| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* support detection of slow ghc-bignum backend (to replace the detection
of integer-simple use). There are still some test cases that the
native backend doesn't handle efficiently enough.
* remove tests for GMP only functions that have been removed from
ghc-bignum
* fix test results showing dependent packages (e.g. integer-gmp) or
showing suggested instances
* fix test using Integer/Natural API or showing internal names
|
|
|
|
| |
* replace integer-* package selection with ghc-bignum backend selection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* GHC.Natural isn't implemented in `base` anymore. It is provided by
ghc-bignum in GHC.Num.Natural. It means that we can safely use Natural
primitives in `base` without fearing issues with built-in rewrite
rules (cf #15286)
* `base` doesn't conditionally depend on an integer-* package anymore,
it depends on ghc-bignum
* Some duplicated code in integer-* can now be factored in GHC.Float
* ghc-bignum tries to use a uniform naming convention so most of the
other changes are renaming
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Thanks to ghc-bignum, the compiler can be simplified:
* Types and constructors of Integer and Natural can be wired-in. It
means that we don't have to query them from interfaces. It also means
that numeric literals don't have to carry their type with them.
* The same code is used whatever ghc-bignum backend is enabled. In
particular, conversion of bignum literals into final Core expressions
is now much more straightforward. Bignum closure inspection too.
* GHC itself doesn't depend on any integer-* package anymore
* The `integerLibrary` setting is gone.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ghc-bignum is a newer package that aims to replace the legacy
integer-simple and integer-gmp packages.
* it supports several backends. In particular GMP is still supported and
most of the code from integer-gmp has been merged in the "gmp"
backend.
* the pure Haskell "native" backend is new and is much faster than the
previous pure Haskell implementation provided by integer-simple
* new backends are easier to write because they only have to provide a
few well defined functions. All the other code is common to all
backends. In particular they all share the efficient small/big number
distinction previously used only in integer-gmp.
* backends can all be tested against the "native" backend with a simple
Cabal flag. Backends are only allowed to differ in performance, their
results should be the same.
* Add `integer-gmp` compat package: provide some pattern synonyms and
function aliases for those in `ghc-bignum`. It is intended to avoid
breaking packages that depend on `integer-gmp` internals.
Update submodules: text, bytestring
Metric Decrease:
Conversions
ManyAlternatives
ManyConstructors
Naperian
T10359
T10547
T10678
T12150
T12227
T12234
T12425
T13035
T13719
T14936
T1969
T4801
T4830
T5237
T5549
T5837
T8766
T9020
parsing001
space_leak_001
T16190
haddock.base
On ARM and i386, T17499 regresses (+6% > 5%).
On x86_64 unregistered, T13701 sometimes regresses (+2.2% > 2%).
Metric Increase:
T17499
T13701
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
integer-simple uses lists of words (`[Word]`) to represent big numbers
instead of ByteArray#:
* it is less efficient than the newer ghc-bignum native backend
* it isn't compatible with the big number representation that is now
shared by all the ghc-bignum backends (based on the one that was
used only in integer-gmp before).
As a consequence, we simply drop integer-simple
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements several general performance improvements to GHC,
to offset the effect of the linear types change.
General optimisations:
- Add a `coreFullView` function which iterates `coreView` on the
head. This avoids making function recursive solely because the
iterate `coreView` themselves. As a consequence, this functions can
be inlined, and trigger case-of-known constructor (_e.g._
`kindRep_maybe`, `isLiftedRuntimeRep`, `isMultiplicityTy`,
`getTyVar_maybe`, `splitAppTy_maybe`, `splitFunType_maybe`,
`tyConAppTyCon_maybe`). The common pattern about all these functions
is that they are almost always used as views, and immediately
consumed by a case expression. This commit also mark them asx `INLINE`.
- In `subst_ty` add a special case for nullary `TyConApp`, which avoid
allocations altogether.
- Use `mkTyConApp` in `subst_ty` for the general `TyConApp`. This
required quite a bit of module shuffling.
case. `myTyConApp` enforces crucial sharing, which was lost during
substitution. See also !2952 .
- Make `subst_ty` stricter.
- In `eqType` (specifically, in `nonDetCmpType`), add a special case,
tested first, for the very common case of nullary `TyConApp`.
`nonDetCmpType` has been made `INLINE` otherwise it is actually a
regression. This is similar to the optimisations in !2952.
Linear-type specific optimisations:
- Use `tyConAppTyCon_maybe` instead of the more complex `eqType` in
the definition of the pattern synonyms `One` and `Many`.
- Break the `hs-boot` cycles between `Multiplicity.hs` and `Type.hs`:
`Multiplicity` now import `Type` normally, rather than from the
`hs-boot`. This way `tyConAppTyCon_maybe` can inline properly in the
`One` and `Many` pattern synonyms.
- Make `updateIdTypeAndMult` strict in its type and multiplicity
- The `scaleIdBy` gets a specialised definition rather than being an
alias to `scaleVarBy`
- `splitFunTy_maybe` is given the type `Type -> Maybe (Mult, Type,
Type)` instead of `Type -> Maybe (Scaled Type, Type)`
- Remove the `MultMul` pattern synonym in favour of a view `isMultMul`
because pattern synonyms appear not to inline well.
- in `eqType`, in a `FunTy`, compare multiplicities last: they are
almost always both `Many`, so it helps failing faster.
- Cache `manyDataConTy` in `mkTyConApp`, to make sure that all the
instances of `TyConApp ManyDataConTy []` are physically the same.
This commit has been authored by
* Richard Eisenberg
* Krzysztof Gogolewski
* Arnaud Spiwack
Metric Decrease:
haddock.base
T12227
T12545
T12990
T1969
T3064
T5030
T9872b
Metric Increase:
haddock.base
haddock.Cabal
haddock.compiler
T12150
T12234
T12425
T12707
T13035
T13056
T15164
T16190
T18304
T1969
T3064
T3294
T5631
T5642
T5837
T6048
T9020
T9233
T9675
T9872a
T9961
WWRec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the first step towards implementation of the linear types proposal
(https://github.com/ghc-proposals/ghc-proposals/pull/111).
It features
* A language extension -XLinearTypes
* Syntax for linear functions in the surface language
* Linearity checking in Core Lint, enabled with -dlinear-core-lint
* Core-to-core passes are mostly compatible with linearity
* Fields in a data type can be linear or unrestricted; linear fields
have multiplicity-polymorphic constructors.
If -XLinearTypes is disabled, the GADT syntax defaults to linear fields
The following items are not yet supported:
* a # m -> b syntax (only prefix FUN is supported for now)
* Full multiplicity inference (multiplicities are really only checked)
* Decent linearity error messages
* Linear let, where, and case expressions in the surface language
(each of these currently introduce the unrestricted variant)
* Multiplicity-parametric fields
* Syntax for annotating lambda-bound or let-bound with a multiplicity
* Syntax for non-linear/multiple-field-multiplicity records
* Linear projections for records with a single linear field
* Linear pattern synonyms
* Multiplicity coercions (test LinearPolyType)
A high-level description can be found at
https://ghc.haskell.org/trac/ghc/wiki/LinearTypes/Implementation
Following the link above you will find a description of the changes made to Core.
This commit has been authored by
* Richard Eisenberg
* Krzysztof Gogolewski
* Matthew Pickering
* Arnaud Spiwack
With contributions from:
* Mark Barbone
* Alexander Vershilov
Updates haddock submodule.
|
|
|
|
| |
The latter is apparently not supported by busybox.
|
| |
|
|
|
|
|
| |
It avoids using DynFlags in the Outputable instance of Clabel to check
assertions at pretty-printing time.
|
| |
|
|
|
|
|
| |
Just adding `{-# LANGUAGE BangPatterns #-}` makes the two other metrics
fluctuate by 13%.
|
|
|
|
| |
See #16873.
|
| |
|
| |
|
| |
|
|
|
|
|
| |
This bit of documentation got outdated after commit
1fcede43d2b30f33b7505e25eb6b1f321be0407f
|
|
|
|
|
|
|
|
| |
Some archives contain so called linker objects, with the affectionate
.lo suffic. For example the musl libc.a will come in that form. We
still want to load those objects, hence we should not discard them and
look for .lo as well. Ultimately we might want to fix this proerly by
looking at the file magic.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
| |
The Haskell calling convention requires integer parameters smaller
than wordsize to be promoted to wordsize (where the upper bits are
don't care). To access such small integer parameter read a word from
the parameter array and then cast that word to the small integer
target type.
Fixes #15933
|
|
|
|
| |
Cabal should already be passing this arguments to GHC.
|
|
|
|
|
|
|
| |
Fixes two bugs:
* (?) and (<>) associated in a surprising way
* We neglected to include libdw paths in the rts configure flags
|
|
|
|
|
| |
T18227A is the original issue which gave rise to the ticket and depends
upon bytestring. T18227B is a minimized reproducer.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously CoreToStg would unconditionally discard cases of the form:
case unsafeEqualityProof of wild { _ -> rhs }
and rather replace the whole thing with `rhs`. However, in some cases
(see #18227) the case binder is still live, resulting in unbound
occurrences in `rhs`. Fix this by only discarding the case if the case
binder is dead.
Fixes #18227.
|
|
|
|
|
|
|
| |
The initial version was rewritten by Tamar Christina.
It was rewritten in large parts by Andreas Klebinger.
Co-authored-by: Andreas Klebinger <klebinger.andreas@gmx.at>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, `HsForAllTy` permits the combination of `ForallVis` and
`Inferred`, but you can't actually typecheck code that uses it
(e.g., `forall {a} ->`). This patch refactors `HsForAllTy` to use a
new `HsForAllTelescope` data type that makes a type-level distinction
between visible and invisible `forall`s such that visible `forall`s
do not track `Specificity`. That part of the patch is actually quite
small; the rest is simply changing consumers of `HsType` to
accommodate this new type.
Fixes #18235. Bumps the `haddock` submodule.
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Previously we ci.sh would run with `set -e` implying that we wouldn't
push perf notes if the testsuite were to fail, even if it *only* failed
due to perf notes. This rendered the whole performance testing story
quite fragile as a single regressing commit would cause every successive
commit to fail since a new baseline would not be uploaded.
Fix this by ensuring that we always push performance notes.
|
|
|
|
|
|
|
|
|
| |
As noted in #18319, this test was previously very fragile. Increase its
size to make it more likely that its fails with its newly-increased
acceptance threshold.
Metric Increase:
T12150
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Ticket #18304 showed that we need to be very careful
when exploring the demand (esp usage demand) on recursive
product types.
This patch solves the problem by trimming the demand on such types --
in effect, a form of "widening".
See the Note [Trimming a demand to a type] in DmdAnal, which explains
how I did this by piggy-backing on an existing mechansim for trimming
demands becuase of GADTs. The significant payload of this patch is
very small indeed:
* Make GHC.Core.Opt.WorkWrap.Utils.typeShape use RecTcChecker to
avoid looking through recursive types.
But on the way
* I found that ae_rec_tc was entirely inoperative and did nothing.
So I removed it altogether from DmdAnal.
* I moved some code around in DmdAnal and Demand.
(There are no actual changes in dmdFix.)
* I changed the API of DmsAnal.dmdAnalRhsLetDown to return
a StrictSig rather than a decorated Id
* I removed the dead function peelTsFuns from Demand
Performance effects:
Nofib: 0.0% changes. Not surprising, because they don't
use recursive products
Perf tests
T12227:
1% increase in compiler allocation, becuase $cto gets w/w'd.
It did not w/w before because it takes a deeply nested
argument, so the worker gets too many args, so we abandon w/w
altogether (see GHC.Core.Opt.WorkWrap.Utils.isWorkerSmallEnough)
With this patch we trim the demands. That is not strictly
necessary (since these Generic type constructors are like
tuples -- they can't cause a loop) but the net result is that
we now w/w $cto which is fine.
UniqLoop:
16% decrease in /runtime/ allocation. The UniqSupply is a
recursive product, so currently we abandon all strictness on
'churn'. With this patch 'churn' gets useful strictness, and
we w/w it. Hooray
Metric Decrease:
UniqLoop
Metric Increase:
T12227
|
|
|
|
|
|
|
|
|
|
| |
Metric Decrease:
T12150
T12234
T5837
Metric Increase:
T16190
|
| |
|
| |
|
|
|
|
| |
Preload units can be retrieved in UnitState when needed (i.e. in GHCi)
|
| |
|
| |
|
| |
|
|
|
|
|
|
| |
Avoid directly querying flags from DynFlags to build the UnitState.
Instead go via UnitConfig so that we could reuse this to make another
UnitState for plugins.
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|