summaryrefslogtreecommitdiff
path: root/compiler/GHC/StgToCmm/Prof.hs
Commit message (Collapse)AuthorAgeFilesLines
* StgToCmm: Get rid of GHC.Driver.Session importsJohn Ericson2022-02-081-2/+0
| | | | | `DynFlags` is gone, but let's move a few trivial things around to get rid of its module too.
* Introduce alignment in CmmLoadBen Gamari2022-02-041-2/+3
|
* cmm: Introduce cmmLoadBWord and cmmLoadGCWordBen Gamari2022-02-041-1/+1
|
* StgToCmm: decouple DynFlags, add StgToCmmConfigdoyougnu2022-01-311-49/+49
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | StgToCmm: add Config, remove CgInfoDownwards StgToCmm: runC api change to take StgToCmmConfig StgToCmm: CgInfoDownad -> StgToCmmConfig StgToCmm.Monad: update getters/setters/withers StgToCmm: remove CallOpts in StgToCmm.Closure StgToCmm: remove dynflag references StgToCmm: PtrOpts removed StgToCmm: add TMap to config, Prof - dynflags StgToCmm: add omit yields to config StgToCmm.ExtCode: remove redundant import StgToCmm.Heap: remove references to dynflags StgToCmm: codeGen api change, DynFlags -> Config StgToCmm: remove dynflags in Env and StgToCmm StgToCmm.DataCon: remove dynflags references StgToCmm: remove dynflag references in DataCon StgToCmm: add backend avx flags to config StgToCmm.Prim: remove dynflag references StgToCmm.Expr: remove dynflag references StgToCmm.Bind: remove references to dynflags StgToCmm: move DoAlignSanitisation to Cmm.Type StgToCmm: remove PtrOpts in Cmm.Parser.y DynFlags: update ipInitCode api StgToCmm: Config Module is single source of truth StgToCmm: Lazy config breaks IORef deadlock testsuite: bump countdeps threshold StgToCmm.Config: strictify fields except UpdFrame Strictifying UpdFrameOffset causes the RTS build with stage1 to deadlock. Additionally, before the deadlock performance of the RTS is noticeably slower. StgToCmm.Config: add field descriptions StgToCmm: revert strictify on Module in config testsuite: update CountDeps tests StgToCmm: update comment, fix exports Specifically update comment about loopification passed into dynflags then stored into stgToCmmConfig. And remove getDynFlags from Monad.hs exports Types.Name: add pprFullName function StgToCmm.Ticky: use pprFullname, fixup ExtCode imports Cmm.Info: revert cmmGetClosureType removal StgToCmm.Bind: use pprFullName, Config update comments StgToCmm: update closureDescription api StgToCmm: SAT altHeapCheck StgToCmm: default render for Info table, ticky Use default rendering contexts for info table and ticky ticky, which should be independent of command line input. testsuite: bump count deps pprFullName: flag for ticky vs normal style output convertInfoProvMap: remove unused parameter StgToCmm.Config: add backend flags to config StgToCmm.Config: remove Backend from Config StgToCmm.Prim: refactor Backend call sites StgToCmm.Prim: remove redundant imports StgToCmm.Config: refactor vec compatibility check StgToCmm.Config: add allowQuotRem2 flag StgToCmm.Ticky: print internal names with parens StgToCmm.Bind: dispatch ppr based on externality StgToCmm: Add pprTickyname, Fix ticky naming Accidently removed the ctx for ticky SDoc output. The only relevant flag is sdocPprDebug which was accidental set to False due to using defaultSDocContext without altering the flag. StgToCmm: remove stateful fields in config fixup: config: remove redundant imports StgToCmm: move Sequel type to its own module StgToCmm: proliferate getCallMethod updated api StgToCmm.Monad: add FCodeState to Monad Api StgToCmm: add second reader monad to FCode fixup: Prim.hs: missed a merge conflict fixup: Match countDeps tests to HEAD StgToCmm.Monad: withState -> withCgState To disambiguate it from mtl withState. This withState shouldn't be returning the new state as a value. However, fixing this means tackling the knot tying in CgState and so is very difficult since it changes when the thunk of the knot is forced which either leads to deadlock or to compiler panic.
* Use Info Table Provenances to decode cloned stack (#18163)Sven Tennie2021-09-231-2/+0
| | | | | | | | | | | | | | | | Emit an Info Table Provenance Entry (IPE) for every stack represeted info table if -finfo-table-map is turned on. To decode a cloned stack, lookupIPE() is used. It provides a mapping between info tables and their source location. Please see these notes for details: - [Stacktraces from Info Table Provenance Entries (IPE based stack unwinding)] - [Mapping Info Tables to Source Positions] Metric Increase: T12545
* Optimize Info Table Provenance Entries (IPEs) Map creation and lookupSven Tennie2021-08-111-1/+1
| | | | | | | | | | | | | | | Using a hash map reduces the complexity of lookupIPE(), making it non linear. On registration each IPE list is added to a temporary IPE lists buffer, reducing registration time. The hash map is built lazily on first lookup. IPE event output to stderr is added with tests. For details, please see Note [The Info Table Provenance Entry (IPE) Map]. A performance test for IPE registration and lookup can be found here: https://gitlab.haskell.org/ghc/ghc/-/merge_requests/5724#note_370806
* Rubbish literals for all representations (#18983)Sebastian Graf2021-03-261-0/+1
| | | | | | | | | | | | | | | | | This patch cleans up the complexity around WW's `mk_absent_let` by broadening the scope of `LitRubbish`. Rubbish literals now store the `PrimRep` they represent and are ultimately lowered in Cmm. This in turn allows absent literals of `VecRep` or `VoidRep`. The latter allows absent literals for unlifted coercions, as requested in #18983. I took the liberty to rewrite and clean up `Note [Absent fillers]` and `Note [Rubbish values]` to account for the new implementation and to make them more orthogonal in their description. I didn't add a new regression test, as `T18982` already contains the test in the ticket and its test output changes as expected. Fixes #18983.
* Use a newtype for CHeader and CStub in ForeignStubsMatthew Pickering2021-03-031-1/+2
|
* Don't use FastString to convert string to UTF8Matthew Pickering2021-03-031-12/+9
|
* Add -finfo-table-map which maps info tables to source positionsMatthew Pickering2021-03-031-0/+53
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This new flag embeds a lookup table from the address of an info table to information about that info table. The main interface for consulting the map is the `lookupIPE` C function > InfoProvEnt * lookupIPE(StgInfoTable *info) The `InfoProvEnt` has the following structure: > typedef struct InfoProv_{ > char * table_name; > char * closure_desc; > char * ty_desc; > char * label; > char * module; > char * srcloc; > } InfoProv; > > typedef struct InfoProvEnt_ { > StgInfoTable * info; > InfoProv prov; > struct InfoProvEnt_ *link; > } InfoProvEnt; The source positions are approximated in a similar way to the source positions for DWARF debugging information. They are only approximate but in our experience provide a good enough hint about where the problem might be. It is therefore recommended to use this flag in conjunction with `-g<n>` for more accurate locations. The lookup table is also emitted into the eventlog when it is available as it is intended to be used with the `-hi` profiling mode. Using this flag will significantly increase the size of the resulting object file but only by a factor of 2-3x in our experience.
* Add the proper HLint rules and remove redundant keywords from compilerHécate2020-11-011-1/+1
|
* DynFlags: disentangle OutputableSylvain Henry2020-08-121-1/+4
| | | | | | | | | - put panic related functions into GHC.Utils.Panic - put trace related functions using DynFlags in GHC.Driver.Ppr One step closer making Outputable fully independent of DynFlags. Bump haddock submodule
* Remove platform constant wrappersSylvain Henry2020-07-251-77/+67
| | | | | | | | | | Platform constant wrappers took a DynFlags parameter, hence implicitly used the target platform constants. We removed them to allow support for several platforms at once (#14335) and to avoid having to pass the full DynFlags to every function (#17957). Metric Decrease: T4801
* Replace Opt_SccProfilingOn flag with sccProfilingEnabled helper functionSylvain Henry2020-07-021-8/+8
| | | | | | | | | | | SCC profiling was enabled in a convoluted way: if WayProf was enabled, Opt_SccProfilingOn general flag was set (in `GHC.Driver.Ways.wayGeneralFlags`), and then this flag was queried in various places. There is no need to go via general flags, so this patch defines a `sccProfilingEnabled :: DynFlags -> Bool` helper function that just checks whether WayProf is enabled.
* CmmToC: don't add extern decl to parsed Cmm dataSylvain Henry2020-06-231-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Previously, if a .cmm file *not in the RTS* contained something like: ```cmm section "rodata" { msg : bits8[] "Test\n"; } ``` It would get compiled by CmmToC into: ```c ERW_(msg); const char msg[] = "Test\012"; ``` and fail with: ``` /tmp/ghc32129_0/ghc_4.hc:5:12: error: error: conflicting types for \u2018msg\u2019 const char msg[] = "Test\012"; ^~~ In file included from /tmp/ghc32129_0/ghc_4.hc:3:0: error: /tmp/ghc32129_0/ghc_4.hc:4:6: error: note: previous declaration of \u2018msg\u2019 was here ERW_(msg); ^ /builds/hsyl20/ghc/_build/install/lib/ghc-8.11.0.20200605/lib/../lib/x86_64-linux-ghc-8.11.0.20200605/rts-1.0/include/Stg.h:253:46: error: note: in definition of macro \u2018ERW_\u2019 #define ERW_(X) extern StgWordArray (X) ^ ``` See the rationale for this on https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/backends/ppr-c#prototypes Now we don't generate these extern declarations (ERW_, etc.) for top-level data. It shouldn't change anything for the RTS (the only place we use .cmm files) as it is already special cased in `GHC.Cmm.CLabel.needsCDecl`. And hand-written Cmm can use explicit extern declarations when needed. Note that it allows `cgrun069` test to pass with CmmToC (cf #15467).
* Unit: split and rename modulesSylvain Henry2020-04-301-3/+3
| | | | | | | Introduce GHC.Unit.* hierarchy for everything concerning units, packages and modules. Update Haddock submodule
* Modules: Utils and Data (#13009)Sylvain Henry2020-04-261-3/+3
| | | | | | | Update Haddock submodule Metric Increase: haddock.compiler
* Refactor CmmStaticsSylvain Henry2020-04-031-2/+2
| | | | | | | | | | In !2959 we noticed that there was some redundant code (in GHC.Cmm.Utils and GHC.Cmm.StgToCmm.Utils) used to deal with `CmmStatics` datatype (before SRT generation) and `RawCmmStatics` datatype (after SRT generation). This patch removes this redundant code by using a single GADT for (Raw)CmmStatics.
* Modules: Types (#13009)Sylvain Henry2020-03-291-2/+2
| | | | | | | Update Haddock submodule Metric Increase: haddock.compiler
* Refactoring: use Platform instead of DynFlags when possibleSylvain Henry2020-03-191-46/+62
| | | | | | | | Metric Decrease: ManyConstructors T12707 T13035 T1969
* Modules: Driver (#13009)Sylvain Henry2020-02-211-1/+1
| | | | submodule updates: nofib, haddock
* Module hierarchy: ByteCode and Runtime (cf #13009)Sylvain Henry2020-02-121-1/+1
| | | | Update haddock submodule
* Do CafInfo/SRT analysis in CmmÖmer Sinan Ağacan2020-01-311-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch removes all CafInfo predictions and various hacks to preserve predicted CafInfos from the compiler and assigns final CafInfos to interface Ids after code generation. SRT analysis is extended to support static data, and Cmm generator is modified to allow generating static_link fields after SRT analysis. This also fixes `-fcatch-bottoms`, which introduces error calls in case expressions in CorePrep, which runs *after* CoreTidy (which is where we decide on CafInfos) and turns previously non-CAFFY things into CAFFY. Fixes #17648 Fixes #9718 Evaluation ========== NoFib ----- Boot with: `make boot mode=fast` Run: `make mode=fast EXTRA_RUNTEST_OPTS="-cachegrind" NoFibRuns=1` -------------------------------------------------------------------------------- Program Size Allocs Instrs Reads Writes -------------------------------------------------------------------------------- CS -0.0% 0.0% -0.0% -0.0% -0.0% CSD -0.0% 0.0% -0.0% -0.0% -0.0% FS -0.0% 0.0% -0.0% -0.0% -0.0% S -0.0% 0.0% -0.0% -0.0% -0.0% VS -0.0% 0.0% -0.0% -0.0% -0.0% VSD -0.0% 0.0% -0.0% -0.0% -0.5% VSM -0.0% 0.0% -0.0% -0.0% -0.0% anna -0.1% 0.0% -0.0% -0.0% -0.0% ansi -0.0% 0.0% -0.0% -0.0% -0.0% atom -0.0% 0.0% -0.0% -0.0% -0.0% awards -0.0% 0.0% -0.0% -0.0% -0.0% banner -0.0% 0.0% -0.0% -0.0% -0.0% bernouilli -0.0% 0.0% -0.0% -0.0% -0.0% binary-trees -0.0% 0.0% -0.0% -0.0% -0.0% boyer -0.0% 0.0% -0.0% -0.0% -0.0% boyer2 -0.0% 0.0% -0.0% -0.0% -0.0% bspt -0.0% 0.0% -0.0% -0.0% -0.0% cacheprof -0.0% 0.0% -0.0% -0.0% -0.0% calendar -0.0% 0.0% -0.0% -0.0% -0.0% cichelli -0.0% 0.0% -0.0% -0.0% -0.0% circsim -0.0% 0.0% -0.0% -0.0% -0.0% clausify -0.0% 0.0% -0.0% -0.0% -0.0% comp_lab_zift -0.0% 0.0% -0.0% -0.0% -0.0% compress -0.0% 0.0% -0.0% -0.0% -0.0% compress2 -0.0% 0.0% -0.0% -0.0% -0.0% constraints -0.0% 0.0% -0.0% -0.0% -0.0% cryptarithm1 -0.0% 0.0% -0.0% -0.0% -0.0% cryptarithm2 -0.0% 0.0% -0.0% -0.0% -0.0% cse -0.0% 0.0% -0.0% -0.0% -0.0% digits-of-e1 -0.0% 0.0% -0.0% -0.0% -0.0% digits-of-e2 -0.0% 0.0% -0.0% -0.0% -0.0% dom-lt -0.0% 0.0% -0.0% -0.0% -0.0% eliza -0.0% 0.0% -0.0% -0.0% -0.0% event -0.0% 0.0% -0.0% -0.0% -0.0% exact-reals -0.0% 0.0% -0.0% -0.0% -0.0% exp3_8 -0.0% 0.0% -0.0% -0.0% -0.0% expert -0.0% 0.0% -0.0% -0.0% -0.0% fannkuch-redux -0.0% 0.0% -0.0% -0.0% -0.0% fasta -0.0% 0.0% -0.0% -0.0% -0.0% fem -0.0% 0.0% -0.0% -0.0% -0.0% fft -0.0% 0.0% -0.0% -0.0% -0.0% fft2 -0.0% 0.0% -0.0% -0.0% -0.0% fibheaps -0.0% 0.0% -0.0% -0.0% -0.0% fish -0.0% 0.0% -0.0% -0.0% -0.0% fluid -0.1% 0.0% -0.0% -0.0% -0.0% fulsom -0.0% 0.0% -0.0% -0.0% -0.0% gamteb -0.0% 0.0% -0.0% -0.0% -0.0% gcd -0.0% 0.0% -0.0% -0.0% -0.0% gen_regexps -0.0% 0.0% -0.0% -0.0% -0.0% genfft -0.0% 0.0% -0.0% -0.0% -0.0% gg -0.0% 0.0% -0.0% -0.0% -0.0% grep -0.0% 0.0% -0.0% -0.0% -0.0% hidden -0.0% 0.0% -0.0% -0.0% -0.0% hpg -0.1% 0.0% -0.0% -0.0% -0.0% ida -0.0% 0.0% -0.0% -0.0% -0.0% infer -0.0% 0.0% -0.0% -0.0% -0.0% integer -0.0% 0.0% -0.0% -0.0% -0.0% integrate -0.0% 0.0% -0.0% -0.0% -0.0% k-nucleotide -0.0% 0.0% -0.0% -0.0% -0.0% kahan -0.0% 0.0% -0.0% -0.0% -0.0% knights -0.0% 0.0% -0.0% -0.0% -0.0% lambda -0.0% 0.0% -0.0% -0.0% -0.0% last-piece -0.0% 0.0% -0.0% -0.0% -0.0% lcss -0.0% 0.0% -0.0% -0.0% -0.0% life -0.0% 0.0% -0.0% -0.0% -0.0% lift -0.0% 0.0% -0.0% -0.0% -0.0% linear -0.1% 0.0% -0.0% -0.0% -0.0% listcompr -0.0% 0.0% -0.0% -0.0% -0.0% listcopy -0.0% 0.0% -0.0% -0.0% -0.0% maillist -0.0% 0.0% -0.0% -0.0% -0.0% mandel -0.0% 0.0% -0.0% -0.0% -0.0% mandel2 -0.0% 0.0% -0.0% -0.0% -0.0% mate -0.0% 0.0% -0.0% -0.0% -0.0% minimax -0.0% 0.0% -0.0% -0.0% -0.0% mkhprog -0.0% 0.0% -0.0% -0.0% -0.0% multiplier -0.0% 0.0% -0.0% -0.0% -0.0% n-body -0.0% 0.0% -0.0% -0.0% -0.0% nucleic2 -0.0% 0.0% -0.0% -0.0% -0.0% para -0.0% 0.0% -0.0% -0.0% -0.0% paraffins -0.0% 0.0% -0.0% -0.0% -0.0% parser -0.1% 0.0% -0.0% -0.0% -0.0% parstof -0.1% 0.0% -0.0% -0.0% -0.0% pic -0.0% 0.0% -0.0% -0.0% -0.0% pidigits -0.0% 0.0% -0.0% -0.0% -0.0% power -0.0% 0.0% -0.0% -0.0% -0.0% pretty -0.0% 0.0% -0.3% -0.4% -0.4% primes -0.0% 0.0% -0.0% -0.0% -0.0% primetest -0.0% 0.0% -0.0% -0.0% -0.0% prolog -0.0% 0.0% -0.0% -0.0% -0.0% puzzle -0.0% 0.0% -0.0% -0.0% -0.0% queens -0.0% 0.0% -0.0% -0.0% -0.0% reptile -0.0% 0.0% -0.0% -0.0% -0.0% reverse-complem -0.0% 0.0% -0.0% -0.0% -0.0% rewrite -0.0% 0.0% -0.0% -0.0% -0.0% rfib -0.0% 0.0% -0.0% -0.0% -0.0% rsa -0.0% 0.0% -0.0% -0.0% -0.0% scc -0.0% 0.0% -0.3% -0.5% -0.4% sched -0.0% 0.0% -0.0% -0.0% -0.0% scs -0.0% 0.0% -0.0% -0.0% -0.0% simple -0.1% 0.0% -0.0% -0.0% -0.0% solid -0.0% 0.0% -0.0% -0.0% -0.0% sorting -0.0% 0.0% -0.0% -0.0% -0.0% spectral-norm -0.0% 0.0% -0.0% -0.0% -0.0% sphere -0.0% 0.0% -0.0% -0.0% -0.0% symalg -0.0% 0.0% -0.0% -0.0% -0.0% tak -0.0% 0.0% -0.0% -0.0% -0.0% transform -0.0% 0.0% -0.0% -0.0% -0.0% treejoin -0.0% 0.0% -0.0% -0.0% -0.0% typecheck -0.0% 0.0% -0.0% -0.0% -0.0% veritas -0.0% 0.0% -0.0% -0.0% -0.0% wang -0.0% 0.0% -0.0% -0.0% -0.0% wave4main -0.0% 0.0% -0.0% -0.0% -0.0% wheel-sieve1 -0.0% 0.0% -0.0% -0.0% -0.0% wheel-sieve2 -0.0% 0.0% -0.0% -0.0% -0.0% x2n1 -0.0% 0.0% -0.0% -0.0% -0.0% -------------------------------------------------------------------------------- Min -0.1% 0.0% -0.3% -0.5% -0.5% Max -0.0% 0.0% -0.0% -0.0% -0.0% Geometric Mean -0.0% -0.0% -0.0% -0.0% -0.0% -------------------------------------------------------------------------------- Program Size Allocs Instrs Reads Writes -------------------------------------------------------------------------------- circsim -0.1% 0.0% -0.0% -0.0% -0.0% constraints -0.0% 0.0% -0.0% -0.0% -0.0% fibheaps -0.0% 0.0% -0.0% -0.0% -0.0% gc_bench -0.0% 0.0% -0.0% -0.0% -0.0% hash -0.0% 0.0% -0.0% -0.0% -0.0% lcss -0.0% 0.0% -0.0% -0.0% -0.0% power -0.0% 0.0% -0.0% -0.0% -0.0% spellcheck -0.0% 0.0% -0.0% -0.0% -0.0% -------------------------------------------------------------------------------- Min -0.1% 0.0% -0.0% -0.0% -0.0% Max -0.0% 0.0% -0.0% -0.0% -0.0% Geometric Mean -0.0% +0.0% -0.0% -0.0% -0.0% Manual inspection of programs in testsuite/tests/programs --------------------------------------------------------- I built these programs with a bunch of dump flags and `-O` and compared STG, Cmm, and Asm dumps and file sizes. (Below the numbers in parenthesis show number of modules in the program) These programs have identical compiler (same .hi and .o sizes, STG, and Cmm and Asm dumps): - Queens (1), andre_monad (1), cholewo-eval (2), cvh_unboxing (3), andy_cherry (7), fun_insts (1), hs-boot (4), fast2haskell (2), jl_defaults (1), jq_readsPrec (1), jules_xref (1), jtod_circint (4), jules_xref2 (1), lennart_range (1), lex (1), life_space_leak (1), bargon-mangler-bug (7), record_upd (1), rittri (1), sanders_array (1), strict_anns (1), thurston-module-arith (2), okeefe_neural (1), joao-circular (6), 10queens (1) Programs with different compiler outputs: - jl_defaults (1): For some reason GHC HEAD marks a lot of top-level `[Int]` closures as CAFFY for no reason. With this patch we no longer make them CAFFY and generate less SRT entries. For some reason Main.o is slightly larger with this patch (1.3%) and the executable sizes are the same. (I'd expect both to be smaller) - launchbury (1): Same as jl_defaults: top-level `[Int]` closures marked as CAFFY for no reason. Similarly `Main.o` is 1.4% larger but the executable sizes are the same. - galois_raytrace (13): Differences are in the Parse module. There are a lot, but some of the changes are caused by the fact that for some reason (I think a bug) GHC HEAD marks the dictionary for `Functor Identity` as CAFFY. Parse.o is 0.4% larger, the executable size is the same. - north_array: We now generate less SRT entries because some of array primops used in this program like `NewArrayOp` get eliminated during Stg-to-Cmm and turn some CAFFY things into non-CAFFY. Main.o gets 24% larger (9224 bytes from 9000 bytes), executable sizes are the same. - seward-space-leak: Difference in this program is better shown by this smaller example: module Lib where data CDS = Case [CDS] [(Int, CDS)] | Call CDS CDS instance Eq CDS where Case sels1 rets1 == Case sels2 rets2 = sels1 == sels2 && rets1 == rets2 Call a1 b1 == Call a2 b2 = a1 == a2 && b1 == b2 _ == _ = False In this program GHC HEAD builds a new SRT for the recursive group of `(==)`, `(/=)` and the dictionary closure. Then `/=` points to `==` in its SRT field, and `==` uses the SRT object as its SRT. With this patch we use the closure for `/=` as the SRT and add `==` there. Then `/=` gets an empty SRT field and `==` points to `/=` in its SRT field. This change looks fine to me. Main.o gets 0.07% larger, executable sizes are identical. head.hackage ------------ head.hackage's CI script builds 428 packages from Hackage using this patch with no failures. Compiler performance -------------------- The compiler perf tests report that the compiler allocates slightly more (worst case observed so far is 4%). However most programs in the test suite are small, single file programs. To benchmark compiler performance on something more realistic I build Cabal (the library, 236 modules) with different optimisation levels. For the "max residency" row I run GHC with `+RTS -s -A100k -i0 -h` for more accurate numbers. Other rows are generated with just `-s`. (This is because `-i0` causes running GC much more frequently and as a result "bytes copied" gets inflated by more than 25x in some cases) * -O0 | | GHC HEAD | This MR | Diff | | --------------- | -------------- | -------------- | ------ | | Bytes allocated | 54,413,350,872 | 54,701,099,464 | +0.52% | | Bytes copied | 4,926,037,184 | 4,990,638,760 | +1.31% | | Max residency | 421,225,624 | 424,324,264 | +0.73% | * -O1 | | GHC HEAD | This MR | Diff | | --------------- | --------------- | --------------- | ------ | | Bytes allocated | 245,849,209,992 | 246,562,088,672 | +0.28% | | Bytes copied | 26,943,452,560 | 27,089,972,296 | +0.54% | | Max residency | 982,643,440 | 991,663,432 | +0.91% | * -O2 | | GHC HEAD | This MR | Diff | | --------------- | --------------- | --------------- | ------ | | Bytes allocated | 291,044,511,408 | 291,863,910,912 | +0.28% | | Bytes copied | 37,044,237,616 | 36,121,690,472 | -2.49% | | Max residency | 1,071,600,328 | 1,086,396,256 | +1.38% | Extra compiler allocations -------------------------- Runtime allocations of programs are as reported above (NoFib section). The compiler now allocates more than before. Main source of allocation in this patch compared to base commit is the new SRT algorithm (GHC.Cmm.Info.Build). Below is some of the extra work we do with this patch, numbers generated by profiled stage 2 compiler when building a pathological case (the test 'ManyConstructors') with '-O2': - We now sort the final STG for a module, which means traversing the entire program, generating free variable set for each top-level binding, doing SCC analysis, and re-ordering the program. In ManyConstructors this step allocates 97,889,952 bytes. - We now do SRT analysis on static data, which in a program like ManyConstructors causes analysing 10,000 bindings that we would previously just skip. This step allocates 70,898,352 bytes. - We now maintain an SRT map for the entire module as we compile Cmm groups: data ModuleSRTInfo = ModuleSRTInfo { ... , moduleSRTMap :: SRTMap } (SRTMap is just a strict Map from the 'containers' library) This map gets an entry for most bindings in a module (exceptions are THUNKs and CAFFY static functions). For ManyConstructors this map gets 50015 entries. - Once we're done with code generation we generate a NameSet from SRTMap for the non-CAFFY names in the current module. This set gets the same number of entries as the SRTMap. - Finally we update CafInfos in ModDetails for the non-CAFFY Ids, using the NameSet generated in the previous step. This usually does the least amount of allocation among the work listed here. Only place with this patch where we do less work in the CAF analysis in the tidying pass (CoreTidy). However that doesn't save us much, as the pass still needs to traverse the whole program and update IdInfos for other reasons. Only thing we don't here do is the `hasCafRefs` pass over the RHS of bindings, which is a stateless pass that returns a boolean value, so it doesn't allocate much. (Metric changes blow are all increased allocations) Metric changes -------------- Metric Increase: ManyAlternatives ManyConstructors T13035 T14683 T1969 T9961
* Module hierarchy: Cmm (cf #13009)Sylvain Henry2020-01-251-5/+5
|
* Fix typos, using Wikipedia list of common typosBrian Wignall2019-11-281-2/+2
|
* Module hierarchy: StgToCmm (#13009)Sylvain Henry2019-09-101-0/+360
Add StgToCmm module hierarchy. Platform modules that are used in several other places (NCG, LLVM codegen, Cmm transformations) are put into GHC.Platform.