summaryrefslogtreecommitdiff
path: root/compiler/GHC.hs
Commit message (Collapse)AuthorAgeFilesLines
* Print unticked promoted data constructors (#20531)Vladislav Zavialov2022-11-251-12/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Before this patch, GHC unconditionally printed ticks before promoted data constructors: ghci> type T = True -- unticked (user-written) ghci> :kind! T T :: Bool = 'True -- ticked (compiler output) After this patch, GHC prints ticks only when necessary: ghci> type F = False -- unticked (user-written) ghci> :kind! F F :: Bool = False -- unticked (compiler output) ghci> data False -- introduce ambiguity ghci> :kind! F F :: Bool = 'False -- ticked by necessity (compiler output) The old behavior can be enabled by -fprint-redundant-promotion-ticks. Summary of changes: * Rename PrintUnqualified to NamePprCtx * Add QueryPromotionTick to it * Consult the GlobalRdrEnv to decide whether to print a tick (see mkPromTick) * Introduce -fprint-redundant-promotion-ticks Co-authored-by: Artyom Kuznetsov <hi@wzrd.ht>
* Type vs Constraint: finally nailedSimon Peyton Jones2022-11-111-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This big patch addresses the rats-nest of issues that have plagued us for years, about the relationship between Type and Constraint. See #11715/#21623. The main payload of the patch is: * To introduce CONSTRAINT :: RuntimeRep -> Type * To make TYPE and CONSTRAINT distinct throughout the compiler Two overview Notes in GHC.Builtin.Types.Prim * Note [TYPE and CONSTRAINT] * Note [Type and Constraint are not apart] This is the main complication. The specifics * New primitive types (GHC.Builtin.Types.Prim) - CONSTRAINT - ctArrowTyCon (=>) - tcArrowTyCon (-=>) - ccArrowTyCon (==>) - funTyCon FUN -- Not new See Note [Function type constructors and FunTy] and Note [TYPE and CONSTRAINT] * GHC.Builtin.Types: - New type Constraint = CONSTRAINT LiftedRep - I also stopped nonEmptyTyCon being built-in; it only needs to be wired-in * Exploit the fact that Type and Constraint are distinct throughout GHC - Get rid of tcView in favour of coreView. - Many tcXX functions become XX functions. e.g. tcGetCastedTyVar --> getCastedTyVar * Kill off Note [ForAllTy and typechecker equality], in (old) GHC.Tc.Solver.Canonical. It said that typechecker-equality should ignore the specified/inferred distinction when comparein two ForAllTys. But that wsa only weakly supported and (worse) implies that we need a separate typechecker equality, different from core equality. No no no. * GHC.Core.TyCon: kill off FunTyCon in data TyCon. There was no need for it, and anyway now we have four of them! * GHC.Core.TyCo.Rep: add two FunTyFlags to FunCo See Note [FunCo] in that module. * GHC.Core.Type. Lots and lots of changes driven by adding CONSTRAINT. The key new function is sORTKind_maybe; most other changes are built on top of that. See also `funTyConAppTy_maybe` and `tyConAppFun_maybe`. * Fix a longstanding bug in GHC.Core.Type.typeKind, and Core Lint, in kinding ForAllTys. See new tules (FORALL1) and (FORALL2) in GHC.Core.Type. (The bug was that before (forall (cv::t1 ~# t2). blah), where blah::TYPE IntRep, would get kind (TYPE IntRep), but it should be (TYPE LiftedRep). See Note [Kinding rules for types] in GHC.Core.Type. * GHC.Core.TyCo.Compare is a new module in which we do eqType and cmpType. Of course, no tcEqType any more. * GHC.Core.TyCo.FVs. I moved some free-var-like function into this module: tyConsOfType, visVarsOfType, and occCheckExpand. Refactoring only. * GHC.Builtin.Types. Compiletely re-engineer boxingDataCon_maybe to have one for each /RuntimeRep/, rather than one for each /Type/. This dramatically widens the range of types we can auto-box. See Note [Boxing constructors] in GHC.Builtin.Types The boxing types themselves are declared in library ghc-prim:GHC.Types. GHC.Core.Make. Re-engineer the treatment of "big" tuples (mkBigCoreVarTup etc) GHC.Core.Make, so that it auto-boxes unboxed values and (crucially) types of kind Constraint. That allows the desugaring for arrows to work; it gathers up free variables (including dictionaries) into tuples. See Note [Big tuples] in GHC.Core.Make. There is still work to do here: #22336. But things are better than before. * GHC.Core.Make. We need two absent-error Ids, aBSENT_ERROR_ID for types of kind Type, and aBSENT_CONSTRAINT_ERROR_ID for vaues of kind Constraint. Ditto noInlineId vs noInlieConstraintId in GHC.Types.Id.Make; see Note [inlineId magic]. * GHC.Core.TyCo.Rep. Completely refactor the NthCo coercion. It is now called SelCo, and its fields are much more descriptive than the single Int we used to have. A great improvement. See Note [SelCo] in GHC.Core.TyCo.Rep. * GHC.Core.RoughMap.roughMatchTyConName. Collapse TYPE and CONSTRAINT to a single TyCon, so that the rough-map does not distinguish them. * GHC.Core.DataCon - Mainly just improve documentation * Some significant renamings: GHC.Core.Multiplicity: Many --> ManyTy (easier to grep for) One --> OneTy GHC.Core.TyCo.Rep TyCoBinder --> GHC.Core.Var.PiTyBinder GHC.Core.Var TyCoVarBinder --> ForAllTyBinder AnonArgFlag --> FunTyFlag ArgFlag --> ForAllTyFlag GHC.Core.TyCon TyConTyCoBinder --> TyConPiTyBinder Many functions are renamed in consequence e.g. isinvisibleArgFlag becomes isInvisibleForAllTyFlag, etc * I refactored FunTyFlag (was AnonArgFlag) into a simple, flat data type data FunTyFlag = FTF_T_T -- (->) Type -> Type | FTF_T_C -- (-=>) Type -> Constraint | FTF_C_T -- (=>) Constraint -> Type | FTF_C_C -- (==>) Constraint -> Constraint * GHC.Tc.Errors.Ppr. Some significant refactoring in the TypeEqMisMatch case of pprMismatchMsg. * I made the tyConUnique field of TyCon strict, because I saw code with lots of silly eval's. That revealed that GHC.Settings.Constants.mAX_SUM_SIZE can only be 63, because we pack the sum tag into a 6-bit field. (Lurking bug squashed.) Fixes * #21530 Updates haddock submodule slightly. Performance changes ~~~~~~~~~~~~~~~~~~~ I was worried that compile times would get worse, but after some careful profiling we are down to a geometric mean 0.1% increase in allocation (in perf/compiler). That seems fine. There is a big runtime improvement in T10359 Metric Decrease: LargeRecord MultiLayerModulesTH_OneShot T13386 T13719 Metric Increase: T8095
* Allow configuration of error message printingMatthew Pickering2022-10-181-2/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This MR implements the idea of #21731 that the printing of a diagnostic method should be configurable at the printing time. The interface of the `Diagnostic` class is modified from: ``` class Diagnostic a where diagnosticMessage :: a -> DecoratedSDoc diagnosticReason :: a -> DiagnosticReason diagnosticHints :: a -> [GhcHint] ``` to ``` class Diagnostic a where type DiagnosticOpts a defaultDiagnosticOpts :: DiagnosticOpts a diagnosticMessage :: DiagnosticOpts a -> a -> DecoratedSDoc diagnosticReason :: a -> DiagnosticReason diagnosticHints :: a -> [GhcHint] ``` and so each `Diagnostic` can implement their own configuration record which can then be supplied by a client in order to dictate how to print out the error message. At the moment this only allows us to implement #21722 nicely but in future it is more natural to separate the configuration of how much information we put into an error message and how much we decide to print out of it. Updates Haddock submodule
* Fix typosEric Lindblad2022-09-141-1/+1
| | | | | | | This fixes various typos and spelling mistakes in the compiler. Fixes #21891
* Align the behaviour of `dopt` and `log_dopt`Dominik Peteler2022-07-161-1/+1
| | | | | | | | | | | | | | Before the behaviour of `dopt` and `logHasDumpFlag` (and the underlying function `log_dopt`) were different as the latter did not take the verbosity level into account. This led to problems during the refactoring as we cannot simply replace calls to `dopt` with calls to `logHasDumpFlag`. In addition to that a subtle bug in the GHC module was fixed: `setSessionDynFlags` did not update the logger and as a consequence the verbosity value of the logger was not set appropriately. Fixes #21861
* ghci: Fix most calls to isLoaded to work in multi-modeMatthew Pickering2022-07-091-0/+5
| | | | | | | The most egrarious thing this fixes is the report about the total number of loaded modules after starting a session. Ticket #20889
* Refactor ModuleName to L.H.S.Module.Nameromes2022-07-031-1/+0
| | | | | | | | | | | | | | | ModuleName used to live in GHC.Unit.Module.Name. In this commit, the definition of ModuleName and its associated functions are moved to Language.Haskell.Syntax.Module.Name according to the current plan towards making the AST GHC-independent. The instances for ModuleName for Outputable, Uniquable and Binary were moved to the module in which the class is defined because these instances depend on GHC. The instance of Eq for ModuleName is slightly changed to no longer depend on unique explicitly and instead uses FastString's instance of Eq.
* TTG: Move HsModule to L.H.Sromes2022-07-031-3/+3
| | | | | | | | | Move the definition of HsModule defined in GHC.Hs to Language.Haskell.Syntax with an added TTG parameter and corresponding extension fields. This is progress towards having the haskell-syntax package, as described in #21592
* Change `Backend` type and remove direct dependencieswip/backend-as-recordNorman Ramsey2022-05-211-1/+2
| | | | | | | | | | | | | | | | | | | With this change, `Backend` becomes an abstract type (there are no more exposed value constructors). Decisions that were formerly made by asking "is the current back end equal to (or different from) this named value constructor?" are now made by interrogating the back end about its properties, which are functions exported by `GHC.Driver.Backend`. There is a description of how to migrate code using `Backend` in the user guide. Clients using the GHC API can find a backdoor to access the Backend datatype in GHC.Driver.Backend.Internal. Bumps haddock submodule. Fixes #20927
* Don't store LlvmConfig into DynFlagsSylvain Henry2022-05-171-50/+1
| | | | | | | | | | | | | | | | | | | | | LlvmConfig contains information read from llvm-passes and llvm-targets files in GHC's top directory. Reading these files is done only when needed (i.e. when the LLVM backend is used) and cached for the whole compiler session. This patch changes the way this is done: - Split LlvmConfig into LlvmConfig and LlvmConfigCache - Store LlvmConfigCache in HscEnv instead of DynFlags: there is no good reason to store it in DynFlags. As it is fixed per session, we store it in the session state instead (HscEnv). - Initializing LlvmConfigCache required some changes to driver functions such as newHscEnv. I've used the opportunity to untangle initHscEnv from initGhcMonad (in top-level GHC module) and to move it to GHC.Driver.Main, close to newHscEnv. - I've also made `cmmPipeline` independent of HscEnv in order to remove the call to newHscEnv in regalloc_unit_tests.
* Basic response file supportBen Gamari2022-04-271-1/+1
| | | | | | | | Here we introduce support into our command-line parsing infrastructure and driver for handling gnu-style response file arguments, typically used to work around platform command-line length limitations. Fixes #16476.
* Modularize Tidy (#17957)Sylvain Henry2022-03-251-3/+2
| | | | | | | | - Factorize Tidy options into TidyOpts datatype. Initialize it in GHC.Driver.Config.Tidy - Same thing for StaticPtrOpts - Perform lookups of unpackCString[Utf8]# once in initStaticPtrOpts instead of for every use of mkStringExprWithFS
* hi haddock: Lex and store haddock docs in interface filesZubin Duggal2022-03-231-1/+1
| | | | | | | | | | | | | | | | | | Names appearing in Haddock docstrings are lexed and renamed like any other names appearing in the AST. We currently rename names irrespective of the namespace, so both type and constructor names corresponding to an identifier will appear in the docstring. Haddock will select a given name as the link destination based on its own heuristics. This patch also restricts the limitation of `-haddock` being incompatible with `Opt_KeepRawTokenStream`. The export and documenation structure is now computed in GHC and serialised in .hi files. This can be used by haddock to directly generate doc pages without reparsing or renaming the source. At the moment the operation of haddock is not modified, that's left to a future patch. Updates the haddock submodule with the minimum changes needed.
* driver: Remove needsTemplateHaskellOrQQ from ModuleGraphMatthew Pickering2022-02-231-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | The idea of the needsTemplateHaskellOrQQ query is to check if any of the modules in a module graph need Template Haskell then enable -dynamic-too if necessary. This is quite imprecise though as it will enable -dynamic-too for all modules in the module graph even if only one module uses template haskell, with multiple home units, this is obviously even worse. With -fno-code we already have similar logic to enable code generation just for the modules which are dependeded on my TemplateHaskell modules so we use the same code path to decide whether to enable -dynamic-too rather than using this big hammer. This is part of the larger overall goal of moving as much statically known configuration into the downsweep as possible in order to have fully decided the build plan and all the options before starting to build anything. I also included a fix to #21095, a long standing bug with with the logic which is supposed to enable the external interpreter if we don't have the internal interpreter. Fixes #20696 #21095
* Simplify/correct implementation of getModuleInfoMatthew Pickering2022-02-231-12/+3
|
* Track object file dependencies for TH accurately (#20604)Zubin Duggal2022-02-201-1/+1
| | | | | | | | | | | | | | | | | | | `hscCompileCoreExprHook` is changed to return a list of `Module`s required by a splice. These modules are accumulated in the TcGblEnv (tcg_th_needed_mods). Dependencies on the object files of these modules are recording in the interface. The data structures in `LoaderState` are replaced with more efficient versions to keep track of all the information required. The MultiLayerModulesTH_Make allocations increase slightly but runtime is faster. Fixes #20604 ------------------------- Metric Increase: MultiLayerModulesTH_Make -------------------------
* compiler: Introduce and use RoughMap for instance environmentsBen Gamari2022-02-041-3/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Here we introduce a new data structure, RoughMap, inspired by the previous `RoughTc` matching mechanism for checking instance matches. This allows [Fam]InstEnv to be implemented as a trie indexed by these RoughTc signatures, reducing the complexity of instance lookup and FamInstEnv merging (done during the family instance conflict test) from O(n) to O(log n). The critical performance improvement currently realised by this patch is in instance matching. In particular the RoughMap mechanism allows us to discount many potential instances which will never match for constraints involving type variables (see Note [Matching a RoughMap]). In realistic code bases matchInstEnv was accounting for 50% of typechecker time due to redundant work checking instances when simplifying instance contexts when deriving instances. With this patch the cost is significantly reduced. The larger constants in InstEnv creation do mean that a few small tests regress in allocations slightly. However, the runtime of T19703 is reduced by a factor of 4. Moreover, the compilation time of the Cabal library is slightly improved. A couple of test cases are included which demonstrate significant improvements in compile time with this patch. This unfortunately does not fix the testcase provided in #19703 but does fix #20933 ------------------------- Metric Decrease: T12425 Metric Increase: T13719 T9872a T9872d hard_hole_fits ------------------------- Co-authored-by: Matthew Pickering <matthewtpickering@gmail.com>
* Multiple Home UnitsMatthew Pickering2021-12-281-54/+119
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Multiple home units allows you to load different packages which may depend on each other into one GHC session. This will allow both GHCi and HLS to support multi component projects more naturally. Public Interface ~~~~~~~~~~~~~~~~ In order to specify multiple units, the -unit @⟨filename⟩ flag is given multiple times with a response file containing the arguments for each unit. The response file contains a newline separated list of arguments. ``` ghc -unit @unitLibCore -unit @unitLib ``` where the `unitLibCore` response file contains the normal arguments that cabal would pass to `--make` mode. ``` -this-unit-id lib-core-0.1.0.0 -i -isrc LibCore.Utils LibCore.Types ``` The response file for lib, can specify a dependency on lib-core, so then modules in lib can use modules from lib-core. ``` -this-unit-id lib-0.1.0.0 -package-id lib-core-0.1.0.0 -i -isrc Lib.Parse Lib.Render ``` Then when the compiler starts in --make mode it will compile both units lib and lib-core. There is also very basic support for multiple home units in GHCi, at the moment you can start a GHCi session with multiple units but only the :reload is supported. Most commands in GHCi assume a single home unit, and so it is additional work to work out how to modify the interface to support multiple loaded home units. Options used when working with Multiple Home Units There are a few extra flags which have been introduced specifically for working with multiple home units. The flags allow a home unit to pretend it’s more like an installed package, for example, specifying the package name, module visibility and reexported modules. -working-dir ⟨dir⟩ It is common to assume that a package is compiled in the directory where its cabal file resides. Thus, all paths used in the compiler are assumed to be relative to this directory. When there are multiple home units the compiler is often not operating in the standard directory and instead where the cabal.project file is located. In this case the -working-dir option can be passed which specifies the path from the current directory to the directory the unit assumes to be it’s root, normally the directory which contains the cabal file. When the flag is passed, any relative paths used by the compiler are offset by the working directory. Notably this includes -i and -I⟨dir⟩ flags. -this-package-name ⟨name⟩ This flag papers over the awkward interaction of the PackageImports and multiple home units. When using PackageImports you can specify the name of the package in an import to disambiguate between modules which appear in multiple packages with the same name. This flag allows a home unit to be given a package name so that you can also disambiguate between multiple home units which provide modules with the same name. -hidden-module ⟨module name⟩ This flag can be supplied multiple times in order to specify which modules in a home unit should not be visible outside of the unit it belongs to. The main use of this flag is to be able to recreate the difference between an exposed and hidden module for installed packages. -reexported-module ⟨module name⟩ This flag can be supplied multiple times in order to specify which modules are not defined in a unit but should be reexported. The effect is that other units will see this module as if it was defined in this unit. The use of this flag is to be able to replicate the reexported modules feature of packages with multiple home units. Offsetting Paths in Template Haskell splices ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When using Template Haskell to embed files into your program, traditionally the paths have been interpreted relative to the directory where the .cabal file resides. This causes problems for multiple home units as we are compiling many different libraries at once which have .cabal files in different directories. For this purpose we have introduced a way to query the value of the -working-dir flag to the Template Haskell API. By using this function we can implement a makeRelativeToProject function which offsets a path which is relative to the original project root by the value of -working-dir. ``` import Language.Haskell.TH.Syntax ( makeRelativeToProject ) foo = $(makeRelativeToProject "./relative/path" >>= embedFile) ``` > If you write a relative path in a Template Haskell splice you should use the makeRelativeToProject function so that your library works correctly with multiple home units. A similar function already exists in the file-embed library. The function in template-haskell implements this function in a more robust manner by honouring the -working-dir flag rather than searching the file system. Closure Property for Home Units ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For tools or libraries using the API there is one very important closure property which must be adhered to: > Any dependency which is not a home unit must not (transitively) depend on a home unit. For example, if you have three packages p, q and r, then if p depends on q which depends on r then it is illegal to load both p and r as home units but not q, because q is a dependency of the home unit p which depends on another home unit r. If you are using GHC by the command line then this property is checked, but if you are using the API then you need to check this property yourself. If you get it wrong you will probably get some very confusing errors about overlapping instances. Limitations of Multiple Home Units ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ There are a few limitations of the initial implementation which will be smoothed out on user demand. * Package thinning/renaming syntax is not supported * More complicated reexports/renaming are not yet supported. * It’s more common to run into existing linker bugs when loading a large number of packages in a session (for example #20674, #20689) * Backpack is not yet supported when using multiple home units. * Dependency chasing can be quite slow with a large number of modules and packages. * Loading wired-in packages as home units is currently not supported (this only really affects GHC developers attempting to load template-haskell). * Barely any normal GHCi features are supported, it would be good to support enough for ghcid to work correctly. Despite these limitations, the implementation works already for nearly all packages. It has been testing on large dependency closures, including the whole of head.hackage which is a total of 4784 modules from 452 packages. Internal Changes ~~~~~~~~~~~~~~~~ * The biggest change is that the HomePackageTable is replaced with the HomeUnitGraph. The HomeUnitGraph is a map from UnitId to HomeUnitEnv, which contains information specific to each home unit. * The HomeUnitEnv contains: - A unit state, each home unit can have different package db flags - A set of dynflags, each home unit can have different flags - A HomePackageTable * LinkNode: A new node type is added to the ModuleGraph, this is used to place the linking step into the build plan so linking can proceed in parralel with other packages being built. * New invariant: Dependencies of a ModuleGraphNode can be completely determined by looking at the value of the node. In order to achieve this, downsweep now performs a more complete job of downsweeping and then the dependenices are recorded forever in the node rather than being computed again from the ModSummary. * Some transitive module calculations are rewritten to use the ModuleGraph which is more efficient. * There is always an active home unit, which simplifies modifying a lot of the existing API code which is unit agnostic (for example, in the driver). The road may be bumpy for a little while after this change but the basics are well-tested. One small metric increase, which we accept and also submodule update to haddock which removes ExtendedModSummary. Closes #10827 ------------------------- Metric Increase: MultiLayerModules ------------------------- Co-authored-by: Fendor <power.walross@gmail.com>
* package imports: Take into account package visibility when renamingMatthew Pickering2021-12-091-6/+6
| | | | | | | | | | | | In 806e49ae the package imports refactoring code was modified to rename package imports. There was a small oversight which meant the code didn't account for module visibility. This patch fixes that oversight. In general the "lookupPackageName" function is unsafe to use as it doesn't account for package visiblity/thinning/renaming etc, there is just one use in the compiler which would be good to audit. Fixes #20779
* More support for optional home-unitSylvain Henry2021-11-201-8/+8
| | | | | | | | | This is a preliminary refactoring for #14335 (supporting plugins in cross-compilers). In many places the home-unit must be optional because there won't be one available in the plugin environment (we won't be compiling anything in this environment). Hence we replace "HomeUnit" with "Maybe HomeUnit" in a few places and we avoid the use of "hsc_home_unit" (which is partial) in some few others.
* Refactor package importsSylvain Henry2021-10-221-13/+35
| | | | | | | | | Use an (Raw)PkgQual datatype instead of `Maybe FastString` to represent package imports. Factorize the code that renames RawPkgQual into PkgQual in function `rnPkgQual`. Renaming consists in checking if the FastString is the magic "this" keyword, the home-unit unit-id or something else. Bump haddock submodule
* InteractiveContext: Smarter caching when rebuilding the ic_rn_gbl_envJoachim Breitner2021-10-191-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | The GlobalRdrEnv of a GHCI session changes in odd ways: New bindings are not just added "to the end", but also "in the middle", namely when changing the set of imports: These are treated as if they happened before all bindings from the prompt, even those that happened earlier. Previously, this meant that the `ic_rn_gbl_env` is recalculated from the `ic_tythings`. But this wasteful if `ic_tythings` has many entries that define the same unqualified name. By separately keeping track of a `GlobalRdrEnv` of all the locally defined things we can speed this operation up significantly. This change improves `T14052Type` by 60% (It used to be 70%, but it looks that !6723 already reaped some of the rewards). But more importantly, it hopefully unblocks #20455, becaues with this smarter caching, the change needed to fix that issue will no longer make `T14052` explode. I hope. It does regress `T14052` by 30%; caching isn’t free. Oh well. Metric Decrease: T14052Type Metric Increase: T14052
* ghci: Explicitly store and restore interface file cacheMatthew Pickering2021-10-171-1/+1
| | | | | | | | | | | | | | | | | | | | | In the old days the old HPT was used as an interface file cache when using ghci. The HPT is a `ModuleEnv HomeModInfo` and so if you were using hs-boot files then the interface file from compiling the .hs file would be present in the cache but not the hi-boot file. This used to be ok, because the .hi file used to just be a better version of the .hi-boot file, with more information so it was fine to reuse it. Now the source hash of a module is kept track of in the interface file and the source hash for the .hs and .hs-boot file are correspondingly different so it's no longer safe to reuse an interface file. I took the decision to move the cache management of interface files to GHCi itself, and provide an API where `load` can be provided with a list of interface files which can be used as a cache. An alternative would be to manage this cache somewhere in the HscEnv but it seemed that an API user should be responsible for populating and suppling the cache rather than having it managed implicitly. Fixes #20217
* Move BreakInfo into own moduleJoachim Breitner2021-10-141-1/+1
| | | | | | | | | | while working on GHCi stuff, e.g. `GHC.Runtime.Eval.Types`, I observed a fair amount of modules being recompiled that I didn’t expect to depend on this, from byte code interpreters to linkers. Turns out that the rather simple `BreakInfo` type is all these modules need from the `GHC.Runtime.Eval.*` hierarchy, so by moving that into its own file we make the dependency tree wider and shallower, which is probably worth it.
* GHC: Drop dead packageDbModulesBen Gamari2021-09-291-24/+0
| | | | | It was already commented out and contained a reference to the non-deterministic nameEnvElts so let's just drop it.
* Introduce FinderLocations for decoupling Finder from DynFlagsFendor2021-07-231-3/+8
|
* Use Ways API instead of Set specific functionsFendor2021-07-211-5/+4
|
* Make TmpFs independent of DynFlagsSylvain Henry2021-07-191-2/+3
| | | | | | | | | This is small step towards #19877. We want to make the Loader/Linker interface more abstract to be easily reused (i.e. don't pass it DynFlags) but the system linker uses TmpFs which required a DynFlags value to get its temp directory. We explicitly pass the temp directory now. Similarly TmpFs was consulting the DynFlags to decide whether to clean or: this is now done by the caller in the driver code.
* Avoid unsafePerformIO for getProgNameSylvain Henry2021-07-091-4/+8
| | | | | | | | getProgName was used to append the name of the program (e.g. "ghc") to printed error messages in the Show instance of GhcException. It doesn't belong here as GHCi and GHC API users may want to override this behavior by setting a different error handler. So we now call it in the defaultErrorHandler instead.
* Rename getErrorMessages and getMessages function in parser codewip/adinapoli-issue-19920Alfredo Di Napoli2021-07-081-5/+5
| | | | | | | | | | | This commit renames the `getErrorMessages` and `getMessages` function in the parser code to `getPsErrorMessages` and `getPsMessages`, to avoid import conflicts, as we have already `getErrorMessages` and `getMessages` defined in `GHC.Types.Error`. Fixes #19920. Update haddock submodule
* Dynflags: introduce DiagOptsSylvain Henry2021-07-011-10/+13
| | | | | | | | | | | | | | | | | | | | | | Use DiagOpts for diagnostic options instead of directly querying DynFlags (#17957). Surprising performance improvements on CI: T4801(normal) ghc/alloc 313236344.0 306515216.0 -2.1% GOOD T9961(normal) ghc/alloc 384502736.0 380584384.0 -1.0% GOOD ManyAlternatives(normal) ghc/alloc 797356128.0 786644928.0 -1.3% ManyConstructors(normal) ghc/alloc 4389732432.0 4317740880.0 -1.6% T783(normal) ghc/alloc 408142680.0 402812176.0 -1.3% Metric Decrease: T4801 T9961 T783 ManyAlternatives ManyConstructors Bump haddock submodule
* Remove useless .hs-bootSylvain Henry2021-07-011-1/+0
|
* Make Logger independent of DynFlagsSylvain Henry2021-06-071-28/+38
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Introduce LogFlags as a independent subset of DynFlags used for logging. As a consequence in many places we don't have to pass both Logger and DynFlags anymore. The main reason for this refactoring is that I want to refactor the systools interfaces: for now many systools functions use DynFlags both to use the Logger and to fetch their parameters (e.g. ldInputs for the linker). I'm interested in refactoring the way they fetch their parameters (i.e. use dedicated XxxOpts data types instead of DynFlags) for #19877. But if I did this refactoring before refactoring the Logger, we would have duplicate parameters (e.g. ldInputs from DynFlags and linkerInputs from LinkerOpts). Hence this patch first. Some flags don't really belong to LogFlags because they are subsystem specific (e.g. most DumpFlags). For example -ddump-asm should better be passed in NCGConfig somehow. This patch doesn't fix this tight coupling: the dump flags are part of the UI but they are passed all the way down for example to infer the file name for the dumps. Because LogFlags are a subset of the DynFlags, we must update the former when the latter changes (not so often). As a consequence we now use accessors to read/write DynFlags in HscEnv instead of using `hsc_dflags` directly. In the process I've also made some subsystems less dependent on DynFlags: - CmmToAsm: by passing some missing flags via NCGConfig (see new fields in GHC.CmmToAsm.Config) - Core.Opt.*: - by passing -dinline-check value into UnfoldingOpts - by fixing some Core passes interfaces (e.g. CallArity, FloatIn) that took DynFlags argument for no good reason. - as a side-effect GHC.Core.Opt.Pipeline.doCorePass is much less convoluted.
* Driver Rework PatchMatthew Pickering2021-06-031-42/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | This patch comprises of four different but closely related ideas. The net result is fixing a large number of open issues with the driver whilst making it simpler to understand. 1. Use the hash of the source file to determine whether the source file has changed or not. This makes the recompilation checking more robust to modern build systems which are liable to copy files around changing their modification times. 2. Remove the concept of a "stable module", a stable module was one where the object file was older than the source file, and all transitive dependencies were also stable. Now we don't rely on the modification time of the source file, the notion of stability is moot. 3. Fix TH/plugin recompilation after the removal of stable modules. The TH recompilation check used to rely on stable modules. Now there is a uniform and simple way, we directly track the linkables which were loaded into the interpreter whilst compiling a module. This is an over-approximation but more robust wrt package dependencies changing. 4. Fix recompilation checking for dynamic object files. Now we actually check if the dynamic object file exists when compiling with -dynamic-too Fixes #19774 #19771 #19758 #17434 #11556 #9121 #8211 #16495 #7277 #16093
* Support new parser types in GHCAlfredo Di Napoli2021-05-261-6/+4
| | | | | | | | | | | | | | This commit converts the lexers and all the parser machinery to use the new parser types and diagnostics infrastructure. Furthermore, it cleans up the way the parser code was emitting hints. As a result of this systematic approach, the test output of the `InfixAppPatErr` and `T984` tests have been changed. Previously they would emit a `SuggestMissingDo` hint, but this was not at all helpful in resolving the error, and it was even confusing by just looking at the original program that triggered the errors. Update haddock submodule
* check-{ppr/exact}: Rewrite more directly to just parse filesMatthew Pickering2021-05-241-10/+11
| | | | | | There was quite a large amount of indirection in these tests, so I have rewritten them to just directly parse the files rather than making a module graph and entering other twisty packages.
* Remove useless {-# LANGUAGE CPP #-} pragmasSylvain Henry2021-05-121-1/+2
|
* Fully remove HsVersions.hSylvain Henry2021-05-121-2/+0
| | | | | | | | | | Replace uses of WARN macro with calls to: warnPprTrace :: Bool -> SDoc -> a -> a Remove the now unused HsVersions.h Bump haddock submodule
* Add some DriverMessage type constructorsAlfredo Di Napoli2021-05-051-5/+2
| | | | | | | | | | | | | | | | | | | | | | | This commit expands the DriverMessage type with new type constructors, making the number of diagnostics GHC can emit richer. In particular: * Add DriverMissingHomeModules message * Add DriverUnusedPackage message * Add DriverUnnecessarySourceImports message This commit adds the `DriverUnnecessarySourceImports` message and fixes a small bug in its reporting: inside `warnUnnecessarySourceImports` we were checking for `Opt_WarnUnusedSourceImports` to be set, but we were emitting the diagnostic with `WarningWithoutFlag`. This also adjusts the T10637 test to reflect that. * Add DriverDuplicatedModuleDeclaration message * Add DriverModuleNotFound message * Add DriverFileModuleNameMismatch message * Add DriverUnexpectedSignature message * Add DriverFileNotFound message * Add DriverStaticPointersNotSupported message * Add DriverBackpackModuleNotFound message
* Add GhcMessage and ancillary typesAlfredo Di Napoli2021-04-291-10/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit adds GhcMessage and ancillary (PsMessage, TcRnMessage, ..) types. These types will be expanded to represent more errors generated by different subsystems within GHC. Right now, they are underused, but more will come in the glorious future. See https://gitlab.haskell.org/ghc/ghc/-/wikis/Errors-as-(structured)-values for a design overview. Along the way, lots of other things had to happen: * Adds Semigroup and Monoid instance for Bag * Fixes #19746 by parsing OPTIONS_GHC pragmas into Located Strings. See GHC.Parser.Header.toArgs (moved from GHC.Utils.Misc, where it didn't belong anyway). * Addresses (but does not completely fix) #19709, now reporting desugarer warnings and errors appropriately for TH splices. Not done: reporting type-checker warnings for TH splices. * Some small refactoring around Safe Haskell inference, in order to keep separate classes of messages separate. * Some small refactoring around initDsTc, in order to keep separate classes of messages separate. * Separate out the generation of messages (that is, the construction of the text block) from the wrapping of messages (that is, assigning a SrcSpan). This is more modular than the previous design, which mixed the two. Close #19746. This was a collaborative effort by Alfredo di Napoli and Richard Eisenberg, with a key assist on #19746 by Iavor Diatchki. Metric Increase: MultiLayerModules
* Read constants header instead of global platformConstantsSylvain Henry2021-04-101-9/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | With this patch we switch from reading the globally installed platformConstants file to reading the DerivedConstants.h header file that is bundled in the RTS unit. When we build the RTS unit itself, we get it from its includes directories. The new parser is more efficient and strict than the Read instance for PlatformConstants and we get about 2.2MB less allocations in every cases. However it only really shows in tests that don't allocate much, hence the following metric decreases. Metric Decrease: Naperian T10421 T10547 T12150 T12234 T12425 T13035 T18304 T18923 T5837 T6048 T18140
* Introduce SevIgnore Severity to suppress warningsAlfredo Di Napoli2021-04-051-2/+1
| | | | | | | | | | | | | | | | | | | | | | This commit introduces a new `Severity` type constructor called `SevIgnore`, which can be used to classify diagnostic messages which are not meant to be displayed to the user, for example suppressed warnings. This extra constructor allows us to get rid of a bunch of redundant checks when emitting diagnostics, typically in the form of the pattern: ``` when (optM Opt_XXX) $ addDiagnosticTc (WarningWithFlag Opt_XXX) ... ``` Fair warning! Not all checks should be omitted/skipped, as evaluating some data structures used to produce a diagnostic might still be expensive (e.g. zonking, etc). Therefore, a case-by-case analysis must be conducted when deciding if a check can be removed or not. Last but not least, we remove the unnecessary `CmdLine.WarnReason` type, which is now redundant with `DiagnosticReason`.
* Compute Severity of diagnostics at birthAlfredo Di Napoli2021-04-011-6/+6
| | | | | | | | | | | | | | | | | | | | | This commit further expand on the design for #18516 by getting rid of the `defaultReasonSeverity` in favour of a function called `diagReasonSeverity` which correctly takes the `DynFlags` as input. The idea is to compute the `Severity` and the `DiagnosticReason` of each message "at birth", without doing any later re-classifications, which are potentially error prone, as the `DynFlags` might evolve during the course of the program. In preparation for a proper refactoring, now `pprWarning` from the Parser.Ppr module has been renamed to `mkParserWarn`, which now takes a `DynFlags` as input. We also get rid of the reclassification we were performing inside `printOrThrowWarnings`. Last but not least, this commit removes the need for reclassify inside GHC.Tc.Errors, and also simplifies the implementation of `maybeReportError`. Update Haddock submodule
* Move the EPS into UnitEnvSylvain Henry2021-04-011-0/+2
|
* Move HPT in UnitEnvSylvain Henry2021-04-011-4/+7
|
* Move unit DBs in UnitEnvSylvain Henry2021-04-011-7/+9
| | | | | Also make the HomeUnit optional to keep the field strict and prepare for UnitEnvs without a HomeUnit (e.g. in Plugins envs, cf #14335).
* EPA : Rename AnnComment to EpaCommentAlan Zimmerman2021-03-311-1/+1
| | | | Follow-up from !2418, see #19579
* EPA : rename 'api annotations' to 'exact print annotations'Alan Zimmerman2021-03-311-1/+1
| | | | | | In comments, and notes. Follow-up from !2418, see #19579
* Add `MessageClass`, rework `Severity` and add `DiagnosticReason`.wip/adinapoli-message-class-new-designAlfredo Di Napoli2021-03-291-3/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Other than that: * Fix T16167,json,json2,T7478,T10637 tests to reflect the introduction of the `MessageClass` type * Remove `makeIntoWarning` * Remove `warningsToMessages` * Refactor GHC.Tc.Errors 1. Refactors GHC.Tc.Errors so that we use `DiagnosticReason` for "choices" (defer types errors, holes, etc); 2. We get rid of `reportWarning` and `reportError` in favour of a general `reportDiagnostic`. * Introduce `DiagnosticReason`, `Severity` is an enum: This big commit makes `Severity` a simple enumeration, and introduces the concept of `DiagnosticReason`, which classifies the /reason/ why we are emitting a particular diagnostic. It also adds a monomorphic `DiagnosticMessage` type which is used for generic messages. * The `Severity` is computed (for now) from the reason, statically. Later improvement will add a `diagReasonSeverity` function to compute the `Severity` taking `DynFlags` into account. * Rename `logWarnings` into `logDiagnostics` * Add note and expand description of the `mkHoleError` function
* Add UnitId to Target recordFendor2021-03-281-11/+21
| | | | | | | | | | In the future, we want `HscEnv` to support multiple home units at the same time. This means, that there will be 'Target's that do not belong to the current 'HomeUnit'. This is an API change without changing behaviour. Update haddock submodule to incorporate API changes.