summaryrefslogtreecommitdiff
path: root/compiler/GHC/HsToCore/Binds.hs
Commit message (Collapse)AuthorAgeFilesLines
* Remove Proxy# argument in Data.Typeable.InternalKrzysztof Gogolewski2020-10-151-6/+4
| | | | | | No longer neccessary - TypeRep is now indexed, there is no ambiguity. Also fix a comment in Evidence.hs, IsLabel no longer takes a Proxy#.
* Fix some missed opportunities for preInlineUnconditionallySimon Peyton Jones2020-10-141-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There are two signficant changes here: * Ticket #18815 showed that we were missing some opportunities for preInlineUnconditionally. The one-line fix is in the code for GHC.Core.Opt.Simplify.Utils.preInlineUnconditionally, which now switches off only for INLINE pragmas. I expanded Note [Stable unfoldings and preInlineUnconditionally] to explain. * When doing this I discovered a way in which preInlineUnconditionally was occasionally /too/ eager. It's all explained in Note [Occurrences in stable unfoldings] in GHC.Core.Opt.OccurAnal, and the one-line change adding markAllMany to occAnalUnfolding. I also got confused about what NoUserInline meant, so I've renamed it to NoUserInlinePrag, and changed its pretty-printing slightly. That led to soem error messate wibbling, and touches quite a few files, but there is no change in functionality. I did a nofib run. As expected, no significant changes. Program Size Allocs ---------------------------------------- sphere -0.0% -0.4% ---------------------------------------- Min -0.0% -0.4% Max -0.0% +0.0% Geometric Mean -0.0% -0.0% I'm allowing a max-residency increase for T10370, which seems very irreproducible. (See comments on !4241.) There is always sampling error for max-residency measurements; and in any case the change shows up on some platforms but not others. Metric Increase: T10370
* Unification of Nat and NaturalsHaskellMouse2020-10-131-2/+2
| | | | | | | | | | | | | | | | | | | | | | | This commit removes the separate kind 'Nat' and enables promotion of type 'Natural' for using as type literal. It partially solves #10776 Now the following code will be successfully typechecked: data C = MkC Natural type CC = MkC 1 Before this change we had to create the separate type for promotion data C = MkC Natural data CP = MkCP Nat type CC = MkCP 1 But CP is uninhabited in terms. For backward compatibility type synonym `Nat` has been made: type Nat = Natural The user's documentation and tests have been updated. The haddock submodule also have been updated.
* Lint the compiler for extraneous LANGUAGE pragmasHécate2020-10-101-7/+6
|
* PmCheck: Big refactor of module structureSebastian Graf2020-09-261-3/+3
| | | | | | | | | | | | | | * Move everything from `GHC.HsToCore.PmCheck.*` to `GHC.HsToCore.Pmc.*` in analogy to `GHC.Tc`, rename exported `covCheck*` functions to `pmc*` * Rename `Pmc.Oracle` to `Pmc.Solver` * Split off the LYG desugaring and checking steps into their own modules (`Pmc.Desugar` and `Pmc.Check` respectively) * Split off a `Pmc.Utils` module with stuff shared by `Pmc.{,Desugar,Check,Solver}` * Move `Pmc.Types` to `Pmc.Solver.Types`, add a new `Pmc.Types` module with all the LYG types, which form the interfaces between `Pmc.{Desugar,Check,Solver,}`.
* PmCheck: Handle ⊥ and strict fields correctly (#18341)wip/T18341Sebastian Graf2020-09-101-2/+2
| | | | | | | | | | | | | | | | | | | | | In #18341, we discovered an incorrect digression from Lower Your Guards. This MR changes what's necessary to support properly fixing #18341. In particular, bottomness constraints are now properly tracked in the oracle/inhabitation testing, as an additional field `vi_bot :: Maybe Bool` in `VarInfo`. That in turn allows us to model newtypes as advertised in the Appendix of LYG and fix #17725. Proper handling of ⊥ also fixes #17977 (once again) and fixes #18670. For some reason I couldn't follow, this also fixes #18273. I also added a couple of regression tests that were missing. Most of them were already fixed before. In summary, this patch fixes #18341, #17725, #18273, #17977 and #18670. Metric Decrease: T12227
* PmCheck: Big refactor using guard tree variants more closely following ↵Sebastian Graf2020-09-101-7/+7
| | | | | | | | | | | | | | | | | | | | | | | | source syntax (#18565) Previously, we desugared and coverage checked plain guard trees as described in Lower Your Guards. That caused (in !3849) quite a bit of pain when we need to partially recover tree structure of the input syntax to return covered sets for long-distance information, for example. In this refactor, I introduced a guard tree variant for each relevant source syntax component of a pattern-match (mainly match groups, match, GRHS, empty case, pattern binding). I made sure to share as much coverage checking code as possible, so that the syntax-specific checking functions are just wrappers around the more substantial checking functions for the LYG primitives (`checkSequence`, `checkGrds`). The refactoring payed off in clearer code and elimination of all panics related to assumed guard tree structure and thus fixes #18565. I also took the liberty to rename and re-arrange the order of functions and comments in the module, deleted some dead and irrelevant Notes, wrote some new ones and gave an overview module haddock.
* Add long-distance info for pattern bindings (#18572)Sebastian Graf2020-09-101-2/+2
| | | | | | | | We didn't consider the RHS of a pattern-binding before, which led to surprising warnings listed in #18572. As can be seen from the regression test T18572, we get the expected output now.
* DynFlags: add sm_pre_inline field into SimplMode (#17957)Sylvain Henry2020-09-091-3/+3
| | | | It avoids passing and querying DynFlags down in the simplifier.
* DynFlags: add UnfoldingOpts and SimpleOptsSylvain Henry2020-09-091-8/+12
| | | | | Milestone: after this patch, we only use 'unsafeGlobalDynFlags' for the state hack and for debug in Outputable.
* Add right-to-left rule for pattern bindingsSimon Peyton Jones2020-08-191-1/+1
| | | | | | | | | | | | | | | | | | | | | | | Fix #18323 by adding a few lines of code to handle non-recursive pattern bindings. see GHC.Tc.Gen.Bind Note [Special case for non-recursive pattern bindings] Alas, this confused the pattern-match overlap checker; see #18323. Note that this patch only affects pattern bindings like that for (x,y) in this program combine :: (forall a . [a] -> a) -> [forall a. a -> a] -> ((forall a . [a] -> a), [forall a. a -> a]) breaks = let (x,y) = combine head ids in x y True We need ImpredicativeTypes for those [forall a. a->a] types to be valid. And with ImpredicativeTypes the old, unprincipled "allow unification variables to unify with a polytype" story actually works quite well. So this test compiles fine (if delicatedly) with old GHCs; but not with QuickLook unless we add this patch
* PmCheck: Better long-distance info for where bindings (#18533)Sebastian Graf2020-08-131-4/+3
| | | | | | | | | | | | | | | | | | | | Where bindings can see evidence from the pattern match of the `GRHSs` they belong to, but not from anything in any of the guards (which belong to one of possibly many RHSs). Before this patch, we did *not* consider said evidence, causing #18533, where the lack of considering type information from a case pattern match leads to failure to resolve the vanilla COMPLETE set of a data type. Making available that information required a medium amount of refactoring so that `checkMatches` can return a `[(Deltas, NonEmpty Deltas)]`; one `(Deltas, NonEmpty Deltas)` for each `GRHSs` of the match group. The first component of the pair is the covered set of the pattern, the second component is one covered set per RHS. Fixes #18533. Regression test case: T18533
* DynFlags: disentangle OutputableSylvain Henry2020-08-121-0/+2
| | | | | | | | | - put panic related functions into GHC.Utils.Panic - put trace related functions using DynFlags in GHC.Driver.Ppr One step closer making Outputable fully independent of DynFlags. Bump haddock submodule
* Improve typechecking of NPlusK patternsSimon Peyton Jones2020-07-181-0/+1
| | | | | | | | | | This patch (due to Richard Eisenberg) improves documentation of the wrapper returned by tcSubMult (see Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify). And, more substantially, it cleans up the multiplicity handling in the typechecking of NPlusKPat
* Various performance improvementsKrzysztof Gogolewski2020-06-171-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This implements several general performance improvements to GHC, to offset the effect of the linear types change. General optimisations: - Add a `coreFullView` function which iterates `coreView` on the head. This avoids making function recursive solely because the iterate `coreView` themselves. As a consequence, this functions can be inlined, and trigger case-of-known constructor (_e.g._ `kindRep_maybe`, `isLiftedRuntimeRep`, `isMultiplicityTy`, `getTyVar_maybe`, `splitAppTy_maybe`, `splitFunType_maybe`, `tyConAppTyCon_maybe`). The common pattern about all these functions is that they are almost always used as views, and immediately consumed by a case expression. This commit also mark them asx `INLINE`. - In `subst_ty` add a special case for nullary `TyConApp`, which avoid allocations altogether. - Use `mkTyConApp` in `subst_ty` for the general `TyConApp`. This required quite a bit of module shuffling. case. `myTyConApp` enforces crucial sharing, which was lost during substitution. See also !2952 . - Make `subst_ty` stricter. - In `eqType` (specifically, in `nonDetCmpType`), add a special case, tested first, for the very common case of nullary `TyConApp`. `nonDetCmpType` has been made `INLINE` otherwise it is actually a regression. This is similar to the optimisations in !2952. Linear-type specific optimisations: - Use `tyConAppTyCon_maybe` instead of the more complex `eqType` in the definition of the pattern synonyms `One` and `Many`. - Break the `hs-boot` cycles between `Multiplicity.hs` and `Type.hs`: `Multiplicity` now import `Type` normally, rather than from the `hs-boot`. This way `tyConAppTyCon_maybe` can inline properly in the `One` and `Many` pattern synonyms. - Make `updateIdTypeAndMult` strict in its type and multiplicity - The `scaleIdBy` gets a specialised definition rather than being an alias to `scaleVarBy` - `splitFunTy_maybe` is given the type `Type -> Maybe (Mult, Type, Type)` instead of `Type -> Maybe (Scaled Type, Type)` - Remove the `MultMul` pattern synonym in favour of a view `isMultMul` because pattern synonyms appear not to inline well. - in `eqType`, in a `FunTy`, compare multiplicities last: they are almost always both `Many`, so it helps failing faster. - Cache `manyDataConTy` in `mkTyConApp`, to make sure that all the instances of `TyConApp ManyDataConTy []` are physically the same. This commit has been authored by * Richard Eisenberg * Krzysztof Gogolewski * Arnaud Spiwack Metric Decrease: haddock.base T12227 T12545 T12990 T1969 T3064 T5030 T9872b Metric Increase: haddock.base haddock.Cabal haddock.compiler T12150 T12234 T12425 T12707 T13035 T13056 T15164 T16190 T18304 T1969 T3064 T3294 T5631 T5642 T5837 T6048 T9020 T9233 T9675 T9872a T9961 WWRec
* Linear types (#15981)Krzysztof Gogolewski2020-06-171-16/+21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is the first step towards implementation of the linear types proposal (https://github.com/ghc-proposals/ghc-proposals/pull/111). It features * A language extension -XLinearTypes * Syntax for linear functions in the surface language * Linearity checking in Core Lint, enabled with -dlinear-core-lint * Core-to-core passes are mostly compatible with linearity * Fields in a data type can be linear or unrestricted; linear fields have multiplicity-polymorphic constructors. If -XLinearTypes is disabled, the GADT syntax defaults to linear fields The following items are not yet supported: * a # m -> b syntax (only prefix FUN is supported for now) * Full multiplicity inference (multiplicities are really only checked) * Decent linearity error messages * Linear let, where, and case expressions in the surface language (each of these currently introduce the unrestricted variant) * Multiplicity-parametric fields * Syntax for annotating lambda-bound or let-bound with a multiplicity * Syntax for non-linear/multiple-field-multiplicity records * Linear projections for records with a single linear field * Linear pattern synonyms * Multiplicity coercions (test LinearPolyType) A high-level description can be found at https://ghc.haskell.org/trac/ghc/wiki/LinearTypes/Implementation Following the link above you will find a description of the changes made to Core. This commit has been authored by * Richard Eisenberg * Krzysztof Gogolewski * Matthew Pickering * Arnaud Spiwack With contributions from: * Mark Barbone * Alexander Vershilov Updates haddock submodule.
* Clarify leaf module names for new module hierarchyTakenobu Tani2020-06-101-3/+3
| | | | | | | | | | | | | | | | | | | | | This updates comments only. This patch replaces leaf module names according to new module hierarchy [1][2] as followings: * Expand leaf names to easily find the module path: for instance, `Id.hs` to `GHC.Types.Id`. * Modify leaf names according to new module hierarchy: for instance, `Convert.hs` to `GHC.ThToHs`. * Fix typo: for instance, `GHC.Core.TyCo.Rep.hs` to `GHC.Core.TyCo.Rep` See also !3375 [1]: https://gitlab.haskell.org/ghc/ghc/-/wikis/Make-GHC-codebase-more-modular [2]: https://gitlab.haskell.org/ghc/ghc/issues/13009
* Simple subsumptionwip/T17775Simon Peyton Jones2020-06-051-1/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch simplifies GHC to use simple subsumption. Ticket #17775 Implements GHC proposal #287 https://github.com/ghc-proposals/ghc-proposals/blob/master/ proposals/0287-simplify-subsumption.rst All the motivation is described there; I will not repeat it here. The implementation payload: * tcSubType and friends become noticably simpler, because it no longer uses eta-expansion when checking subsumption. * No deeplyInstantiate or deeplySkolemise That in turn means that some tests fail, by design; they can all be fixed by eta expansion. There is a list of such changes below. Implementing the patch led me into a variety of sticky corners, so the patch includes several othe changes, some quite significant: * I made String wired-in, so that "foo" :: String rather than "foo" :: [Char] This improves error messages, and fixes #15679 * The pattern match checker relies on knowing about in-scope equality constraints, andd adds them to the desugarer's environment using addTyCsDs. But the co_fn in a FunBind was missed, and for some reason simple-subsumption ends up with dictionaries there. So I added a call to addTyCsDs. This is really part of #18049. * I moved the ic_telescope field out of Implication and into ForAllSkol instead. This is a nice win; just expresses the code much better. * There was a bug in GHC.Tc.TyCl.Instance.tcDataFamInstHeader. We called checkDataKindSig inside tc_kind_sig, /before/ solveEqualities and zonking. Obviously wrong, easily fixed. * solveLocalEqualitiesX: there was a whole mess in here, around failing fast enough. I discovered a bad latent bug where we could successfully kind-check a type signature, and use it, but have unsolved constraints that could fill in coercion holes in that signature -- aargh. It's all explained in Note [Failure in local type signatures] in GHC.Tc.Solver. Much better now. * I fixed a serious bug in anonymous type holes. IN f :: Int -> (forall a. a -> _) -> Int that "_" should be a unification variable at the /outer/ level; it cannot be instantiated to 'a'. This was plain wrong. New fields mode_lvl and mode_holes in TcTyMode, and auxiliary data type GHC.Tc.Gen.HsType.HoleMode. This fixes #16292, but makes no progress towards the more ambitious #16082 * I got sucked into an enormous refactoring of the reporting of equality errors in GHC.Tc.Errors, especially in mkEqErr1 mkTyVarEqErr misMatchMsg misMatchMsgOrCND In particular, the very tricky mkExpectedActualMsg function is gone. It took me a full day. But the result is far easier to understand. (Still not easy!) This led to various minor improvements in error output, and an enormous number of test-case error wibbles. One particular point: for occurs-check errors I now just say Can't match 'a' against '[a]' rather than using the intimidating language of "occurs check". * Pretty-printing AbsBinds Tests review * Eta expansions T11305: one eta expansion T12082: one eta expansion (undefined) T13585a: one eta expansion T3102: one eta expansion T3692: two eta expansions (tricky) T2239: two eta expansions T16473: one eta determ004: two eta expansions (undefined) annfail06: two eta (undefined) T17923: four eta expansions (a strange program indeed!) tcrun035: one eta expansion * Ambiguity check at higher rank. Now that we have simple subsumption, a type like f :: (forall a. Eq a => Int) -> Int is no longer ambiguous, because we could write g :: (forall a. Eq a => Int) -> Int g = f and it'd typecheck just fine. But f's type is a bit suspicious, and we might want to consider making the ambiguity check do a check on each sub-term. Meanwhile, these tests are accepted, whereas they were previously rejected as ambiguous: T7220a T15438 T10503 T9222 * Some more interesting error message wibbles T13381: Fine: one error (Int ~ Exp Int) rather than two (Int ~ Exp Int, Exp Int ~ Int) T9834: Small change in error (improvement) T10619: Improved T2414: Small change, due to order of unification, fine T2534: A very simple case in which a change of unification order means we get tow unsolved constraints instead of one tc211: bizarre impredicative tests; just accept this for now Updates Cabal and haddock submodules. Metric Increase: T12150 T12234 T5837 haddock.base Metric Decrease: haddock.compiler haddock.Cabal haddock.base Merge note: This appears to break the `UnliftedNewtypesDifficultUnification` test. It has been marked as broken in the interest of merging. (cherry picked from commit 66b7b195cb3dce93ed5078b80bf568efae904cc5)
* Rename GHC.Core.Arity into GHC.Core.Opt.AritySylvain Henry2020-05-241-1/+1
|
* Fix specialisation for DFunsSimon Peyton Jones2020-05-081-4/+3
| | | | | | | When specialising a DFun we must take care to saturate the unfolding. See Note [Specialising DFuns] in Specialise. Fixes #18120
* PmCheck: Pick up `EvVar`s bound in `HsWrapper`s for long-distance infoSebastian Graf2020-05-011-14/+13
| | | | | | | | | | | | | | | | | | | | `HsWrapper`s introduce evidence bindings through `WpEvLam` which the pattern-match coverage checker should be made aware of. Failing to do so caused #18049, where the resulting impreciseness of imcompleteness warnings seemingly contradicted with `-Winaccessible-code`. The solution is simple: Collect all the evidence binders of an `HsWrapper` and add it to the ambient `Deltas` before desugaring the wrapped expression. But that means we pick up many more evidence bindings, even when they wrap around code without a single pattern match to check! That regressed `T3064` by over 300%, so now we are adding long-distance info lazily through judicious use of `unsafeInterleaveIO`. Fixes #18049.
* Unit: split and rename modulesSylvain Henry2020-04-301-1/+1
| | | | | | | Introduce GHC.Unit.* hierarchy for everything concerning units, packages and modules. Update Haddock submodule
* Modules: Utils and Data (#13009)Sylvain Henry2020-04-261-10/+10
| | | | | | | Update Haddock submodule Metric Increase: haddock.compiler
* Modules (#13009)Sylvain Henry2020-04-181-2/+2
| | | | | | | | | | | | | | * SysTools * Parser * GHC.Builtin * GHC.Iface.Recomp * Settings Update Haddock submodule Metric Decrease: Naperian parsing001
* GHC.Core.Opt renamingSylvain Henry2020-04-181-1/+1
| | | | | | | | | | | * GHC.Core.Op => GHC.Core.Opt * GHC.Core.Opt.Simplify.Driver => GHC.Core.Opt.Driver * GHC.Core.Opt.Tidy => GHC.Core.Tidy * GHC.Core.Opt.WorkWrap.Lib => GHC.Core.Opt.WorkWrap.Utils As discussed in: * https://mail.haskell.org/pipermail/ghc-devs/2020-April/018758.html * https://gitlab.haskell.org/ghc/ghc/issues/13009#note_264650
* Make NoExtCon fields strictwip/strict-NoExtConRyan Scott2020-04-071-3/+0
| | | | | | | | | | | | | | | | This changes every unused TTG extension constructor to be strict in its field so that the pattern-match coverage checker is smart enough any such constructors are unreachable in pattern matches. This lets us remove nearly every use of `noExtCon` in the GHC API. The only ones we cannot remove are ones underneath uses of `ghcPass`, but that is only because GHC 8.8's and 8.10's coverage checkers weren't smart enough to perform this kind of reasoning. GHC HEAD's coverage checker, on the other hand, _is_ smart enough, so we guard these uses of `noExtCon` with CPP for now. Bumps the `haddock` submodule. Fixes #17992.
* Modules: type-checker (#13009)Sylvain Henry2020-04-071-8/+8
| | | | Update Haddock submodule
* Major improvements to the specialiserSimon Peyton Jones2020-04-031-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch is joint work of Alexis King and Simon PJ. It does some significant refactoring of the type-class specialiser. Main highlights: * We can specialise functions with types like f :: Eq a => a -> Ord b => b => blah where the classes aren't all at the front (#16473). Here we can correctly specialise 'f' based on a call like f @Int @Bool dEqInt x dOrdBool This change really happened in an earlier patch commit 2d0cf6252957b8980d89481ecd0b79891da4b14b Author: Sandy Maguire <sandy@sandymaguire.me> Date: Thu May 16 12:12:10 2019 -0400 work that this new patch builds directly on that work, and refactors it a bit. * We can specialise functions with implicit parameters (#17930) g :: (?foo :: Bool, Show a) => a -> String Previously we could not, but now they behave just like a non-class argument as in 'f' above. * We can specialise under-saturated calls, where some (but not all of the dictionary arguments are provided (#17966). For example, we can specialise the above 'f' based on a call map (f @Int dEqInt) xs even though we don't (and can't) give Ord dictionary. This may sound exotic, but #17966 is a program from the wild, and showed significant perf loss for functions like f, if you need saturation of all dictionaries. * We fix a buglet in which a floated dictionary had a bogus demand (#17810), by using zapIdDemandInfo in the NonRec case of specBind. * A tiny side benefit: we can drop dead arguments to specialised functions; see Note [Drop dead args from specialisations] * Fixed a bug in deciding what dictionaries are "interesting"; see Note [Keep the old dictionaries interesting] This is all achieved by by building on Sandy Macguire's work in defining SpecArg, which mkCallUDs uses to describe the arguments of the call. Main changes: * Main work is in specHeader, which marched down the [InBndr] from the function definition and the [SpecArg] from the call site, together. * specCalls no longer has an arity check; the entire mechanism now handles unders-saturated calls fine. * mkCallUDs decides on an argument-by-argument basis whether to specialise a particular dictionary argument; this is new. See mk_spec_arg in mkCallUDs. It looks as if there are many more lines of code, but I think that all the extra lines are comments!
* Modules: Types (#13009)Sylvain Henry2020-03-291-10/+10
| | | | | | | Update Haddock submodule Metric Increase: haddock.compiler
* Modules: Core operations (#13009)Sylvain Henry2020-03-181-2/+2
|
* Modules: Core (#13009)Sylvain Henry2020-03-161-4/+4
| | | | Update submodule: haddock
* Remove unused field var_inline (#17915)Krzysztof Gogolewski2020-03-141-5/+2
|
* PmCheck: Implement Long-distance information with Covered setsSebastian Graf2020-02-271-2/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Consider ```hs data T = A | B | C f :: T -> Int f A = 1 f x = case x of A -> 2 B -> 3 C -> 4 ``` Clearly, the RHS returning 2 is redundant. But we don't currently see that, because our approximation to the covered set of the inner case expression just picks up the positive information from surrounding pattern matches. It lacks the context sensivity that `x` can't be `A` anymore! Therefore, we adopt the conceptually and practically superior approach of reusing the covered set of a particular GRHS from an outer pattern match. In this case, we begin checking the `case` expression with the covered set of `f`s second clause, which encodes the information that `x` can't be `A` anymore. After this MR, we will successfully warn about the RHS returning 2 being redundant. Perhaps surprisingly, this was a great simplification to the code of both the coverage checker and the desugarer. Found a redundant case alternative in `unix` submodule, so we have to bump it with a fix. Metric Decrease: T12227
* Modules: Core (#13009)Sylvain Henry2020-02-261-11/+11
| | | | Update haddock submodule
* Modules: Driver (#13009)Sylvain Henry2020-02-211-1/+1
| | | | submodule updates: nofib, haddock
* Module hierarchy: HsToCore (cf #13009)Sylvain Henry2020-02-141-0/+1327