| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this patch, we had this parser production:
ftype : ...
| ftype PREFIX_AT tyarg { ... }
And 'tyarg' is defined as follows:
tyarg : atype { ... }
| unpackedness atype { ... }
So one might get the (false) impression that that parser production is
intended to parse things like:
F @{-# UNPACK #-} X
However, the lexer wouldn't produce PREFIX_AT followed by 'unpackedness',
as the '@' operator followed by '{-' is not considered prefix.
Thus there's no point using 'tyarg' after PREFIX_AT,
and a simple 'atype' will suffice:
ftype : ...
| ftype PREFIX_AT atype { ... }
This change has no user-facing consequences. It just makes the grammar a
bit more clear.
|
|
|
|
|
|
|
|
|
|
|
|
| |
This switches `deriv_clause_tys` so that instead of using a list of
`LHsSigType`s to represent the types in a `deriving` clause, it now
uses a sum type. `DctSingle` represents a `deriving` clause with no
enclosing parentheses, while `DctMulti` represents a clause with
enclosing parentheses. This makes pretty-printing easier and avoids
confusion between `HsParTy` and the enclosing parentheses in
`deriving` clauses, which are different semantically.
Fixes #18662.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
@alanz pointed out on ghc-devs that the payload of this pragma does
not appear to be used anywhere.
I (@bgamari) did some digging and traced the pragma's addition back to
d386e0d2 (way back in 2006!).
It appears that it was intended to be used by code generators for use
in informing the code coveraging checker about generated code
provenance. When it was added it used the pragma's "payload" fields as
source location information to build an "ExternalBox". However, it
looks like this was dropped a year later in 55a5d8d9. At this point
it seems like the pragma serves no useful purpose.
Given that it also is not documented, I think we should remove it.
Updates haddock submodule
Closes #18639
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch mainly just replaces use of
XRec p (IdP p)
with
LIdP p
One slightly more significant change is to parameterise
HsPatSynDetails over the pass rather than the argument type,
so that it's uniform with HsConDeclDetails and HsConPatDetails.
I also got rid of the dead code GHC.Hs.type.conDetailsArgs
But this is all just minor refactoring. No change in functionality.
|
|
|
|
|
|
|
|
| |
In preparation for the next version of 'happy', c95920 added a qualified
import to GHC/Parser.y but for some reason neglected GHC/Cmm/Parser.y
This patch adds the missing qualified import to GHC/Cmm/Parser.y and
also adds a clarifying comment to explain why this import is needed.
|
| |
|
|
|
|
|
|
| |
Remove unused ApiAnns, add one for linear arrow.
Include API Annotations for trailing comma in export list.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch started as a small documentation change, an attempt to make
Note [Parser-Validator] and Note [Ambiguous syntactic categories]
more clear and up-to-date.
But it turned out that runECP_P/runECP_PV are weakly motivated,
and it's easier to remove them than to find a good rationale/explanation
for their existence.
As the result, there's a bit of refactoring in addition to
a documentation update.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this patch, we parsed types into a reversed sequence
of operators and operands. For example, (F x y + G a b * X)
would be parsed as [X, *, b, a, G, +, y, x, F],
using a simple grammar:
tyapps
: tyapp
| tyapps tyapp
tyapp
: atype
| PREFIX_AT atype
| tyop
| unpackedness
Then we used a hand-written state machine to assemble this
either into a type, using 'mergeOps',
or into a constructor, using 'mergeDataCon'.
This is due to a syntactic ambiguity:
data T1 a = MkT1 a
data T2 a = Ord a => MkT2 a
In T1, what follows after the = sign is a data/newtype constructor
declaration. However, in T2, what follows is a type (of kind
Constraint). We don't know which of the two we are parsing until we
encounter =>, and we cannot check for => without unlimited lookahead.
This poses a few issues when it comes to e.g. infix operators:
data I1 = Int :+ Bool :+ Char -- bad
data I2 = Int :+ Bool :+ Char => MkI2 -- fine
By this issue alone we are forced into parsing into an intermediate
representation and doing a separate validation pass.
However, should that intermediate representation be as low-level as a
flat sequence of operators and operands?
Before GHC Proposal #229, the answer was Yes, due to some particularly
nasty corner cases:
data T = ! A :+ ! B -- used to be fine, hard to parse
data T = ! A :+ ! B => MkT -- bad
However, now the answer is No, as this corner case is gone:
data T = ! A :+ ! B -- bad
data T = ! A :+ ! B => MkT -- bad
This means we can write a proper grammar for types, overloading it in
the DisambECP style, see Note [Ambiguous syntactic categories].
With this patch, we introduce a new class, DisambTD. Just like
DisambECP is used to disambiguate between expressions, commands, and patterns,
DisambTD is used to disambiguate between types and data/newtype constructors.
This way, we get a proper, declarative grammar for constructors and
types:
infixtype
: ftype
| ftype tyop infixtype
| unpackedness infixtype
ftype
: atype
| tyop
| ftype tyarg
| ftype PREFIX_AT tyarg
tyarg
: atype
| unpackedness atype
And having a grammar for types means we are a step closer to using a
single grammar for types and expressions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This removes the `ConDeclGADTPrefixPs` per the discussion in #18517.
Most of this patch simply removes code, although the code in the
`rnConDecl` case for `ConDeclGADTPrefixPs` had to be moved around a
bit:
* The nested `forall`s check now lives in the `rnConDecl` case for
`ConDeclGADT`.
* The `LinearTypes`-specific code that used to live in the
`rnConDecl` case for `ConDeclGADTPrefixPs` now lives in
`GHC.Parser.PostProcess.mkGadtDecl`, which is now monadic so that
it can check if `-XLinearTypes` is enabled.
Fixes #18157.
|
|
|
|
|
|
| |
* Create a dedicated production for type operators
* Create a dedicated type for the UNPACK pragma
* Remove an outdated part of Note [Parsing data constructors is hard]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Haddock comments are, first and foremost, comments. It's very annoying
to incorporate them into the grammar. We can take advantage of an
important property: adding a Haddock comment does not change the parse
tree in any way other than wrapping some nodes in HsDocTy and the like
(and if it does, that's a bug).
This patch implements the following:
* Accumulate Haddock comments with their locations in the P monad.
This is handled in the lexer.
* After parsing, do a pass over the AST to associate Haddock comments
with AST nodes using location info.
* Report the leftover comments to the user as a warning (-Winvalid-haddock).
|
|
|
|
|
|
|
| |
This pragma has no effect since 2011.
It was introduced for External Core, which no longer exists.
Updates haddock submodule.
|
|
|
|
|
|
|
|
| |
This patch introduces a new extension, -XLexicalNegation, which detects
whether the minus sign stands for negation or subtraction using the
whitespace-based rules described in GHC Proposal #229.
Updates haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Co-authored-by: Facundo Domínguez <facundo.dominguez@tweag.io>
QualifiedDo is implemented using the same placeholders for operation names in
the AST that were devised for RebindableSyntax. Whenever the renamer checks
which names to use for do syntax, it first checks if the do block is qualified
(e.g. M.do { stmts }), in which case it searches for qualified names in
the module M.
This allows users to write
{-# LANGUAGE QualifiedDo #-}
import qualified SomeModule as M
f x = M.do -- desugars to:
y <- M.return x -- M.return x M.>>= \y ->
M.return y -- M.return y M.>>
M.return y -- M.return y
See Note [QualifiedDo] and the users' guide for more details.
Issue #18214
Proposal:
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0216-qualified-do.rst
Since we change the constructors `ITdo` and `ITmdo` to carry the new module
name, we need to bump the haddock submodule to account or the new shape of
these constructors.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the first step towards implementation of the linear types proposal
(https://github.com/ghc-proposals/ghc-proposals/pull/111).
It features
* A language extension -XLinearTypes
* Syntax for linear functions in the surface language
* Linearity checking in Core Lint, enabled with -dlinear-core-lint
* Core-to-core passes are mostly compatible with linearity
* Fields in a data type can be linear or unrestricted; linear fields
have multiplicity-polymorphic constructors.
If -XLinearTypes is disabled, the GADT syntax defaults to linear fields
The following items are not yet supported:
* a # m -> b syntax (only prefix FUN is supported for now)
* Full multiplicity inference (multiplicities are really only checked)
* Decent linearity error messages
* Linear let, where, and case expressions in the surface language
(each of these currently introduce the unrestricted variant)
* Multiplicity-parametric fields
* Syntax for annotating lambda-bound or let-bound with a multiplicity
* Syntax for non-linear/multiple-field-multiplicity records
* Linear projections for records with a single linear field
* Linear pattern synonyms
* Multiplicity coercions (test LinearPolyType)
A high-level description can be found at
https://ghc.haskell.org/trac/ghc/wiki/LinearTypes/Implementation
Following the link above you will find a description of the changes made to Core.
This commit has been authored by
* Richard Eisenberg
* Krzysztof Gogolewski
* Matthew Pickering
* Arnaud Spiwack
With contributions from:
* Mark Barbone
* Alexander Vershilov
Updates haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, `HsForAllTy` permits the combination of `ForallVis` and
`Inferred`, but you can't actually typecheck code that uses it
(e.g., `forall {a} ->`). This patch refactors `HsForAllTy` to use a
new `HsForAllTelescope` data type that makes a type-level distinction
between visible and invisible `forall`s such that visible `forall`s
do not track `Specificity`. That part of the patch is actually quite
small; the rest is simply changing consumers of `HsType` to
accommodate this new type.
Fixes #18235. Bumps the `haddock` submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This updates comments only.
This patch replaces leaf module names according to new module
hierarchy [1][2] as followings:
* Expand leaf names to easily find the module path:
for instance, `Id.hs` to `GHC.Types.Id`.
* Modify leaf names according to new module hierarchy:
for instance, `Convert.hs` to `GHC.ThToHs`.
* Fix typo:
for instance, `GHC.Core.TyCo.Rep.hs` to `GHC.Core.TyCo.Rep`
See also !3375
[1]: https://gitlab.haskell.org/ghc/ghc/-/wikis/Make-GHC-codebase-more-modular
[2]: https://gitlab.haskell.org/ghc/ghc/issues/13009
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Issue #18191 revealed that the types of GADT constructors don't quite
adhere to the `forall`-or-nothing rule. This patch serves to clean up
this sad state of affairs somewhat. The main change is not in the
code itself, but in the documentation, as this patch introduces two
sections to the GHC User's Guide:
* A "Formal syntax for GADTs" section that presents a BNF-style
grammar for what is and isn't allowed in GADT constructor types.
This mostly exists to codify GHC's existing behavior, but it also
imposes a new restriction that addresses #18191: the outermost
`forall` and/or context in a GADT constructor is not allowed to be
surrounded by parentheses. Doing so would make these
`forall`s/contexts nested, and GADTs do not support nested
`forall`s/contexts at present.
* A "`forall`-or-nothing rule" section that describes exactly what
the `forall`-or-nothing rule is all about. Surprisingly, there was
no mention of this anywhere in the User's Guide up until now!
To adhere the new specification in the "Formal syntax for GADTs"
section of the User's Guide, the following code changes were made:
* A new function, `GHC.Hs.Type.splitLHsGADTPrefixTy`, was introduced.
This is very much like `splitLHsSigmaTy`, except that it avoids
splitting apart any parentheses, which can be syntactically
significant for GADT types. See
`Note [No nested foralls or contexts in GADT constructors]` in
`GHC.Hs.Type`.
* `ConDeclGADTPrefixPs`, an extension constructor for `XConDecl`, was
introduced so that `GHC.Parser.PostProcess.mkGadtDecl` can return
it when given a prefix GADT constructor. Unlike `ConDeclGADT`,
`ConDeclGADTPrefixPs` does not split the GADT type into its argument
and result types, as this cannot be done until after the type is
renamed (see `Note [GADT abstract syntax]` in `GHC.Hs.Decls` for why
this is the case).
* `GHC.Renamer.Module.rnConDecl` now has an additional case for
`ConDeclGADTPrefixPs` that (1) splits apart the full `LHsType` into
its `forall`s, context, argument types, and result type, and
(2) checks for nested `forall`s/contexts. Step (2) used to be
performed the typechecker (in `GHC.Tc.TyCl.badDataConTyCon`) rather
than the renamer, but now the relevant code from the typechecker
can simply be deleted.
One nice side effect of this change is that we are able to give a
more accurate error message for GADT constructors that use visible
dependent quantification (e.g., `MkFoo :: forall a -> a -> Foo a`),
which improves the stderr in the `T16326_Fail6` test case.
Fixes #18191. Bumps the Haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We often have (ModuleName, Bool) or (Module, Bool) pairs for "extended"
module names (without or with a unit id) disambiguating boot and normal
modules. We think this is important enough across the compiler that it
deserves a new nominal product type. We do this with synnoyms and a
functor named with a `Gen` prefix, matching other newly created
definitions.
It was also requested that we keep custom `IsBoot` / `NotBoot` sum type.
So we have it too. This means changing many the many bools to use that
instead.
Updates `haddock` submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With this patch, we always parse f @t as a type application,
thereby producing better error messages.
This steals two syntactic forms:
* Prefix form of the @-operator in expressions. Since the @-operator is
a divergence from the Haskell Report anyway, this is not a major loss.
* Prefix form of @-patterns. Since we are stealing loose infix form
anyway, might as well sacrifice the prefix form for the sake of much
better error messages.
|
| |
|
|
|
|
| |
See discussion in https://gitlab.haskell.org/ghc/ghc/issues/13009#note_268610
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implementation for Ticket #16393.
Explicit specificity allows users to manually create inferred type variables,
by marking them with braces.
This way, the user determines which variables can be instantiated through
visible type application.
The additional syntax is included in the parser, allowing users to write
braces in type variable binders (type signatures, data constructors etc).
This information is passed along through the renamer and verified in the
type checker.
The AST for type variable binders, data constructors, pattern synonyms,
partial signatures and Template Haskell has been updated to include the
specificity of type variables.
Minor notes:
- Bumps haddock submodule
- Disables pattern match checking in GHC.Iface.Type with GHC 8.8
|
| |
|
| |
|
|
|
|
|
|
|
|
| |
Arrow control operators have their own entries in the grammar, so they
did not cooperate with BlockArguments. This was just a minor oversight,
so this patch adjusts the grammar to add the desired behavior.
fixes #18050
|
|
|
|
|
|
|
| |
Introduce GHC.Unit.* hierarchy for everything concerning units, packages
and modules.
Update Haddock submodule
|
|
|
|
|
|
|
| |
Update Haddock submodule
Metric Increase:
haddock.compiler
|
|
* SysTools
* Parser
* GHC.Builtin
* GHC.Iface.Recomp
* Settings
Update Haddock submodule
Metric Decrease:
Naperian
parsing001
|