| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
| |
This commit renames the `getErrorMessages` and
`getMessages` function in the parser code to `getPsErrorMessages` and
`getPsMessages`, to avoid import conflicts, as we have already
`getErrorMessages` and `getMessages` defined in `GHC.Types.Error`.
Fixes #19920.
Update haddock submodule
|
|
|
|
|
|
|
|
| |
Now that Outputable is independent of DynFlags, we can put tracing
functions using SDocs into their own module that doesn't transitively
depend on any GHC.Driver.* module.
A few modules needed to be moved to avoid loops in DEBUG mode.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce LogFlags as a independent subset of DynFlags used for logging.
As a consequence in many places we don't have to pass both Logger and
DynFlags anymore.
The main reason for this refactoring is that I want to refactor the
systools interfaces: for now many systools functions use DynFlags both
to use the Logger and to fetch their parameters (e.g. ldInputs for the
linker). I'm interested in refactoring the way they fetch their
parameters (i.e. use dedicated XxxOpts data types instead of DynFlags)
for #19877. But if I did this refactoring before refactoring the Logger,
we would have duplicate parameters (e.g. ldInputs from DynFlags and
linkerInputs from LinkerOpts). Hence this patch first.
Some flags don't really belong to LogFlags because they are subsystem
specific (e.g. most DumpFlags). For example -ddump-asm should better be
passed in NCGConfig somehow. This patch doesn't fix this tight coupling:
the dump flags are part of the UI but they are passed all the way down
for example to infer the file name for the dumps.
Because LogFlags are a subset of the DynFlags, we must update the former
when the latter changes (not so often). As a consequence we now use
accessors to read/write DynFlags in HscEnv instead of using `hsc_dflags`
directly.
In the process I've also made some subsystems less dependent on DynFlags:
- CmmToAsm: by passing some missing flags via NCGConfig (see new fields
in GHC.CmmToAsm.Config)
- Core.Opt.*:
- by passing -dinline-check value into UnfoldingOpts
- by fixing some Core passes interfaces (e.g. CallArity, FloatIn)
that took DynFlags argument for no good reason.
- as a side-effect GHC.Core.Opt.Pipeline.doCorePass is much less
convoluted.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In which we add a new code generator to the Glasgow Haskell
Compiler. This codegen supports ELF and Mach-O targets, thus covering
Linux, macOS, and BSDs in principle. It was tested only on macOS and
Linux. The NCG follows a similar structure as the other native code
generators we already have, and should therfore be realtively easy to
follow.
It supports most of the features required for a proper native code
generator, but does not claim to be perfect or fully optimised. There
are still opportunities for optimisations.
Metric Decrease:
ManyAlternatives
ManyConstructors
MultiLayerModules
PmSeriesG
PmSeriesS
PmSeriesT
PmSeriesV
T10421
T10421a
T10858
T11195
T11276
T11303b
T11374
T11822
T12227
T12545
T12707
T13035
T13253
T13253-spj
T13379
T13701
T13719
T14683
T14697
T15164
T15630
T16577
T17096
T17516
T17836
T17836b
T17977
T17977b
T18140
T18282
T18304
T18478
T18698a
T18698b
T18923
T1969
T3064
T5030
T5321FD
T5321Fun
T5631
T5642
T5837
T783
T9198
T9233
T9630
T9872d
T9961
WWRec
Metric Increase:
T4801
|
|
|
|
|
|
|
|
| |
The stg_ctoi_t and stg_ret_t procedures which convert unboxed
tuples between the bytecode an native calling convention were
causing a panic when using the LLVM backend.
Fixes #19591
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit converts the lexers and all the parser machinery to use the
new parser types and diagnostics infrastructure. Furthermore, it cleans
up the way the parser code was emitting hints.
As a result of this systematic approach, the test output of the
`InfixAppPatErr` and `T984` tests have been changed. Previously they
would emit a `SuggestMissingDo` hint, but this was not at all helpful in
resolving the error, and it was even confusing by just looking at the
original program that triggered the errors.
Update haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Suppose a safe call: myCall(x,y,z)
It is lowered into three unsafe calls in Cmm:
r = suspendThread(...);
myCall(x,y,z);
resumeThread(r);
Consider the following situation for myCall arguments:
x = Sp[..] -- stack
y = Hp[..] -- heap
z = R1 -- global register
r = suspendThread(...);
myCall(x,y,z);
resumeThread(r);
The sink pass assumes that unsafe calls clobber memory (heap and stack),
hence x and y assignments are not sunk after `suspendThread`. The sink
pass also correctly handles global register clobbering for all unsafe
calls, except `suspendThread`!
`suspendThread` is special because it releases the capability the thread
is running on. Hence the sink pass must also take into account global
registers that are mapped into memory (in the capability).
In the example above, we could get:
r = suspendThread(...);
z = R1
myCall(x,y,z);
resumeThread(r);
But this transformation isn't valid if R1 is (BaseReg->rR1) as BaseReg
is invalid between suspendThread and resumeThread. This caused argument
corruption at least with the C backend ("unregisterised") in #19237.
Fix #19237
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Replace uses of WARN macro with calls to:
warnPprTrace :: Bool -> SDoc -> a -> a
Remove the now unused HsVersions.h
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is no reason to use CPP. __LINE__ and __FILE__ macros are now
better replaced with GHC's CallStack. As a bonus, assert error messages
now contain more information (function name, column).
Here is the mapping table (HasCallStack omitted):
* ASSERT: assert :: Bool -> a -> a
* MASSERT: massert :: Bool -> m ()
* ASSERTM: assertM :: m Bool -> m ()
* ASSERT2: assertPpr :: Bool -> SDoc -> a -> a
* MASSERT2: massertPpr :: Bool -> SDoc -> m ()
* ASSERTM2: assertPprM :: m Bool -> SDoc -> m ()
|
|
|
|
| |
non-determinism justification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
1. `text` is as efficient as `ptext . sLit` thanks to the rewrite rules
2. `text` is visually nicer than `ptext . sLit`
3. `ptext . sLit` encourages using one `ptext` for several `sLit` as in:
ptext $ case xy of
... -> sLit ...
... -> sLit ...
which may allocate SDoc's TextBeside constructors at runtime instead
of sharing them into CAFs.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously Unarise would happily project lifted and unlifted fields
to lifted slots. This broke horribly in #19645, where a ByteArray# was
passed in a lifted slot and consequently entered. The simplest way to
fix this is what I've done here, distinguishing between lifted and
unlifted slots in unarise.
However, one can imagine more clever solutions, where we coerce the
binder to the correct levity with respect to the sum's tag. I doubt that
this would be worth the effort.
Fixes #19645.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A few refactorings made after looking at Core/STG
* Use Doc instead of SDoc in pprASCII to avoid passing the SDocContext
that is never used.
* Inline every SDoc wrappers in GHC.Utils.Outputable to expose Doc
constructs
* Add text/[] rule for empty strings (i.e., text "")
* Use a single occurrence of pprGNUSectionHeader
* Use bangs on Platform parameters and some others
Metric Decrease:
ManyAlternatives
ManyConstructors
T12707
T13035
T13379
T18698a
T18698b
T1969
T3294
T4801
T5321FD
T783
|
|
|
|
|
|
|
| |
This allows us to use the unsafe shifts in non-debug builds for performance.
For older versions of base we instead export Data.Bits
See also #19618
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch cleans up the complexity around WW's `mk_absent_let` by
broadening the scope of `LitRubbish`. Rubbish literals now store the
`PrimRep` they represent and are ultimately lowered in Cmm.
This in turn allows absent literals of `VecRep` or `VoidRep`. The latter
allows absent literals for unlifted coercions, as requested in #18983.
I took the liberty to rewrite and clean up `Note [Absent fillers]` and
`Note [Rubbish values]` to account for the new implementation and to
make them more orthogonal in their description.
I didn't add a new regression test, as `T18982` already contains the
test in the ticket and its test output changes as expected.
Fixes #18983.
|
|
|
|
|
|
| |
tuples and sums.
fixes #1257
|
|
|
|
|
| |
Metric Increase:
MultiLayerModules
|
|
|
|
|
| |
The 'id' type is now determined by the pass, using the XTickishId
type family.
|
|
|
|
|
|
|
|
| |
GHCi needs to know the types of all breakpoints, but it's
not possible to get the exprType of any expression in STG.
This is preparation for the upcoming change to make GHCi
bytecode from STG instead of Core.
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes two classes of warnings that appear when bootstrapping with GHC 9.0:
* `ghc-boot.cabal` was using `cabal-version: >=1.22`, which `cabal-install-3.4`
now warns about, instead recommending the use of `cabal-version: 1.22`.
* Several pattern matches were producing `Pattern match(es) are non-exhaustive`
because of incorrect CPP. The pattern-match coverage checker _did_ become
smarter in GHC 9.1, however, so I ended up needing to keep the CPP, adjusting
them to use `#if __GLASGOW_HASKELL__ < 901` instead.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The `-fdistinct-constructor-tables` flag will generate a fresh info
table for the usage of any data constructor. This is useful for
debugging as now by inspecting the info table, you can determine which
usage of a constructor caused that allocation rather than the old
situation where the info table always mapped to the definition site of
the data constructor which is useless.
In conjunction with `-hi` and `-finfo-table-map` this gives a more fine
grained understanding of where constructor allocations arise from in a
program.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This new flag embeds a lookup table from the address of an info table
to information about that info table.
The main interface for consulting the map is the `lookupIPE` C function
> InfoProvEnt * lookupIPE(StgInfoTable *info)
The `InfoProvEnt` has the following structure:
> typedef struct InfoProv_{
> char * table_name;
> char * closure_desc;
> char * ty_desc;
> char * label;
> char * module;
> char * srcloc;
> } InfoProv;
>
> typedef struct InfoProvEnt_ {
> StgInfoTable * info;
> InfoProv prov;
> struct InfoProvEnt_ *link;
> } InfoProvEnt;
The source positions are approximated in a similar way to the source
positions for DWARF debugging information. They are only approximate but
in our experience provide a good enough hint about where the problem
might be. It is therefore recommended to use this flag in conjunction
with `-g<n>` for more accurate locations.
The lookup table is also emitted into the eventlog when it is available
as it is intended to be used with the `-hi` profiling mode.
Using this flag will significantly increase the size of the resulting
object file but only by a factor of 2-3x in our experience.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
'Stream' is implemented in the "yoneda" style for efficiency. By
representing a stream in this manner 'fmap' and '>>=' operations are
accumulated in the function parameters before being applied once when
the stream is destroyed. In the old implementation each usage of 'mapM'
and '>>=' would traverse the entire stream in order to apply the
substitution at the leaves. It is well-known for free monads that this
representation can improve performance, and the test results
demonstrate this for GHC as well.
The operation mapAccumL is not used in the compiler and can't be
implemented efficiently because it requires destroying and rebuilding
the stream.
I removed one use of mapAccumL_ which has similar problems but the other
use was difficult to remove. In the future it may be worth exploring
whether the 'Stream' encoding could be modified further to capture the
mapAccumL pattern, and likewise defer the passing of accumulation
parameter until the stream is finally consumed.
The >>= operation for 'Stream' was a hot-spot in the ticky profile for
the "ManyConstructors" test which called the 'cg' function many times in
"StgToCmm.hs"
Metric Decrease:
ManyConstructors
|
|
|
|
|
| |
This was observed to build up thunks which were forced by using
a `-hi` profile and T3294 as a test.
|
|
|
|
|
| |
This value is eventually forced so don't build up thunks.
Observed with T3294 and -hi profile.
|
|
|
|
|
|
| |
I observed this accumulating in the T3294 test only to be eventually
forced (by a -hi profile). As it is only word big, forcing it saves quite a bit of
allocation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this patch, the only way to override GHC's default logging
behavior was to set `log_action`, `dump_action` and `trace_action`
fields in DynFlags. This patch introduces a new Logger abstraction and
stores it in HscEnv instead.
This is part of #17957 (avoid storing state in DynFlags). DynFlags are
duplicated and updated per-module (because of OPTIONS_GHC pragma), so
we shouldn't store global state in them.
This patch also fixes a race in parallel "--make" mode which updated
the `generatedDumps` IORef concurrently.
Bump haddock submodule
The increase in MultilayerModules is tracked in #19293.
Metric Increase:
MultiLayerModules
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Related to a future change in Data.List,
https://downloads.haskell.org/ghc/8.10.3/docs/html/users_guide/using-warnings.html?highlight=wcompat#ghc-flag--Wcompat-unqualified-imports
Companion pull&merge requests:
- https://github.com/judah/haskeline/pull/153
- https://github.com/haskell/containers/pull/762
- https://gitlab.haskell.org/ghc/packages/hpc/-/merge_requests/9
After these the actual change in Data.List should be easy to do.
|
|
|
|
|
| |
This isn't a bug yet, because we only shift native-sized types, but I
hope to change that.
|
|
|
|
|
|
|
|
|
| |
This commit renames parser's Error and Warning types (and their
constructors) to have a 'Ps' prefix, so that this would play nicely
when more errors and warnings for other phases of the pipeline will
be added. This will make more explicit which is the particular type
of error and warning we are dealing with, and will be more informative
for users to see in the generated Haddock.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The unit database cache, the home unit and the unit state were stored in
DynFlags while they ought to be stored in the compiler session state
(HscEnv). This patch fixes this.
It introduces a new UnitEnv type that should be used in the future to
handle separate unit environments (especially host vs target units).
Related to #17957
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Optimization either returns Nothing if nothing is to be done or
`Just <cmmExpr>` otherwise. There is no point in being lazy in
`cmmExpr`. We usually inspect this element so the thunk gets forced
not long after.
We might eliminate it as dead code once in a blue moon but that's
not a case worth optimizing for.
Overall the impact of this is rather low. As Cmm.Opt doesn't allocate
much (compared to the rest of GHC) to begin with.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Sinking requires us to track live local regs after each
cmm statement. We used to do this via "Set LocalReg".
However we can replace this with a solution based on IntSet
which is overall more efficient without losing much. The thing
we lose is width of the variables, which isn't used by the sinking
pass anyway.
I also reworked how we keep assignments to regs mentioned in
skipped assignments. I put the details into
Note [Keeping assignemnts mentioned in skipped RHSs].
The gist of it is instead of keeping track of it via the use count
which is a `IntMap Int` we now use the live regs set (IntSet) which
is quite a bit faster.
I think it also matches the semantics a lot better. The skipped
(not discarded) assignment does in fact keep the regs on it's rhs
alive so keeping track of this in the live set seems like the clearer
solution as well.
Improves allocations for T3294 by yet another 1%.
|
|
|
|
|
|
| |
About 0.6% reduction in allocations for the code I was looking at.
Not a huge difference but no need to throw away performance.
|
|
|
|
|
| |
Helps avoid allocating the folding function. Improves
perf for T3294 by about 1%.
|
|
|
|
|
|
|
|
|
| |
Reduces allocation for the test case I was looking at by about 1.2%.
Mostly from avoiding allocation of some folding functions which turn
into let-no-escape bindings which just reuse their environment instead.
We also force inlining in a few key places in CmmSink which helps a bit
more.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch redesigns the flattener to simplify type family applications
directly instead of using flattening meta-variables and skolems. The key new
innovation is the CanEqLHS type and the new CEqCan constraint (Ct). A CanEqLHS
is either a type variable or exactly-saturated type family application; either
can now be rewritten using a CEqCan constraint in the inert set.
Because the flattener no longer reduces all type family applications to
variables, there was some performance degradation if a lengthy type family
application is now flattened over and over (not making progress). To
compensate, this patch contains some extra optimizations in the flattener,
leading to a number of performance improvements.
Close #18875.
Close #18910.
There are many extra parts of the compiler that had to be affected in writing
this patch:
* The family-application cache (formerly the flat-cache) sometimes stores
coercions built from Given inerts. When these inerts get kicked out, we must
kick out from the cache as well. (This was, I believe, true previously, but
somehow never caused trouble.) Kicking out from the cache requires adding a
filterTM function to TrieMap.
* This patch obviates the need to distinguish "blocking" coercion holes from
non-blocking ones (which, previously, arose from CFunEqCans). There is thus
some simplification around coercion holes.
* Extra commentary throughout parts of the code I read through, to preserve
the knowledge I gained while working.
* A change in the pure unifier around unifying skolems with other types.
Unifying a skolem now leads to SurelyApart, not MaybeApart, as documented
in Note [Binding when looking up instances] in GHC.Core.InstEnv.
* Some more use of MCoercion where appropriate.
* Previously, class-instance lookup automatically noticed that e.g. C Int was
a "unifier" to a target [W] C (F Bool), because the F Bool was flattened to
a variable. Now, a little more care must be taken around checking for
unifying instances.
* Previously, tcSplitTyConApp_maybe would split (Eq a => a). This is silly,
because (=>) is not a tycon in Haskell. Fixed now, but there are some
knock-on changes in e.g. TrieMap code and in the canonicaliser.
* New function anyFreeVarsOf{Type,Co} to check whether a free variable
satisfies a certain predicate.
* Type synonyms now remember whether or not they are "forgetful"; a forgetful
synonym drops at least one argument. This is useful when flattening; see
flattenView.
* The pattern-match completeness checker invokes the solver. This invocation
might need to look through newtypes when checking representational equality.
Thus, the desugarer needs to keep track of the in-scope variables to know
what newtype constructors are in scope. I bet this bug was around before but
never noticed.
* Extra-constraints wildcards are no longer simplified before printing.
See Note [Do not simplify ConstraintHoles] in GHC.Tc.Solver.
* Whether or not there are Given equalities has become slightly subtler.
See the new HasGivenEqs datatype.
* Note [Type variable cycles in Givens] in GHC.Tc.Solver.Canonical
explains a significant new wrinkle in the new approach.
* See Note [What might match later?] in GHC.Tc.Solver.Interact, which
explains the fix to #18910.
* The inert_count field of InertCans wasn't actually used, so I removed
it.
Though I (Richard) did the implementation, Simon PJ was very involved
in design and review.
This updates the Haddock submodule to avoid #18932 by adding
a type signature.
-------------------------
Metric Decrease:
T12227
T5030
T9872a
T9872b
T9872c
Metric Increase:
T9872d
-------------------------
|
|
|
|
|
|
|
|
|
|
| |
This sets the stage for a later change, where this
algorithm will be needed from GHC.Core.InstEnv.
This commit also splits GHC.Core.Map into
GHC.Core.Map.Type and GHC.Core.Map.Expr,
in order to avoid module import cycles
with GHC.Core.
|
|
|
|
|
|
|
|
| |
Inside `regsUsedIn` we can avoid some thunks by specializing the
recursion. In particular we avoid the thunk for `(f e z)` in the
MachOp/Load branches, where we know this will evaluate to z.
Reduces allocations for T3294 by ~1%.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This replaces all Word<N> = W<N># Word# and Int<N> = I<N># Int# with
Word<N> = W<N># Word<N># and Int<N> = I<N># Int<N>#, thus providing us
with properly sized primitives in the codegenerator instead of pretending
they are all full machine words.
This came up when implementing darwinpcs for arm64. The darwinpcs reqires
us to pack function argugments in excess of registers on the stack. While
most procedure call standards (pcs) assume arguments are just passed in
8 byte slots; and thus the caller does not know the exact signature to make
the call, darwinpcs requires us to adhere to the prototype, and thus have
the correct sizes. If we specify CInt in the FFI call, it should correspond
to the C int, and not just be Word sized, when it's only half the size.
This does change the expected output of T16402 but the new result is no
less correct as it eliminates the narrowing (instead of the `and` as was
previously done).
Bumps the array, bytestring, text, and binary submodules.
Co-Authored-By: Ben Gamari <ben@well-typed.com>
Metric Increase:
T13701
T14697
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously the `.debug_aranges` and `.debug_info` (DIE) DWARF
information would claim that procedures (represented with a
`DW_TAG_subprogram` DIE) would only span the range covered by their entry
block. This omitted all of the continuation blocks (represented by
`DW_TAG_lexical_block` DIEs), confusing `perf`. Fix this by introducing
a end-of-procedure label and using this as the `DW_AT_high_pc` of
procedure `DW_TAG_subprogram` DIEs
Fixes #17605.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It turns out that some important native debugging/profiling tools (e.g.
perf) rely only on symbol tables for function name resolution (as
opposed to using DWARF DIEs). However, previously GHC would emit
temporary symbols (e.g. `.La42b`) to identify module-internal
entities. Such symbols are dropped during linking and therefore not
visible to runtime tools (in addition to having rather un-helpful unique
names). For instance, `perf report` would often end up attributing all
cost to the libc `frame_dummy` symbol since Haskell code was no covered
by any proper symbol (see #17605).
We now rather follow the model of C compilers and emit
descriptively-named local symbols for module internal things. Since this
will increase object file size this behavior can be disabled with the
`-fno-expose-internal-symbols` flag.
With this `perf record` can finally be used against Haskell executables.
Even more, with `-g3` `perf annotate` provides inline source code.
|
|
|
|
|
|
| |
In various places in the NCG we need the Module currently being
compiled. Let's move this into the environment instead of chewing threw
another register.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I was working on making DynFlags stateless (#17957), especially by
storing loaded plugins into HscEnv instead of DynFlags. It turned out to
be complicated because HscEnv is in GHC.Driver.Types but LoadedPlugin
isn't: it is in GHC.Driver.Plugins which depends on GHC.Driver.Types. I
didn't feel like introducing yet another hs-boot file to break the loop.
Additionally I remember that while we introduced the module hierarchy
(#13009) we talked about splitting GHC.Driver.Types because it contained
various unrelated types and functions, but we never executed. I didn't
feel like making GHC.Driver.Types bigger with more unrelated Plugins
related types, so finally I bit the bullet and split GHC.Driver.Types.
As a consequence this patch moves a lot of things. I've tried to put
them into appropriate modules but nothing is set in stone.
Several other things moved to avoid loops.
* Removed Binary instances from GHC.Utils.Binary for random compiler
things
* Moved Typeable Binary instances into GHC.Utils.Binary.Typeable: they
import a lot of things that users of GHC.Utils.Binary don't want to
depend on.
* put everything related to Units/Modules under GHC.Unit:
GHC.Unit.Finder, GHC.Unit.Module.{ModGuts,ModIface,Deps,etc.}
* Created several modules under GHC.Types: GHC.Types.Fixity, SourceText,
etc.
* Split GHC.Utils.Error (into GHC.Types.Error)
* Finally removed GHC.Driver.Types
Note that this patch doesn't put loaded plugins into HscEnv. It's left
for another patch.
Bump haddock submodule
|
| |
|
|
|
|
|
|
| |
pdocPrec was only used in GHC.Cmm.DebugBlock.pprUnwindExpr, so remove
it. OutputableP becomes a one-function class which might be better for
performance.
|