
+
+ for (i = 1; primes[i] != 0; i++)
+ {
+ prime = primes[i];
+ rem = mpz_tdiv_ui (u2, prime);
+ if (rem == 0) /* divisable? */
+ {
+ rem = mpz_tdiv_q_ui (q, u2, prime * prime);
+ if (rem != 0)
+ {
+ TMP_FREE (marker);
+ return 0;
+ }
+ mpz_swap (q, u2);
+ for (n = 2;;)
+ {
+ rem = mpz_tdiv_q_ui (q, u2, prime);
+ if (rem != 0)
+ break;
+ mpz_swap (q, u2);
+ n++;
+ }
+
+ n2 = gcd (n2, n);
+ if (n2 == 1)
+ {
+ TMP_FREE (marker);
+ return 0;
+ }
+
+ /* As soon as n2 becomes a prime number, stop factoring.
+ Either we have u=x^n2 or u is not a perfect power. */
+ if (isprime (n2))
+ goto n2prime;
+ }
+ }
+
+ if (mpz_cmp_ui (u2, 1) == 0)
+ {
+ TMP_FREE (marker);
+ return 1;
+ }
+
+ if (n2 == 0)
+ {
+ unsigned long int nth;
+ /* We did not find any factors above. We have to consider all values
+ of n. */
+ for (nth = 2;; nth++)
+ {
+ if (! isprime (nth))
+ continue;
+#if 0
+ exact = mpz_padic_root (q, u2, nth, PTH);
+ if (exact)
+#endif
+ exact = mpz_root (q, u2, nth);
+ if (exact)
+ {
+ TMP_FREE (marker);
+ return 1;
+ }
+ if (mpz_cmp_ui (q, SMALLEST_OMITTED_PRIME) < 0)
+ {
+ TMP_FREE (marker);
+ return 0;
+ }
+ }
+ }
+ else
+ {
+ unsigned long int nth;
+ /* We found some factors above. We just need to consider values of n
+ that divides n2. */
+ for (nth = 2; nth <= n2; nth++)
+ {
+ if (! isprime (nth))
+ continue;
+ if (n2 % nth != 0)
+ continue;
+#if 0
+ exact = mpz_padic_root (q, u2, nth, PTH);
+ if (exact)
+#endif
+ exact = mpz_root (q, u2, nth);
+ if (exact)
+ {
+ TMP_FREE (marker);
+ return 1;
+ }
+ if (mpz_cmp_ui (q, SMALLEST_OMITTED_PRIME) < 0)
+ {
+ TMP_FREE (marker);
+ return 0;
+ }
+ }
+
+ TMP_FREE (marker);
+ return 0;
+ }
+
+n2prime:
+ exact = mpz_root (NULL, u2, n2);
+ TMP_FREE (marker);
+ return exact;
+}
+
+static unsigned long int
+#if __STDC__
+gcd (unsigned long int a, unsigned long int b)
+#else
+gcd (a, b)
+ unsigned long int a, b;
+#endif
+{
+ int an2, bn2, n2;
+
+ if (a == 0)
+ return b;
+ if (b == 0)
+ return a;
+
+ count_trailing_zeros (an2, a);
+ a >>= an2;
+
+ count_trailing_zeros (bn2, b);
+ b >>= bn2;
+
+ n2 = MIN (an2, bn2);
+
+ while (a != b)
+ {
+ if (a > b)
+ {
+ a -= b;
+ do
+ a >>= 1;
+ while ((a & 1) == 0);
+ }
+ else /* b > a. */
+ {
+ b -= a;
+ do
+ b >>= 1;
+ while ((b & 1) == 0);
+ }
+ }
+
+ return a << n2;
+}
+
+static int
+#if __STDC__
+isprime (unsigned long int t)
+#else
+isprime (t)
+ unsigned long int t;
+#endif
+{
+ unsigned long int q, r, d;
+
+ if (t < 3 || (t & 1) == 0)
+ return t == 2;
+
+ for (d = 3, r = 1; r != 0; d += 2)
+ {
+ q = t / d;
+ r = t - q * d;
+ if (q < d)
+ return 1;
+ }
+ return 0;
+}