summaryrefslogtreecommitdiff
path: root/testsuite/tests/lib/Data.ByteString/bytestring004.hs
diff options
context:
space:
mode:
Diffstat (limited to 'testsuite/tests/lib/Data.ByteString/bytestring004.hs')
-rw-r--r--testsuite/tests/lib/Data.ByteString/bytestring004.hs564
1 files changed, 0 insertions, 564 deletions
diff --git a/testsuite/tests/lib/Data.ByteString/bytestring004.hs b/testsuite/tests/lib/Data.ByteString/bytestring004.hs
deleted file mode 100644
index 5c4df86a90..0000000000
--- a/testsuite/tests/lib/Data.ByteString/bytestring004.hs
+++ /dev/null
@@ -1,564 +0,0 @@
-#!/usr/bin/env runhaskell
---
--- Uses multi-param type classes
---
-
-import Test.QuickCheck.Batch
-import Test.QuickCheck
-import Text.Show.Functions
-
-import Data.Char
-import Data.Int
-import Data.List
-import Data.Maybe
-import Data.Word
-
-import System.IO
-import System.Environment
-import System.IO.Unsafe
-import System.Random
-
-import Control.Monad ( liftM2 )
-import Control.Monad.Instances ()
-
-import Text.Printf
-import Debug.Trace
-
-import Foreign.Ptr
-
-import Data.ByteString.Lazy (ByteString(..), pack , unpack)
-import qualified Data.ByteString.Lazy as L
-import qualified Data.ByteString.Lazy.Internal as L
-
-import Data.ByteString.Fusion
-import qualified Data.ByteString as P
-import qualified Data.ByteString.Lazy as L
-
-import qualified Data.ByteString.Char8 as PC
-import qualified Data.ByteString.Lazy.Char8 as LC
-import qualified Data.ByteString as P
-import qualified Data.ByteString.Internal as P
-import qualified Data.ByteString.Char8 as C
-import qualified Data.ByteString.Lazy.Char8 as D
-import Data.ByteString.Fusion
-
-import Prelude hiding (abs)
-
--- Enable this to get verbose test output. Including the actual tests.
-debug = False
-
-mytest :: Testable a => a -> Int -> IO ()
-mytest a n = mycheck defaultConfig
- { configMaxTest=n
- , configEvery= \n args -> if debug then show n ++ ":\n" ++ unlines args else [] } a
-
-mycheck :: Testable a => Config -> a -> IO ()
-mycheck config a =
- do let rnd = mkStdGen 99
- mytests config (evaluate a) rnd 0 0 []
-
-mytests :: Config -> Gen Result -> StdGen -> Int -> Int -> [[String]] -> IO ()
-mytests config gen rnd0 ntest nfail stamps
- | ntest == configMaxTest config = do done "OK," ntest stamps
- | nfail == configMaxFail config = do done "Arguments exhausted after" ntest stamps
- | otherwise =
- do putStr (configEvery config ntest (arguments result)) >> hFlush stdout
- case ok result of
- Nothing ->
- mytests config gen rnd1 ntest (nfail+1) stamps
- Just True ->
- mytests config gen rnd1 (ntest+1) nfail (stamp result:stamps)
- Just False ->
- putStr ( "Falsifiable after "
- ++ show ntest
- ++ " tests:\n"
- ++ unlines (arguments result)
- ) >> hFlush stdout
- where
- result = generate (configSize config ntest) rnd2 gen
- (rnd1,rnd2) = split rnd0
-
-done :: String -> Int -> [[String]] -> IO ()
-done mesg ntest stamps =
- do putStr ( mesg ++ " " ++ show ntest ++ " tests" ++ table )
- where
- table = display
- . map entry
- . reverse
- . sort
- . map pairLength
- . group
- . sort
- . filter (not . null)
- $ stamps
-
- display [] = ".\n"
- display [x] = " (" ++ x ++ ").\n"
- display xs = ".\n" ++ unlines (map (++ ".") xs)
-
- pairLength xss@(xs:_) = (length xss, xs)
- entry (n, xs) = percentage n ntest
- ++ " "
- ++ concat (intersperse ", " xs)
-
- percentage n m = show ((100 * n) `div` m) ++ "%"
-
-------------------------------------------------------------------------
-
-instance Arbitrary Char where
- arbitrary = choose ('a', 'i')
- coarbitrary c = variant (ord c `rem` 4)
-
-instance (Arbitrary a, Arbitrary b) => Arbitrary (PairS a b) where
- arbitrary = liftM2 (:*:) arbitrary arbitrary
- coarbitrary (a :*: b) = coarbitrary a . coarbitrary b
-
-instance Arbitrary Word8 where
- arbitrary = choose (97, 105)
- coarbitrary c = variant (fromIntegral ((fromIntegral c) `rem` 4))
-
-instance Arbitrary Int64 where
- arbitrary = sized $ \n -> choose (-fromIntegral n,fromIntegral n)
- coarbitrary n = variant (fromIntegral (if n >= 0 then 2*n else 2*(-n) + 1))
-
-instance Arbitrary a => Arbitrary (MaybeS a) where
- arbitrary = do a <- arbitrary ; elements [NothingS, JustS a]
- coarbitrary NothingS = variant 0
- coarbitrary _ = variant 1 -- ok?
-
-{-
-instance Arbitrary Char where
- arbitrary = choose ('\0', '\255') -- since we have to test words, unlines too
- coarbitrary c = variant (ord c `rem` 16)
-
-instance Arbitrary Word8 where
- arbitrary = choose (minBound, maxBound)
- coarbitrary c = variant (fromIntegral ((fromIntegral c) `rem` 16))
--}
-
-instance Random Word8 where
- randomR = integralRandomR
- random = randomR (minBound,maxBound)
-
-instance Random Int64 where
- randomR = integralRandomR
- random = randomR (minBound,maxBound)
-
-integralRandomR :: (Integral a, RandomGen g) => (a,a) -> g -> (a,g)
-integralRandomR (a,b) g = case randomR (fromIntegral a :: Integer,
- fromIntegral b :: Integer) g of
- (x,g) -> (fromIntegral x, g)
-
-instance Arbitrary L.ByteString where
- arbitrary = arbitrary >>= return . L.fromChunks . filter (not. P.null) -- maintain the invariant.
- coarbitrary s = coarbitrary (L.unpack s)
-
-instance Arbitrary P.ByteString where
- arbitrary = P.pack `fmap` arbitrary
- coarbitrary s = coarbitrary (P.unpack s)
-
-------------------------------------------------------------------------
---
--- We're doing two forms of testing here. Firstly, model based testing.
--- For our Lazy and strict bytestring types, we have model types:
---
--- i.e. Lazy == Byte
--- \\ //
--- List
---
--- That is, the Lazy type can be modeled by functions in both the Byte
--- and List type. For each of the 3 models, we have a set of tests that
--- check those types match.
---
--- The Model class connects a type and its model type, via a conversion
--- function.
---
---
-class Model a b where
- model :: a -> b -- get the abstract vale from a concrete value
-
---
--- Connecting our Lazy and Strict types to their models. We also check
--- the data invariant on Lazy types.
---
--- These instances represent the arrows in the above diagram
---
-instance Model B P where model = abstr . checkInvariant
-instance Model P [W] where model = P.unpack
-instance Model P [Char] where model = PC.unpack
-instance Model B [W] where model = L.unpack . checkInvariant
-instance Model B [Char] where model = LC.unpack . checkInvariant
-
--- Types are trivially modeled by themselves
-instance Model Bool Bool where model = id
-instance Model Int Int where model = id
-instance Model Int64 Int64 where model = id
-instance Model Int64 Int where model = fromIntegral
-instance Model Word8 Word8 where model = id
-instance Model Ordering Ordering where model = id
-
--- More structured types are modeled recursively, using the NatTrans class from Gofer.
-class (Functor f, Functor g) => NatTrans f g where
- eta :: f a -> g a
-
--- The transformation of the same type is identity
-instance NatTrans [] [] where eta = id
-instance NatTrans Maybe Maybe where eta = id
-instance NatTrans ((->) X) ((->) X) where eta = id
-instance NatTrans ((->) W) ((->) W) where eta = id
-
--- We have a transformation of pairs, if the pairs are in Model
-instance Model f g => NatTrans ((,) f) ((,) g) where eta (f,a) = (model f, a)
-
--- And finally, we can take any (m a) to (n b), if we can Model m n, and a b
-instance (NatTrans m n, Model a b) => Model (m a) (n b) where model x = fmap model (eta x)
-
-------------------------------------------------------------------------
-
--- In a form more useful for QC testing (and it's lazy)
-checkInvariant :: L.ByteString -> L.ByteString
-checkInvariant cs0 = check cs0
- where check L.Empty = L.Empty
- check (L.Chunk c cs)
- | P.null c = error ("invariant violation: " ++ show cs0)
- | otherwise = L.Chunk c (check cs)
-
-abstr :: L.ByteString -> P.ByteString
-abstr = P.concat . L.toChunks
-
--- Some short hand.
-type X = Int
-type W = Word8
-type P = P.ByteString
-type B = L.ByteString
-
-------------------------------------------------------------------------
---
--- These comparison functions handle wrapping and equality.
---
--- A single class for these would be nice, but note that they differe in
--- the number of arguments, and those argument types, so we'd need HList
--- tricks. See here: http://okmij.org/ftp/Haskell/vararg-fn.lhs
---
-
-eq1 f g = \a ->
- model (f a) == g (model a)
-eq2 f g = \a b ->
- model (f a b) == g (model a) (model b)
-eq3 f g = \a b c ->
- model (f a b c) == g (model a) (model b) (model c)
-eq4 f g = \a b c d ->
- model (f a b c d) == g (model a) (model b) (model c) (model d)
-eq5 f g = \a b c d e ->
- model (f a b c d e) == g (model a) (model b) (model c) (model d) (model e)
-
---
--- And for functions that take non-null input
---
-eqnotnull1 f g = \x -> (not (isNull x)) ==> eq1 f g x
-eqnotnull2 f g = \x y -> (not (isNull y)) ==> eq2 f g x y
-eqnotnull3 f g = \x y z -> (not (isNull z)) ==> eq3 f g x y z
-
-class IsNull t where isNull :: t -> Bool
-instance IsNull L.ByteString where isNull = L.null
-instance IsNull P.ByteString where isNull = P.null
-
-main = do
- x <- getArgs
- let n = if null x then 100 else read . head $ x
- mapM_ (\(s,a) -> printf "%-25s: " s >> a n) tests
-
---
--- Test that, after loop fusion, our code behaves the same as the
--- unfused lazy or list models. Use -ddump-simpl to also check that
--- rules are firing for each case.
---
-tests = -- 29/5/06, all tests are fusing:
- [("down/down list", mytest prop_downdown_list) -- checked
- ,("down/filter list", mytest prop_downfilter_list) -- checked
- ,("down/map list", mytest prop_downmap_list) -- checked
- ,("filter/down lazy", mytest prop_filterdown_lazy) -- checked
- ,("filter/down list", mytest prop_filterdown_list) -- checked
- ,("filter/filter lazy", mytest prop_filterfilter_lazy) -- checked
- ,("filter/filter list", mytest prop_filterfilter_list) -- checked
- ,("filter/map lazy", mytest prop_filtermap_lazy) -- checked
- ,("filter/map list", mytest prop_filtermap_list) -- checked
- ,("filter/up lazy", mytest prop_filterup_lazy) -- checked
- ,("filter/up list", mytest prop_filterup_list) -- checked
- ,("map/down lazy", mytest prop_mapdown_lazy) -- checked
- ,("map/down list", mytest prop_mapdown_list) -- checked
- ,("map/filter lazy", mytest prop_mapfilter_lazy) -- checked
- ,("map/filter list", mytest prop_mapfilter_list) -- checked
- ,("map/map lazy", mytest prop_mapmap_lazy) -- checked
- ,("map/map list", mytest prop_mapmap_list) -- checked
- ,("map/up lazy", mytest prop_mapup_lazy) -- checked
- ,("map/up list", mytest prop_mapup_list) -- checked
- ,("up/filter lazy", mytest prop_upfilter_lazy) -- checked
- ,("up/filter list", mytest prop_upfilter_list) -- checked
- ,("up/map lazy", mytest prop_upmap_lazy) -- checked
- ,("up/map list", mytest prop_upmap_list) -- checked
- ,("up/up lazy", mytest prop_upup_lazy) -- checked
- ,("up/up list", mytest prop_upup_list) -- checked
- ,("noacc/noacc lazy", mytest prop_noacc_noacc_lazy) -- checked
- ,("noacc/noacc list", mytest prop_noacc_noacc_list) -- checked
- ,("noacc/up lazy", mytest prop_noacc_up_lazy) -- checked
- ,("noacc/up list", mytest prop_noacc_up_list) -- checked
- ,("up/noacc lazy", mytest prop_up_noacc_lazy) -- checked
- ,("up/noacc list", mytest prop_up_noacc_list) -- checked
- ,("map/noacc lazy", mytest prop_map_noacc_lazy) -- checked
- ,("map/noacc list", mytest prop_map_noacc_list) -- checked
- ,("noacc/map lazy", mytest prop_noacc_map_lazy) -- checked
- ,("noacc/map list", mytest prop_noacc_map_list) -- checked
- ,("filter/noacc lazy", mytest prop_filter_noacc_lazy) -- checked
- ,("filter/noacc list", mytest prop_filter_noacc_list) -- checked
- ,("noacc/filter lazy", mytest prop_noacc_filter_lazy) -- checked
- ,("noacc/filter list", mytest prop_noacc_filter_list) -- checked
- ,("noacc/down lazy", mytest prop_noacc_down_lazy) -- checked
- ,("noacc/down list", mytest prop_noacc_down_list) -- checked
--- ,("down/noacc lazy", mytest prop_down_noacc_lazy) -- checked
- ,("down/noacc list", mytest prop_down_noacc_list) -- checked
-
-
- ,("length/loop list", mytest prop_lengthloop_list)
--- ,("length/loop lazy", mytest prop_lengthloop_lazy)
- ,("maximum/loop list", mytest prop_maximumloop_list)
--- ,("maximum/loop lazy", mytest prop_maximumloop_lazy)
- ,("minimum/loop list", mytest prop_minimumloop_list)
--- ,("minimum/loop lazy", mytest prop_minimumloop_lazy)
-
- ]
-
-prop_upup_list = eq3
- (\f g -> P.foldl f (0::Int) . P.scanl g (0::W))
- ((\f g -> foldl f (0::Int) . scanl g (0::W)) :: (X -> W -> X) -> (W -> W -> W) -> [W] -> X)
-
-prop_upup_lazy = eq3
- (\f g -> L.foldl f (0::X) . L.scanl g (0::W))
- (\f g -> P.foldl f (0::X) . P.scanl g (0::W))
-
-prop_mapmap_list = eq3
- (\f g -> P.map f . P.map g)
- ((\f g -> map f . map g) :: (W -> W) -> (W -> W) -> [W] -> [W])
-
-prop_mapmap_lazy = eq3
- (\f g -> L.map f . L.map g)
- (\f g -> P.map f . P.map g)
-
-prop_filterfilter_list = eq3
- (\f g -> P.filter f . P.filter g)
- ((\f g -> filter f . filter g) :: (W -> Bool) -> (W -> Bool) -> [W] -> [W])
-
-prop_filterfilter_lazy = eq3
- (\f g -> L.filter f . L.filter g)
- (\f g -> P.filter f . P.filter g)
-
-prop_mapfilter_list = eq3
- (\f g -> P.filter f . P.map g)
- ((\f g -> filter f . map g) :: (W -> Bool) -> (W -> W) -> [W] -> [W])
-
-prop_mapfilter_lazy = eq3
- (\f g -> L.filter f . L.map g)
- (\f g -> P.filter f . P.map g)
-
-prop_filtermap_list = eq3
- (\f g -> P.map f . P.filter g)
- ((\f g -> map f . filter g) :: (W -> W) -> (W -> Bool) -> [W] -> [W])
-
-prop_filtermap_lazy = eq3
- (\f g -> L.map f . L.filter g)
- (\f g -> P.map f . P.filter g)
-
-prop_mapup_list = eq3
- (\f g -> P.foldl g (0::W) . P.map f)
- ((\f g -> foldl g (0::W) . map f) :: (W -> W) -> (W -> W -> W) -> [W] -> W)
-
-prop_mapup_lazy = eq3
- (\f g -> L.foldl g (0::W) . L.map f) -- n.b. scan doesn't fuse here, atm
- (\f g -> P.foldl g (0::W) . P.map f)
-
-prop_upmap_list = eq3
- (\f g -> P.map f . P.scanl g (0::W))
- ((\f g -> map f . scanl g (0::W)) :: (W -> W) -> (W -> W -> W) -> [W] -> [W])
-
-prop_upmap_lazy = eq3
- (\f g -> L.map f . L.scanl g (0::W))
- (\f g -> P.map f . P.scanl g (0::W))
-
-prop_filterup_list = eq3
- (\f g -> P.foldl g (0::W) . P.filter f)
- ((\f g -> foldl g (0::W) . filter f) :: (W -> Bool) -> (W -> W -> W) -> [W] -> W)
-
-prop_filterup_lazy = eq3
- (\f g -> L.foldl g (0::W) . L.filter f)
- (\f g -> P.foldl g (0::W) . P.filter f)
-
-prop_upfilter_list = eq3
- (\f g -> P.filter f . P.scanl g (0::W))
- ((\f g -> filter f . scanl g (0::W)) :: (W -> Bool) -> (W -> W -> W) -> [W] -> [W])
-
-prop_upfilter_lazy = eq3
- (\f g -> L.filter f . L.scanl g (0::W))
- (\f g -> P.filter f . P.scanl g (0::W))
-
-prop_downdown_list = eq3
- (\f g -> P.foldr f (0::X) . P.scanr g (0::W))
- ((\f g -> foldr f (0::X) . scanr g (0::W)) :: (W -> X -> X) -> (W -> W -> W) -> [W] -> X)
-
-{-
--- no lazy scanr yet
-prop_downdown_lazy = eq3
- (\f g -> L.foldr f (0::X) . L.scanr g (0::W))
- (\f g -> P.foldr f (0::X) . P.scanr g (0::W))
--}
-
-prop_mapdown_list = eq3
- (\f g -> P.foldr g (0::W) . P.map f)
- ((\f g -> foldr g (0::W) . map f) :: (W -> W) -> (W -> W -> W) -> [W] -> W)
-
-prop_mapdown_lazy = eq3
- (\f g -> L.foldr g (0::W) . L.map f) -- n.b. scan doesn't fuse here, atm
- (\f g -> P.foldr g (0::W) . P.map f)
-
-prop_downmap_list = eq3
- (\f g -> P.map f . P.scanr g (0::W))
- ((\f g -> map f . scanr g (0::W)) :: (W -> W) -> (W -> W -> W) -> [W] -> [W])
-
-{-
-prop_downmap_lazy = eq3
- (\f g -> L.map f . L.scanr g (0::W))
- (\f g -> P.map f . P.scanr g (0::W))
--}
-
-prop_filterdown_list = eq3
- (\f g -> P.foldr g (0::W) . P.filter f)
- ((\f g -> foldr g (0::W) . filter f) :: (W -> Bool) -> (W -> W -> W) -> [W] -> W)
-
-prop_filterdown_lazy = eq3
- (\f g -> L.foldr g (0::W) . L.filter f) -- n.b. scan doesn't fuse here, atm
- (\f g -> P.foldr g (0::W) . P.filter f)
-
-prop_downfilter_list = eq3
- (\f g -> P.filter f . P.scanr g (0::W))
- ((\f g -> filter f . scanr g (0::W)) :: (W -> Bool) -> (W -> W -> W) -> [W] -> [W])
-
-{-
-prop_downfilter_lazy = eq3
- (\f g -> L.filter f . L.scanr g (0::W))
- (\f g -> P.filter f . P.scanr g (0::W))
--}
-
-prop_noacc_noacc_list = eq5
- (\f g h i -> (P.map f . P.filter g) . (P.map h . P.filter i))
- ((\f g h i -> ( map f . filter g) . ( map h . filter i))
- :: (W -> W) -> (W -> Bool) -> (W -> W) -> (W -> Bool) -> [W] -> [W])
-
-prop_noacc_noacc_lazy = eq5
- (\f g h i -> (L.map f . L.filter g) . (L.map h . L.filter i))
- (\f g h i -> (P.map f . P.filter g) . (P.map h . P.filter i))
-
-prop_noacc_up_list = eq4
- ( \g h i -> P.foldl g (0::W) . (P.map h . P.filter i))
- ((\g h i -> foldl g (0::W) . ( map h . filter i))
- :: (W -> W -> W) -> (W -> W) -> (W -> Bool) -> [W] -> W)
-
-prop_noacc_up_lazy = eq4
- (\g h i -> L.foldl g (0::W) . (L.map h . L.filter i))
- (\g h i -> P.foldl g (0::W) . (P.map h . P.filter i))
-
-prop_up_noacc_list = eq4
- ( \g h i -> (P.map h . P.filter i) . P.scanl g (0::W))
- ((\g h i -> ( map h . filter i) . scanl g (0::W))
- :: (W -> W -> W) -> (W -> W) -> (W -> Bool) -> [W] -> [W])
-
-prop_up_noacc_lazy = eq4
- (\g h i -> (L.map h . L.filter i) . L.scanl g (0::W))
- (\g h i -> (P.map h . P.filter i) . P.scanl g (0::W))
-
-prop_map_noacc_list = eq4
- ( \g h i -> (P.map h . P.filter i) . P.map g)
- ((\g h i -> ( map h . filter i) . map g)
- :: (W -> W) -> (W -> W) -> (W -> Bool) -> [W] -> [W])
-
-prop_map_noacc_lazy = eq4
- (\g h i -> (L.map h . L.filter i) . L.map g)
- (\g h i -> (P.map h . P.filter i) . P.map g)
-
-prop_noacc_map_list = eq4
- ( \g h i -> P.map g . (P.map h . P.filter i))
- ((\g h i -> map g . ( map h . filter i))
- :: (W -> W) -> (W -> W) -> (W -> Bool) -> [W] -> [W])
-
-prop_noacc_map_lazy = eq4
- (\g h i -> L.map g . (L.map h . L.filter i))
- (\g h i -> P.map g . (P.map h . P.filter i))
-
-prop_filter_noacc_list = eq4
- ( \g h i -> (P.map h . P.filter i) . P.filter g)
- ((\g h i -> ( map h . filter i) . filter g)
- :: (W -> Bool) -> (W -> W) -> (W -> Bool) -> [W] -> [W])
-
-prop_filter_noacc_lazy = eq4
- (\g h i -> (L.map h . L.filter i) . L.filter g)
- (\g h i -> (P.map h . P.filter i) . P.filter g)
-
-prop_noacc_filter_list = eq4
- ( \g h i -> P.filter g . (P.map h . P.filter i))
- ((\g h i -> filter g . ( map h . filter i))
- :: (W -> Bool) -> (W -> W) -> (W -> Bool) -> [W] -> [W])
-
-prop_noacc_filter_lazy = eq4
- (\g h i -> L.filter g . (L.map h . L.filter i))
- (\g h i -> P.filter g . (P.map h . P.filter i))
-
-prop_noacc_down_list = eq4
- ( \g h i -> P.foldr g (0::W) . (P.map h . P.filter i))
- ((\g h i -> foldr g (0::W) . ( map h . filter i))
- :: (W -> W -> W) -> (W -> W) -> (W -> Bool) -> [W] -> W)
-
-prop_noacc_down_lazy = eq4
- (\g h i -> L.foldr g (0::W) . (L.map h . L.filter i))
- (\g h i -> P.foldr g (0::W) . (P.map h . P.filter i))
-
-prop_down_noacc_list = eq4
- ( \g h i -> (P.map h . P.filter i) . P.scanr g (0::W))
- ((\g h i -> ( map h . filter i) . scanr g (0::W))
- :: (W -> W -> W) -> (W -> W) -> (W -> Bool) -> [W] -> [W])
-
-{-
-prop_down_noacc_lazy = eq4
- (\g h i -> (L.map h . L.filter i) . L.scanl g (0::W))
- (\g h i -> (P.map h . P.filter i) . P.scanl g (0::W))
--}
-
-------------------------------------------------------------------------
-
-prop_lengthloop_list = eq2
- (\f -> P.length . P.filter f)
- ((\f -> length . filter f) :: (W -> Bool) -> [W] -> X)
-
-{-
-prop_lengthloop_lazy = eq2
- (\f g -> L.length . L.filter f) -- n.b. scan doesn't fuse here, atm
- (\f g -> P.length . P.filter f)
--}
-
-prop_maximumloop_list = eqnotnull2
- (\f -> P.maximum . P.map f) -- so we don't get null strings
- ((\f -> maximum . map f) :: (W -> W) -> [W] -> W)
-
-{-
-prop_maximumloop_lazy = eq2
- (\f g -> L.maximum . L.filter f) -- n.b. scan doesn't fuse here, atm
- (\f g -> P.maximum . P.filter f)
--}
-
-prop_minimumloop_list = eqnotnull2
- (\f -> P.minimum . P.map f)
- ((\f -> minimum . map f) :: (W -> W) -> [W] -> W)
-
-{-
-prop_minimumloop_lazy = eq2
- (\f g -> L.minimum . L.filter f) -- n.b. scan doesn't fuse here, atm
- (\f g -> P.minimum . P.filter f)
--}
-