| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
| |
This allows us to use an Anchor with a DeltaPos in it when exact
printing.
|
|
|
|
|
|
|
|
|
| |
Use an (Raw)PkgQual datatype instead of `Maybe FastString` to represent
package imports. Factorize the code that renames RawPkgQual into PkgQual
in function `rnPkgQual`. Renaming consists in checking if the FastString
is the magic "this" keyword, the home-unit unit-id or something else.
Bump haddock submodule
|
|
|
|
| |
We no longer need it after previous IndefUnitId refactoring.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ModLocation is the data type which tells you the locations of all the
build products which can affect recompilation. It is now computed in one
place and not modified through the pipeline. Important locations will
now just consult ModLocation rather than construct the dynamic object
path incorrectly.
* Add paths for dynamic object and dynamic interface files to
ModLocation.
* Always use the paths from mod location when looking for where to find
any interface or object file.
* Always use the paths in a ModLocation when deciding where to write an
interface and object file.
* Remove `dynamicOutputFile` and `dynamicOutputHi` functions which
*calculated* (incorrectly) the location of `dyn_o` and `dyn_hi` files.
* Don't set `outputFile_` and so-on in `enableCodeGenWhen`, `-o` and
hence `outputFile_` should not affect the location of object files in
`--make` mode. It is now sufficient to just update the ModLocation with
the temporary paths.
* In `hscGenBackendPipeline` don't recompute the `ModLocation` to
account for `-dynamic-too`, the paths are now accurate from the start
of the run.
* Rename `getLocation` to `mkOneShotModLocation`, as that's the only
place it's used. Increase the locality of the definition by moving it
close to the use-site.
* Load the dynamic interface from ml_dyn_hi_file rather than attempting
to reconstruct it in load_dynamic_too.
* Add a variety of tests to check how -o -dyno etc interact with each
other.
Some other clean-ups
* DeIOify mkHomeModLocation and friends, they are all pure functions.
* Move FinderOpts into GHC.Driver.Config.Finder, next to initFinderOpts.
* Be more precise about whether we mean outputFile or outputFile_: there
were many places where outputFile was used but the result shouldn't have
been affected by `-dyno` (for example the filename of the resulting
executable). In these places dynamicNow would never be set but it's
still more precise to not allow for this possibility.
* Typo fixes suffices -> suffixes in the appropiate places.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In the old days the old HPT was used as an interface file cache when
using ghci. The HPT is a `ModuleEnv HomeModInfo` and so if you were
using hs-boot files then the interface file from compiling the .hs file
would be present in the cache but not the hi-boot file. This used to be
ok, because the .hi file used to just be a better version of the
.hi-boot file, with more information so it was fine to reuse it. Now the
source hash of a module is kept track of in the interface file and the
source hash for the .hs and .hs-boot file are correspondingly different
so it's no longer safe to reuse an interface file.
I took the decision to move the cache management of interface files to
GHCi itself, and provide an API where `load` can be provided with a list
of interface files which can be used as a cache. An alternative would be
to manage this cache somewhere in the HscEnv but it seemed that an API
user should be responsible for populating and suppling the cache rather
than having it managed implicitly.
Fixes #20217
|
|
|
|
|
|
|
|
|
|
| |
Backpack used to initialise the logger before obtaining the
DynFlags. This meant that logging options (such as dump flags)
were not set.
Initialising the logger after the session flags have been set
fixes the issue.
fixes #20396
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch specifies and simplifies the module cycle compilation
in upsweep. How things work are described in the Note [Upsweep]
Note [Upsweep]
~~~~~~~~~~~~~~
Upsweep takes a 'ModuleGraph' as input, computes a build plan and then executes
the plan in order to compile the project.
The first step is computing the build plan from a 'ModuleGraph'.
The output of this step is a `[BuildPlan]`, which is a topologically sorted plan for
how to build all the modules.
```
data BuildPlan = SingleModule ModuleGraphNode -- A simple, single module all alone but *might* have an hs-boot file which isn't part of a cycle
| ResolvedCycle [ModuleGraphNode] -- A resolved cycle, linearised by hs-boot files
| UnresolvedCycle [ModuleGraphNode] -- An actual cycle, which wasn't resolved by hs-boot files
```
The plan is computed in two steps:
Step 1: Topologically sort the module graph without hs-boot files. This returns a [SCC ModuleGraphNode] which contains
cycles.
Step 2: For each cycle, topologically sort the modules in the cycle *with* the relevant hs-boot files. This should
result in an acyclic build plan if the hs-boot files are sufficient to resolve the cycle.
The `[BuildPlan]` is then interpreted by the `interpretBuildPlan` function.
* `SingleModule nodes` are compiled normally by either the upsweep_inst or upsweep_mod functions.
* `ResolvedCycles` need to compiled "together" so that the information which ends up in
the interface files at the end is accurate (and doesn't contain temporary information from
the hs-boot files.)
- During the initial compilation, a `KnotVars` is created which stores an IORef TypeEnv for
each module of the loop. These IORefs are gradually updated as the loop completes and provide
the required laziness to typecheck the module loop.
- At the end of typechecking, all the interface files are typechecked again in
the retypecheck loop. This time, the knot-tying is done by the normal laziness
based tying, so the environment is run without the KnotVars.
* UnresolvedCycles are indicative of a proper cycle, unresolved by hs-boot files
and are reported as an error to the user.
The main trickiness of `interpretBuildPlan` is deciding which version of a dependency
is visible from each module. For modules which are not in a cycle, there is just
one version of a module, so that is always used. For modules in a cycle, there are two versions of
'HomeModInfo'.
1. Internal to loop: The version created whilst compiling the loop by upsweep_mod.
2. External to loop: The knot-tied version created by typecheckLoop.
Whilst compiling a module inside the loop, we need to use the (1). For a module which
is outside of the loop which depends on something from in the loop, the (2) version
is used.
As the plan is interpreted, which version of a HomeModInfo is visible is updated
by updating a map held in a state monad. So after a loop has finished being compiled,
the visible module is the one created by typecheckLoop and the internal version is not
used again.
This plan also ensures the most important invariant to do with module loops:
> If you depend on anything within a module loop, before you can use the dependency,
the whole loop has to finish compiling.
The end result of `interpretBuildPlan` is a `[MakeAction]`, which are pairs
of `IO a` actions and a `MVar (Maybe a)`, somewhere to put the result of running
the action. This list is topologically sorted, so can be run in order to compute
the whole graph.
As well as this `interpretBuildPlan` also outputs an `IO [Maybe (Maybe HomeModInfo)]` which
can be queried at the end to get the result of all modules at the end, with their proper
visibility. For example, if any module in a loop fails then all modules in that loop will
report as failed because the visible node at the end will be the result of retypechecking
those modules together.
Along the way we also fix a number of other bugs in the driver:
* Unify upsweep and parUpsweep.
* Fix #19937 (static points, ghci and -j)
* Adds lots of module loop tests due to Divam.
Also related to #20030
Co-authored-by: Divam Narula <dfordivam@gmail.com>
-------------------------
Metric Decrease:
T10370
-------------------------
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The GHC.Prim module is quite special as there is no interface file,
therefore it doesn't appear in ms_textual_imports, but the ghc-prim
package does appear in the direct package dependencies. This confused
the recompilation checking which couldn't find any modules from ghc-prim
and concluded that the package was no longer a dependency.
The fix is to keep track of whether GHC.Prim is imported separately in
the relevant places.
Fixes #20084
|
|
|
|
|
|
|
|
|
|
|
| |
This commit renames the `getErrorMessages` and
`getMessages` function in the parser code to `getPsErrorMessages` and
`getPsMessages`, to avoid import conflicts, as we have already
`getErrorMessages` and `getMessages` defined in `GHC.Types.Error`.
Fixes #19920.
Update haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use DiagOpts for diagnostic options instead of directly querying
DynFlags (#17957).
Surprising performance improvements on CI:
T4801(normal) ghc/alloc 313236344.0 306515216.0 -2.1% GOOD
T9961(normal) ghc/alloc 384502736.0 380584384.0 -1.0% GOOD
ManyAlternatives(normal) ghc/alloc 797356128.0 786644928.0 -1.3%
ManyConstructors(normal) ghc/alloc 4389732432.0 4317740880.0 -1.6%
T783(normal) ghc/alloc 408142680.0 402812176.0 -1.3%
Metric Decrease:
T4801
T9961
T783
ManyAlternatives
ManyConstructors
Bump haddock submodule
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This is an attempt at reducing the number of dependencies of the Parser
(as reported by CountParserDeps). Modules in GHC.Parser.* don't import
GHC.Driver.Session directly anymore.
Sadly some GHC.Driver.* modules are still transitively imported and the
number of dependencies didn't decrease. But it's a step in the right
direction.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce LogFlags as a independent subset of DynFlags used for logging.
As a consequence in many places we don't have to pass both Logger and
DynFlags anymore.
The main reason for this refactoring is that I want to refactor the
systools interfaces: for now many systools functions use DynFlags both
to use the Logger and to fetch their parameters (e.g. ldInputs for the
linker). I'm interested in refactoring the way they fetch their
parameters (i.e. use dedicated XxxOpts data types instead of DynFlags)
for #19877. But if I did this refactoring before refactoring the Logger,
we would have duplicate parameters (e.g. ldInputs from DynFlags and
linkerInputs from LinkerOpts). Hence this patch first.
Some flags don't really belong to LogFlags because they are subsystem
specific (e.g. most DumpFlags). For example -ddump-asm should better be
passed in NCGConfig somehow. This patch doesn't fix this tight coupling:
the dump flags are part of the UI but they are passed all the way down
for example to infer the file name for the dumps.
Because LogFlags are a subset of the DynFlags, we must update the former
when the latter changes (not so often). As a consequence we now use
accessors to read/write DynFlags in HscEnv instead of using `hsc_dflags`
directly.
In the process I've also made some subsystems less dependent on DynFlags:
- CmmToAsm: by passing some missing flags via NCGConfig (see new fields
in GHC.CmmToAsm.Config)
- Core.Opt.*:
- by passing -dinline-check value into UnfoldingOpts
- by fixing some Core passes interfaces (e.g. CallArity, FloatIn)
that took DynFlags argument for no good reason.
- as a side-effect GHC.Core.Opt.Pipeline.doCorePass is much less
convoluted.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch comprises of four different but closely related ideas. The
net result is fixing a large number of open issues with the driver
whilst making it simpler to understand.
1. Use the hash of the source file to determine whether the source file
has changed or not. This makes the recompilation checking more robust to
modern build systems which are liable to copy files around changing
their modification times.
2. Remove the concept of a "stable module", a stable module was one
where the object file was older than the source file, and all transitive
dependencies were also stable. Now we don't rely on the modification
time of the source file, the notion of stability is moot.
3. Fix TH/plugin recompilation after the removal of stable modules. The
TH recompilation check used to rely on stable modules. Now there is a
uniform and simple way, we directly track the linkables which were
loaded into the interpreter whilst compiling a module. This is an
over-approximation but more robust wrt package dependencies changing.
4. Fix recompilation checking for dynamic object files. Now we actually
check if the dynamic object file exists when compiling with -dynamic-too
Fixes #19774 #19771 #19758 #17434 #11556 #9121 #8211 #16495 #7277 #16093
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit converts the lexers and all the parser machinery to use the
new parser types and diagnostics infrastructure. Furthermore, it cleans
up the way the parser code was emitting hints.
As a result of this systematic approach, the test output of the
`InfixAppPatErr` and `T984` tests have been changed. Previously they
would emit a `SuggestMissingDo` hint, but this was not at all helpful in
resolving the error, and it was even confusing by just looking at the
original program that triggered the errors.
Update haddock submodule
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Replace uses of WARN macro with calls to:
warnPprTrace :: Bool -> SDoc -> a -> a
Remove the now unused HsVersions.h
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit expands the DriverMessage type with new type constructors,
making the number of diagnostics GHC can emit richer. In particular:
* Add DriverMissingHomeModules message
* Add DriverUnusedPackage message
* Add DriverUnnecessarySourceImports message
This commit adds the `DriverUnnecessarySourceImports` message and
fixes a small bug in its reporting: inside
`warnUnnecessarySourceImports` we were checking for
`Opt_WarnUnusedSourceImports` to be set, but we were emitting the
diagnostic with `WarningWithoutFlag`. This also adjusts the T10637 test to reflect that.
* Add DriverDuplicatedModuleDeclaration message
* Add DriverModuleNotFound message
* Add DriverFileModuleNameMismatch message
* Add DriverUnexpectedSignature message
* Add DriverFileNotFound message
* Add DriverStaticPointersNotSupported message
* Add DriverBackpackModuleNotFound message
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit adds GhcMessage and ancillary (PsMessage, TcRnMessage, ..)
types.
These types will be expanded to represent more errors generated
by different subsystems within GHC. Right now, they are underused,
but more will come in the glorious future.
See
https://gitlab.haskell.org/ghc/ghc/-/wikis/Errors-as-(structured)-values
for a design overview.
Along the way, lots of other things had to happen:
* Adds Semigroup and Monoid instance for Bag
* Fixes #19746 by parsing OPTIONS_GHC pragmas into Located Strings.
See GHC.Parser.Header.toArgs (moved from GHC.Utils.Misc, where it
didn't belong anyway).
* Addresses (but does not completely fix) #19709, now reporting
desugarer warnings and errors appropriately for TH splices.
Not done: reporting type-checker warnings for TH splices.
* Some small refactoring around Safe Haskell inference, in order
to keep separate classes of messages separate.
* Some small refactoring around initDsTc, in order to keep separate
classes of messages separate.
* Separate out the generation of messages (that is, the construction
of the text block) from the wrapping of messages (that is, assigning
a SrcSpan). This is more modular than the previous design, which
mixed the two.
Close #19746.
This was a collaborative effort by Alfredo di Napoli and
Richard Eisenberg, with a key assist on #19746 by Iavor
Diatchki.
Metric Increase:
MultiLayerModules
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With this patch we switch from reading the globally installed
platformConstants file to reading the DerivedConstants.h header file
that is bundled in the RTS unit. When we build the RTS unit itself, we
get it from its includes directories.
The new parser is more efficient and strict than the Read instance for
PlatformConstants and we get about 2.2MB less allocations in every
cases. However it only really shows in tests that don't allocate much,
hence the following metric decreases.
Metric Decrease:
Naperian
T10421
T10547
T12150
T12234
T12425
T13035
T18304
T18923
T5837
T6048
T18140
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit further expand on the design for #18516 by getting rid of
the `defaultReasonSeverity` in favour of a function called
`diagReasonSeverity` which correctly takes the `DynFlags` as input. The
idea is to compute the `Severity` and the `DiagnosticReason` of each
message "at birth", without doing any later re-classifications, which
are potentially error prone, as the `DynFlags` might evolve during the
course of the program.
In preparation for a proper refactoring, now `pprWarning` from the
Parser.Ppr module has been renamed to `mkParserWarn`, which now takes a
`DynFlags` as input.
We also get rid of the reclassification we were performing inside `printOrThrowWarnings`.
Last but not least, this commit removes the need for reclassify inside GHC.Tc.Errors,
and also simplifies the implementation of `maybeReportError`.
Update Haddock submodule
|
| |
|
| |
|
|
|
|
|
| |
Also make the HomeUnit optional to keep the field strict and prepare for
UnitEnvs without a HomeUnit (e.g. in Plugins envs, cf #14335).
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Other than that:
* Fix T16167,json,json2,T7478,T10637 tests to reflect the introduction of
the `MessageClass` type
* Remove `makeIntoWarning`
* Remove `warningsToMessages`
* Refactor GHC.Tc.Errors
1. Refactors GHC.Tc.Errors so that we use `DiagnosticReason` for "choices"
(defer types errors, holes, etc);
2. We get rid of `reportWarning` and `reportError` in favour of a general
`reportDiagnostic`.
* Introduce `DiagnosticReason`, `Severity` is an enum: This big commit makes
`Severity` a simple enumeration, and introduces the concept of `DiagnosticReason`,
which classifies the /reason/ why we are emitting a particular diagnostic.
It also adds a monomorphic `DiagnosticMessage` type which is used for
generic messages.
* The `Severity` is computed (for now) from the reason, statically.
Later improvement will add a `diagReasonSeverity` function to compute
the `Severity` taking `DynFlags` into account.
* Rename `logWarnings` into `logDiagnostics`
* Add note and expand description of the `mkHoleError` function
|
| |
|
|
|
|
|
| |
All the comments are now captured in the AST, there is no need for a
side-channel structure for them.
|
|
|
|
|
|
|
|
| |
Metric Increase:
T10370
parsing001
Updates haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this patch, the only way to override GHC's default logging
behavior was to set `log_action`, `dump_action` and `trace_action`
fields in DynFlags. This patch introduces a new Logger abstraction and
stores it in HscEnv instead.
This is part of #17957 (avoid storing state in DynFlags). DynFlags are
duplicated and updated per-module (because of OPTIONS_GHC pragma), so
we shouldn't store global state in them.
This patch also fixes a race in parallel "--make" mode which updated
the `generatedDumps` IORef concurrently.
Bump haddock submodule
The increase in MultilayerModules is tracked in #19293.
Metric Increase:
MultiLayerModules
|
|
|
|
| |
Updates Haddock submodule
|
|
|
|
|
|
|
|
|
|
|
| |
This commit removes the errShortString field from the ErrMsg type,
allowing us to cleanup a lot of dynflag-dependent error functions, and
move them in a more specialised 'GHC.Driver.Errors' closer to the
driver, where they are actually used.
Metric Increase:
T4801
T9961
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
mode backpack edges
Backpack instantiations need to be typechecked to make sure that the
arguments fit the parameters. `tcRnInstantiateSignature` checks
instantiations with concrete modules, while `tcRnCheckUnit` checks
instantiations with free holes (signatures in the current modules).
Before this change, it worked that `tcRnInstantiateSignature` was called
after typechecking the argument module, see `HscMain.hsc_typecheck`,
while `tcRnCheckUnit` was called in `unsweep'` where-bound in
`GhcMake.upsweep`. `tcRnCheckUnit` was called once per each
instantiation once all the argument sigs were processed. This was done
with simple "to do" and "already done" accumulators in the fold.
`parUpsweep` did not implement the change.
With this change, `tcRnCheckUnit` instead is associated with its own
node in the `ModuleGraph`. Nodes are now:
```haskell
data ModuleGraphNode
-- | Instantiation nodes track the instantiation of other units
-- (backpack dependencies) with the holes (signatures) of the current package.
= InstantiationNode InstantiatedUnit
-- | There is a module summary node for each module, signature, and boot module being built.
| ModuleNode ExtendedModSummary
```
instead of just `ModSummary`; the `InstantiationNode` case is the
instantiation of a unit to be checked. The dependencies of such nodes
are the same "free holes" as was checked with the accumulator before.
Both versions of upsweep on such a node call `tcRnCheckUnit`.
There previously was an `implicitRequirements` function which would
crawl through every non-current-unit module dep to look for all free
holes (signatures) to add as dependencies in `GHC.Driver.Make`. But this
is no good: we shouldn't be looking for transitive anything when
building the graph: the graph should only have immediate edges and the
scheduler takes care that all transitive requirements are met.
So `GHC.Driver.Make` stopped using `implicitRequirements`, and instead
uses a new `implicitRequirementsShallow`, which just returns the
outermost instantiation node (or module name if the immediate dependency
is itself a signature). The signature dependencies are just treated like
any other imported module, but the module ones then go in a list stored
in the `ModuleNode` next to the `ModSummary` as the "extra backpack
dependencies". When `downsweep` creates the mod summaries, it adds this
information too.
------
There is one code quality, and possible correctness thing left: In
addition to `implicitRequirements` there is `findExtraSigImports`, which
says something like "if you are an instantiation argument (you are
substituted or a signature), you need to import its things too". This
is a little non-local so I am not quite sure how to get rid of it in
`GHC.Driver.Make`, but we probably should eventually.
First though, let's try to make a test case that observes that we don't
do this, lest it actually be unneeded. Until then, I'm happy to leave it
as is.
------
Beside the ability to use `-j`, the other major user-visibile side
effect of this change is that that the --make progress log now includes
"Instantiating" messages for these new nodes. Those also are numbered
like module nodes and count towards the total.
------
Fixes #17188
Updates hackage submomdule
Metric Increase:
T12425
T13035
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The unit database cache, the home unit and the unit state were stored in
DynFlags while they ought to be stored in the compiler session state
(HscEnv). This patch fixes this.
It introduces a new UnitEnv type that should be used in the future to
handle separate unit environments (especially host vs target units).
Related to #17957
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
1) Don't modify DynFlags (too much) for -dynamic-too: now when we
generate dynamic outputs for "-dynamic-too", we only set "dynamicNow"
boolean field in DynFlags instead of modifying several other fields.
These fields now have accessors that take dynamicNow into account.
2) Use DynamicTooState ADT to represent -dynamic-too state. It's much
clearer than the undocumented "DynamicTooConditional" that was used
before.
As a result, we can finally remove the hscs_iface_dflags field in
HscRecomp. There was a comment on this field saying:
"FIXME (osa): I don't understand why this is necessary, but I spent
almost two days trying to figure this out and I couldn't .. perhaps
someone who understands this code better will remove this later."
I don't fully understand the details, but it was needed because of the
changes made to the DynFlags for -dynamic-too.
There is still something very dubious in GHC.Iface.Recomp: we have to
disable the "dynamicNow" flag at some point for some Backpack's "heinous
hack" to continue to work. It may be because interfaces for indefinite
units are always non-dynamic, or because we mix and match dynamic and
non-dynamic interfaces (#9176), or something else, who knows?
|
|
|
|
|
|
|
| |
Move linker related code into GHC.Linker. Previously it was scattered
into GHC.Unit.State, GHC.Driver.Pipeline, GHC.Runtime.Linker, etc.
Add documentation in GHC.Linker
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I was working on making DynFlags stateless (#17957), especially by
storing loaded plugins into HscEnv instead of DynFlags. It turned out to
be complicated because HscEnv is in GHC.Driver.Types but LoadedPlugin
isn't: it is in GHC.Driver.Plugins which depends on GHC.Driver.Types. I
didn't feel like introducing yet another hs-boot file to break the loop.
Additionally I remember that while we introduced the module hierarchy
(#13009) we talked about splitting GHC.Driver.Types because it contained
various unrelated types and functions, but we never executed. I didn't
feel like making GHC.Driver.Types bigger with more unrelated Plugins
related types, so finally I bit the bullet and split GHC.Driver.Types.
As a consequence this patch moves a lot of things. I've tried to put
them into appropriate modules but nothing is set in stone.
Several other things moved to avoid loops.
* Removed Binary instances from GHC.Utils.Binary for random compiler
things
* Moved Typeable Binary instances into GHC.Utils.Binary.Typeable: they
import a lot of things that users of GHC.Utils.Binary don't want to
depend on.
* put everything related to Units/Modules under GHC.Unit:
GHC.Unit.Finder, GHC.Unit.Module.{ModGuts,ModIface,Deps,etc.}
* Created several modules under GHC.Types: GHC.Types.Fixity, SourceText,
etc.
* Split GHC.Utils.Error (into GHC.Types.Error)
* Finally removed GHC.Driver.Types
Note that this patch doesn't put loaded plugins into HscEnv. It's left
for another patch.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Metric Decrease:
Naperian
T10421
T10421a
T10547
T12150
T12234
T12425
T13035
T18140
T18304
T5837
T6048
T13253-spj
T18282
T18223
T3064
T9961
Metric Increase
T13701
HFSKJH
|
| |
|
|
|
|
|
| |
Instead of recreating the HomeUnit from the DynFlags every time we need
it, we store it in the HscEnv.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Haskell and Cmm parsers/lexers now report errors and warnings using ADTs
defined in GHC.Parser.Errors. They can be printed using functions in
GHC.Parser.Errors.Ppr.
Some of the errors provide hints with a separate ADT (e.g. to suggest to
turn on some extension). For now, however, hints are not consistent
across all messages. For example some errors contain the hints in the
main message. I didn't want to change any message with this patch. I
expect these changes to be discussed and implemented later.
Surprisingly, this patch enhances performance. On CI
(x86_64/deb9/hadrian, ghc/alloc):
parsing001 -11.5%
T13719 -2.7%
MultiLayerModules -3.5%
Naperian -3.1%
Bump haddock submodule
Metric Decrease:
MultiLayerModules
Naperian
T13719
parsing001
|
|
|
|
| |
Bump haddock submodule
|
|
|
|
|
| |
Milestone: after this patch, we only use 'unsafeGlobalDynFlags' for the
state hack and for debug in Outputable.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
FastStrings can be compared in 2 ways: by Unique or lexically. We don't
want to bless one particular way with an "Ord" instance because it leads
to bugs (#18562) or to suboptimal code (e.g. using lexical comparison
while a Unique comparison would suffice).
UTF-8 encoding has the advantage that sorting strings by their encoded
bytes also sorts them by their Unicode code points, without having to
decode the actual code points. BUT GHC uses Modified UTF-8 which
diverges from UTF-8 by encoding \0 as 0xC080 instead of 0x00 (to avoid
null bytes in the middle of a String so that the string can still be
null-terminated). This patch adds a new `utf8CompareShortByteString`
function that performs sorting by bytes but that also takes Modified
UTF-8 into account. It is much more performant than decoding the strings
into [Char] to perform comparisons (which we did in the previous patch).
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When we pretty-print a UnitId for the user, we try to map it back to its
origin package name, version and component to print
"package-version:component" instead of some hash.
The UnitId type doesn't carry these information, so we have to look into
a UnitState to find them. This is why the Outputable instance of
UnitId used `sdocWithDynFlags` in order to access the `unitState` field
of DynFlags.
This is wrong for several reasons:
1. The DynFlags are accessed when the message is printed, not when it is
generated. So we could imagine that the unitState may have changed
in-between. Especially if we want to allow unit unloading.
2. We want GHC to support several independent sessions at once, hence
several UnitState. The current approach supposes there is a unique
UnitState as a UnitId doesn't indicate which UnitState to use.
See the Note [Pretty-printing UnitId] in GHC.Unit for the new approach
implemented by this patch.
One step closer to remove `sdocDynFlags` field from `SDocContext`
(#10143).
Fix #18124.
Also fix some Backpack code to use SDoc instead of String.
|
|
|
|
|
|
| |
* remove references to DynFlags in GHC.CmmToAsm.Dwarf
* add specific Dwarf options in NCGConfig instead of directly querying
the debug level
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since Backpack the "home unit" is much more involved than what it was
before (just an identifier obtained with `-this-unit-id`). Now it is
used in conjunction with `-component-id` and `-instantiated-with` to
configure module instantiations and to detect if we are type-checking an
indefinite unit or compiling a definite one.
This patch introduces a new HomeUnit datatype which is much easier to
understand. Moreover to make GHC support several packages in the same
instances, we will need to handle several HomeUnits so having a
dedicated (documented) type is helpful.
Finally in #14335 we will also need to handle the case where we have no
HomeUnit at all because we are only loading existing interfaces for
plugins which live in a different space compared to units used to
produce target code. Several functions will have to be refactored to
accept "Maybe HomeUnit" parameters instead of implicitly querying the
HomeUnit fields in DynFlags. Having a dedicated type will make this
easier.
Bump haddock submodule
|