summaryrefslogtreecommitdiff
path: root/testsuite/tests/ghci.debugger/HappyTest.hs
diff options
context:
space:
mode:
Diffstat (limited to 'testsuite/tests/ghci.debugger/HappyTest.hs')
-rw-r--r--testsuite/tests/ghci.debugger/HappyTest.hs525
1 files changed, 525 insertions, 0 deletions
diff --git a/testsuite/tests/ghci.debugger/HappyTest.hs b/testsuite/tests/ghci.debugger/HappyTest.hs
new file mode 100644
index 0000000000..9be54402a9
--- /dev/null
+++ b/testsuite/tests/ghci.debugger/HappyTest.hs
@@ -0,0 +1,525 @@
+{-# LANGUAGE CPP #-}
+import Data.Char
+import Data.Array
+import GHC.Exts
+import System.IO
+import System.IO.Unsafe
+import Debug.Trace
+
+-- parser produced by Happy Version 1.16
+
+data HappyAbsSyn
+ = HappyTerminal Token
+ | HappyErrorToken Int
+ | HappyAbsSyn4 (Exp)
+ | HappyAbsSyn5 (Exp1)
+ | HappyAbsSyn6 (Term)
+ | HappyAbsSyn7 (Factor)
+
+happyActOffsets :: HappyAddr
+happyActOffsets = HappyA# "\x01\x00\x25\x00\x1e\x00\x1b\x00\x1d\x00\x18\x00\x00\x00\x00\x00\x00\x00\x01\x00\xf8\xff\x03\x00\x03\x00\x03\x00\x03\x00\x20\x00\x01\x00\x18\x00\x18\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x01\x00\x00\x00\x00\x00"#
+
+happyGotoOffsets :: HappyAddr
+happyGotoOffsets = HappyA# "\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x16\x00\x00\x00\x07\x00\xfe\xff\x1c\x00\x06\x00\x00\x00\x12\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00"#
+
+happyDefActions :: HappyAddr
+happyDefActions = HappyA# "\x00\x00\x00\x00\x00\x00\x00\x00\xfd\xff\xfa\xff\xf7\xff\xf6\xff\xf5\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfb\xff\xfc\xff\xf8\xff\xf9\xff\xf4\xff\x00\x00\x00\x00\xfe\xff"#
+
+happyCheck :: HappyAddr
+happyCheck = HappyA# "\xff\xff\x03\x00\x01\x00\x0b\x00\x03\x00\x04\x00\x03\x00\x04\x00\x02\x00\x03\x00\x03\x00\x0a\x00\x02\x00\x0a\x00\x00\x00\x01\x00\x02\x00\x03\x00\x00\x00\x01\x00\x02\x00\x03\x00\x00\x00\x01\x00\x02\x00\x03\x00\x00\x00\x01\x00\x02\x00\x03\x00\x02\x00\x03\x00\x08\x00\x09\x00\x04\x00\x06\x00\x07\x00\x05\x00\x01\x00\x0c\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"#
+
+happyTable :: HappyAddr
+happyTable = HappyA# "\x00\x00\x13\x00\x03\x00\x16\x00\x08\x00\x09\x00\x08\x00\x09\x00\x11\x00\x06\x00\x14\x00\x0a\x00\x18\x00\x0a\x00\x18\x00\x04\x00\x05\x00\x06\x00\x16\x00\x04\x00\x05\x00\x06\x00\x0a\x00\x04\x00\x05\x00\x06\x00\x03\x00\x04\x00\x05\x00\x06\x00\x12\x00\x06\x00\x0c\x00\x0d\x00\x10\x00\x0e\x00\x0f\x00\x11\x00\x03\x00\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
+
+happyReduceArr = array (1, 11) [
+ (1 , happyReduce_1),
+ (2 , happyReduce_2),
+ (3 , happyReduce_3),
+ (4 , happyReduce_4),
+ (5 , happyReduce_5),
+ (6 , happyReduce_6),
+ (7 , happyReduce_7),
+ (8 , happyReduce_8),
+ (9 , happyReduce_9),
+ (10 , happyReduce_10),
+ (11 , happyReduce_11)
+ ]
+
+happy_n_terms = 13 :: Int
+happy_n_nonterms = 4 :: Int
+
+happyReduce_1 = happyReduce 6# 0# happyReduction_1
+happyReduction_1 ((HappyAbsSyn4 happy_var_6) `HappyStk`
+ _ `HappyStk`
+ (HappyAbsSyn4 happy_var_4) `HappyStk`
+ _ `HappyStk`
+ (HappyTerminal (TokenVar happy_var_2)) `HappyStk`
+ _ `HappyStk`
+ happyRest)
+ = HappyAbsSyn4
+ (Let happy_var_2 happy_var_4 happy_var_6
+ ) `HappyStk` happyRest
+
+happyReduce_2 = happySpecReduce_1 0# happyReduction_2
+happyReduction_2 (HappyAbsSyn5 happy_var_1)
+ = HappyAbsSyn4
+ (Exp1 happy_var_1
+ )
+happyReduction_2 _ = notHappyAtAll
+
+happyReduce_3 = happySpecReduce_3 1# happyReduction_3
+happyReduction_3 (HappyAbsSyn6 happy_var_3)
+ _
+ (HappyAbsSyn5 happy_var_1)
+ = HappyAbsSyn5
+ (Plus happy_var_1 happy_var_3
+ )
+happyReduction_3 _ _ _ = notHappyAtAll
+
+happyReduce_4 = happySpecReduce_3 1# happyReduction_4
+happyReduction_4 (HappyAbsSyn6 happy_var_3)
+ _
+ (HappyAbsSyn5 happy_var_1)
+ = HappyAbsSyn5
+ (Minus happy_var_1 happy_var_3
+ )
+happyReduction_4 _ _ _ = notHappyAtAll
+
+happyReduce_5 = happySpecReduce_1 1# happyReduction_5
+happyReduction_5 (HappyAbsSyn6 happy_var_1)
+ = HappyAbsSyn5
+ (Term happy_var_1
+ )
+happyReduction_5 _ = notHappyAtAll
+
+happyReduce_6 = happySpecReduce_3 2# happyReduction_6
+happyReduction_6 (HappyAbsSyn7 happy_var_3)
+ _
+ (HappyAbsSyn6 happy_var_1)
+ = HappyAbsSyn6
+ (Times happy_var_1 happy_var_3
+ )
+happyReduction_6 _ _ _ = notHappyAtAll
+
+happyReduce_7 = happySpecReduce_3 2# happyReduction_7
+happyReduction_7 (HappyAbsSyn7 happy_var_3)
+ _
+ (HappyAbsSyn6 happy_var_1)
+ = HappyAbsSyn6
+ (Div happy_var_1 happy_var_3
+ )
+happyReduction_7 _ _ _ = notHappyAtAll
+
+happyReduce_8 = happySpecReduce_1 2# happyReduction_8
+happyReduction_8 (HappyAbsSyn7 happy_var_1)
+ = HappyAbsSyn6
+ (Factor happy_var_1
+ )
+happyReduction_8 _ = notHappyAtAll
+
+happyReduce_9 = happySpecReduce_1 3# happyReduction_9
+happyReduction_9 (HappyTerminal (TokenInt happy_var_1))
+ = HappyAbsSyn7
+ (Int happy_var_1
+ )
+happyReduction_9 _ = notHappyAtAll
+
+happyReduce_10 = happySpecReduce_1 3# happyReduction_10
+happyReduction_10 (HappyTerminal (TokenVar happy_var_1))
+ = HappyAbsSyn7
+ (Var happy_var_1
+ )
+happyReduction_10 _ = notHappyAtAll
+
+happyReduce_11 = happySpecReduce_3 3# happyReduction_11
+happyReduction_11 _
+ (HappyAbsSyn4 happy_var_2)
+ _
+ = HappyAbsSyn7
+ (Brack happy_var_2
+ )
+happyReduction_11 _ _ _ = notHappyAtAll
+
+happyNewToken action sts stk [] =
+ happyDoAction 12# notHappyAtAll action sts stk []
+
+happyNewToken action sts stk (tk:tks) =
+ let cont i = happyDoAction i tk action sts stk tks in
+ case tk of {
+ TokenLet -> cont 1#;
+ TokenIn -> cont 2#;
+ TokenInt happy_dollar_dollar -> cont 3#;
+ TokenVar happy_dollar_dollar -> cont 4#;
+ TokenEq -> cont 5#;
+ TokenPlus -> cont 6#;
+ TokenMinus -> cont 7#;
+ TokenTimes -> cont 8#;
+ TokenDiv -> cont 9#;
+ TokenOB -> cont 10#;
+ TokenCB -> cont 11#;
+ _ -> happyError' (tk:tks)
+ }
+
+happyError_ tk tks = happyError' (tk:tks)
+
+newtype HappyIdentity a = HappyIdentity a
+happyIdentity = HappyIdentity
+happyRunIdentity (HappyIdentity a) = a
+
+instance Monad HappyIdentity where
+ return = HappyIdentity
+ (HappyIdentity p) >>= q = q p
+
+happyThen :: () => HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b
+happyThen = (>>=)
+happyReturn :: () => a -> HappyIdentity a
+happyReturn = (return)
+happyThen1 m k tks = (>>=) m (\a -> k a tks)
+happyReturn1 :: () => a -> b -> HappyIdentity a
+happyReturn1 = \a tks -> (return) a
+happyError' :: () => [Token] -> HappyIdentity a
+happyError' = HappyIdentity . happyError
+
+calc tks = happyRunIdentity happySomeParser where
+ happySomeParser = happyThen (happyParse 0# tks) (\x -> case x of {HappyAbsSyn4 z -> happyReturn z; _other -> notHappyAtAll })
+
+happySeq = happyDontSeq
+
+
+happyError tks = error "Parse error"
+
+
+
+data Exp = Let String Exp Exp | Exp1 Exp1
+data Exp1 = Plus Exp1 Term | Minus Exp1 Term | Term Term
+data Term = Times Term Factor | Div Term Factor | Factor Factor
+data Factor = Int Int | Var String | Brack Exp
+
+
+
+data Token
+ = TokenLet
+ | TokenIn
+ | TokenInt Int
+ | TokenVar String
+ | TokenEq
+ | TokenPlus
+ | TokenMinus
+ | TokenTimes
+ | TokenDiv
+ | TokenOB
+ | TokenCB
+
+
+
+lexer :: String -> [Token]
+lexer [] = []
+lexer (c:cs)
+ | isSpace c = lexer cs
+ | isAlpha c = lexVar (c:cs)
+ | isDigit c = lexNum (c:cs)
+lexer ('=':cs) = TokenEq : lexer cs
+lexer ('+':cs) = TokenPlus : lexer cs
+lexer ('-':cs) = TokenMinus : lexer cs
+lexer ('*':cs) = TokenTimes : lexer cs
+lexer ('/':cs) = TokenDiv : lexer cs
+lexer ('(':cs) = TokenOB : lexer cs
+lexer (')':cs) = TokenCB : lexer cs
+
+lexNum cs = TokenInt (read num) : lexer rest
+ where (num,rest) = span isDigit cs
+
+lexVar cs =
+ case span isAlpha cs of
+ ("let",rest) -> TokenLet : lexer rest
+ ("in",rest) -> TokenIn : lexer rest
+ (var,rest) -> TokenVar var : lexer rest
+
+
+
+
+runCalc :: String -> Exp
+runCalc = calc . lexer
+
+
+
+main = case runCalc "1 + 2 + 3" of {
+ (Exp1 (Plus (Plus (Term (Factor (Int 1))) (Factor (Int 2))) (Factor (Int 3)))) ->
+ case runCalc "1 * 2 + 3" of {
+ (Exp1 (Plus (Term (Times (Factor (Int 1)) (Int 2))) (Factor (Int 3)))) ->
+ case runCalc "1 + 2 * 3" of {
+ (Exp1 (Plus (Term (Factor (Int 1))) (Times (Factor (Int 2)) (Int 3)))) ->
+ case runCalc "let x = 2 in x * (x - 2)" of {
+ (Let "x" (Exp1 (Term (Factor (Int 2)))) (Exp1 (Term (Times (Factor (Var "x")) (Brack (Exp1 (Minus (Term (Factor (Var "x"))) (Factor (Int 2))))))))) -> print "Test works\n";
+ _ -> quit } ; _ -> quit } ; _ -> quit } ; _ -> quit }
+quit = print "Test failed\n"
+{-# LINE 1 "GenericTemplate.hs" #-}
+{-# LINE 1 "<built-in>" #-}
+{-# LINE 1 "<command line>" #-}
+{-# LINE 1 "GenericTemplate.hs" #-}
+-- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp
+
+{-# LINE 28 "GenericTemplate.hs" #-}
+
+
+data Happy_IntList = HappyCons Int# Happy_IntList
+
+
+
+
+
+{-# LINE 49 "GenericTemplate.hs" #-}
+
+{-# LINE 59 "GenericTemplate.hs" #-}
+
+
+
+happyTrace string expr = unsafePerformIO $ do
+ hPutStr stderr string
+ return expr
+
+
+
+
+infixr 9 `HappyStk`
+data HappyStk a = HappyStk a (HappyStk a)
+
+-----------------------------------------------------------------------------
+-- starting the parse
+
+happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll
+
+-----------------------------------------------------------------------------
+-- Accepting the parse
+
+-- If the current token is 0#, it means we've just accepted a partial
+-- parse (a %partial parser). We must ignore the saved token on the top of
+-- the stack in this case.
+happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
+ happyReturn1 ans
+happyAccept j tk st sts (HappyStk ans _) =
+ (happyTcHack j (happyTcHack st)) (happyReturn1 ans)
+
+-----------------------------------------------------------------------------
+-- Arrays only: do the next action
+
+
+
+happyDoAction i tk st
+ = (happyTrace ("state: " ++ show (I# (st)) ++ ",\ttoken: " ++ show (I# (i)) ++ ",\taction: ")) $
+
+
+ case action of
+ 0# -> (happyTrace ("fail.\n")) $
+ happyFail i tk st
+ -1# -> (happyTrace ("accept.\n")) $
+ happyAccept i tk st
+ n | (n <# (0# :: Int#)) -> (happyTrace ("reduce (rule " ++ show rule ++ ")")) $
+
+ (happyReduceArr ! rule) i tk st
+ where rule = (I# ((negateInt# ((n +# (1# :: Int#))))))
+ n -> (happyTrace ("shift, enter state " ++ show (I# (new_state)) ++ "\n")) $
+
+
+ happyShift new_state i tk st
+ where new_state = (n -# (1# :: Int#))
+ where off = indexShortOffAddr happyActOffsets st
+ off_i = (off +# i)
+ check = if (off_i >=# (0# :: Int#))
+ then (indexShortOffAddr happyCheck off_i ==# i)
+ else False
+ action | check = indexShortOffAddr happyTable off_i
+ | otherwise = indexShortOffAddr happyDefActions st
+
+{-# LINE 127 "GenericTemplate.hs" #-}
+
+
+indexShortOffAddr (HappyA# arr) off =
+#if __GLASGOW_HASKELL__ > 500
+ narrow16Int# i
+#elif __GLASGOW_HASKELL__ == 500
+ intToInt16# i
+#else
+ (i `iShiftL#` 16#) `iShiftRA#` 16#
+#endif
+ where
+#if __GLASGOW_HASKELL__ >= 503
+ i = word2Int# ((high `uncheckedShiftL#` 8#) `or#` low)
+#else
+ i = word2Int# ((high `shiftL#` 8#) `or#` low)
+#endif
+ high = int2Word# (ord# (indexCharOffAddr# arr (off' +# 1#)))
+ low = int2Word# (ord# (indexCharOffAddr# arr off'))
+ off' = off *# 2#
+
+
+
+
+
+data HappyAddr = HappyA# Addr#
+
+
+
+
+-----------------------------------------------------------------------------
+-- HappyState data type (not arrays)
+
+{-# LINE 170 "GenericTemplate.hs" #-}
+
+-----------------------------------------------------------------------------
+-- Shifting a token
+
+happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
+ let i = (case x of { HappyErrorToken (I# (i)) -> i }) in
+-- trace "shifting the error token" $
+ happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)
+
+happyShift new_state i tk st sts stk =
+ happyNewToken new_state (HappyCons (st) (sts)) ((HappyTerminal (tk))`HappyStk`stk)
+
+-- happyReduce is specialised for the common cases.
+
+happySpecReduce_0 i fn 0# tk st sts stk
+ = happyFail 0# tk st sts stk
+happySpecReduce_0 nt fn j tk st@((action)) sts stk
+ = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)
+
+happySpecReduce_1 i fn 0# tk st sts stk
+ = happyFail 0# tk st sts stk
+happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
+ = let r = fn v1 in
+ happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
+
+happySpecReduce_2 i fn 0# tk st sts stk
+ = happyFail 0# tk st sts stk
+happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
+ = let r = fn v1 v2 in
+ happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
+
+happySpecReduce_3 i fn 0# tk st sts stk
+ = happyFail 0# tk st sts stk
+happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
+ = let r = fn v1 v2 v3 in
+ happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
+
+happyReduce k i fn 0# tk st sts stk
+ = happyFail 0# tk st sts stk
+happyReduce k nt fn j tk st sts stk
+ = case happyDrop (k -# (1# :: Int#)) sts of
+ sts1@((HappyCons (st1@(action)) (_))) ->
+ let r = fn stk in -- it doesn't hurt to always seq here...
+ happyDoSeq r (happyGoto nt j tk st1 sts1 r)
+
+happyMonadReduce k nt fn 0# tk st sts stk
+ = happyFail 0# tk st sts stk
+happyMonadReduce k nt fn j tk st sts stk =
+ happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))
+ where sts1@((HappyCons (st1@(action)) (_))) = happyDrop k (HappyCons (st) (sts))
+ drop_stk = happyDropStk k stk
+
+happyMonad2Reduce k nt fn 0# tk st sts stk
+ = happyFail 0# tk st sts stk
+happyMonad2Reduce k nt fn j tk st sts stk =
+ happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))
+ where sts1@((HappyCons (st1@(action)) (_))) = happyDrop k (HappyCons (st) (sts))
+ drop_stk = happyDropStk k stk
+
+ off = indexShortOffAddr happyGotoOffsets st1
+ off_i = (off +# nt)
+ new_state = indexShortOffAddr happyTable off_i
+
+
+
+
+happyDrop 0# l = l
+happyDrop n (HappyCons (_) (t)) = happyDrop (n -# (1# :: Int#)) t
+
+happyDropStk 0# l = l
+happyDropStk n (x `HappyStk` xs) = happyDropStk (n -# (1#::Int#)) xs
+
+-----------------------------------------------------------------------------
+-- Moving to a new state after a reduction
+
+
+happyGoto nt j tk st =
+ (happyTrace (", goto state " ++ show (I# (new_state)) ++ "\n")) $
+ happyDoAction j tk new_state
+ where off = indexShortOffAddr happyGotoOffsets st
+ off_i = (off +# nt)
+ new_state = indexShortOffAddr happyTable off_i
+
+
+
+
+-----------------------------------------------------------------------------
+-- Error recovery (0# is the error token)
+
+-- parse error if we are in recovery and we fail again
+happyFail 0# tk old_st _ stk =
+-- trace "failing" $
+ happyError_ tk
+
+{- We don't need state discarding for our restricted implementation of
+ "error". In fact, it can cause some bogus parses, so I've disabled it
+ for now --SDM
+
+-- discard a state
+happyFail 0# tk old_st (HappyCons ((action)) (sts))
+ (saved_tok `HappyStk` _ `HappyStk` stk) =
+-- trace ("discarding state, depth " ++ show (length stk)) $
+ happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk))
+-}
+
+-- Enter error recovery: generate an error token,
+-- save the old token and carry on.
+happyFail i tk (action) sts stk =
+-- trace "entering error recovery" $
+ happyDoAction 0# tk action sts ( (HappyErrorToken (I# (i))) `HappyStk` stk)
+
+-- Internal happy errors:
+
+notHappyAtAll = error "Internal Happy error\n"
+
+-----------------------------------------------------------------------------
+-- Hack to get the typechecker to accept our action functions
+
+
+happyTcHack :: Int# -> a -> a
+happyTcHack x y = y
+{-# INLINE happyTcHack #-}
+
+
+-----------------------------------------------------------------------------
+-- Seq-ing. If the --strict flag is given, then Happy emits
+-- happySeq = happyDoSeq
+-- otherwise it emits
+-- happySeq = happyDontSeq
+
+happyDoSeq, happyDontSeq :: a -> b -> b
+happyDoSeq a b = a `seq` b
+happyDontSeq a b = b
+
+-----------------------------------------------------------------------------
+-- Don't inline any functions from the template. GHC has a nasty habit
+-- of deciding to inline happyGoto everywhere, which increases the size of
+-- the generated parser quite a bit.
+
+
+{-# NOINLINE happyDoAction #-}
+{-# NOINLINE happyTable #-}
+{-# NOINLINE happyCheck #-}
+{-# NOINLINE happyActOffsets #-}
+{-# NOINLINE happyGotoOffsets #-}
+{-# NOINLINE happyDefActions #-}
+
+{-# NOINLINE happyShift #-}
+{-# NOINLINE happySpecReduce_0 #-}
+{-# NOINLINE happySpecReduce_1 #-}
+{-# NOINLINE happySpecReduce_2 #-}
+{-# NOINLINE happySpecReduce_3 #-}
+{-# NOINLINE happyReduce #-}
+{-# NOINLINE happyMonadReduce #-}
+{-# NOINLINE happyGoto #-}
+{-# NOINLINE happyFail #-}
+
+-- end of Happy Template.