| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
| |
[skip ci]
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch does two things:
* It refactors GHC.Tc.Errors a bit. In debugging Quick Look I was
forced to look in detail at error messages, and ended up doing a bit
of refactoring, esp in mkTyVarEqErr'. It's still quite a mess, but
a bit better, I think.
* It makes a significant improvement to the kind checking of type and
class declarations. Specifically, we now ensure that if kind
checking fails with an unsolved constraint, all the skolems are in
scope. That wasn't the case before, which led to some obscure error
messages; and occasional failures with "no skolem info" (eg #16245).
Both of these, and the main Quick Look patch itself, affect a /lot/ of
error messages, as you can see from the number of files changed. I've
checked them all; I think they are as good or better than before.
Smaller things
* I documented the various instances of VarBndr better.
See Note [The VarBndr tyep and its uses] in GHC.Types.Var
* Renamed GHC.Tc.Solver.simpl_top to simplifyTopWanteds
* A bit of refactoring in bindExplicitTKTele, to avoid the
footwork with Either. Simpler now.
* Move promoteTyVar from GHC.Tc.Solver to GHC.Tc.Utils.TcMType
Fixes #16245 (comment 211369), memorialised as
typecheck/polykinds/T16245a
Also fixes the three bugs in #18640
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements Quick Look impredicativity (#18126), sticking
very closely to the design in
A quick look at impredicativity, Serrano et al, ICFP 2020
The main change is that a big chunk of GHC.Tc.Gen.Expr has been
extracted to two new modules
GHC.Tc.Gen.App
GHC.Tc.Gen.Head
which deal with typechecking n-ary applications, and the head of
such applications, respectively. Both contain a good deal of
documentation.
Three other loosely-related changes are in this patch:
* I implemented (partly by accident) points (2,3)) of the accepted GHC
proposal "Clean up printing of foralls", namely
https://github.com/ghc-proposals/ghc-proposals/blob/
master/proposals/0179-printing-foralls.rst
(see #16320).
In particular, see Note [TcRnExprMode] in GHC.Tc.Module
- :type instantiates /inferred/, but not /specified/, quantifiers
- :type +d instantiates /all/ quantifiers
- :type +v is killed off
That completes the implementation of the proposal,
since point (1) was done in
commit df08468113ab46832b7ac0a7311b608d1b418c4d
Author: Krzysztof Gogolewski <krzysztof.gogolewski@tweag.io>
Date: Mon Feb 3 21:17:11 2020 +0100
Always display inferred variables using braces
* HsRecFld (which the renamer introduces for record field selectors),
is now preserved by the typechecker, rather than being rewritten
back to HsVar. This is more uniform, and turned out to be more
convenient in the new scheme of things.
* The GHCi debugger uses a non-standard unification that allows the
unification variables to unify with polytypes. We used to hack
this by using ImpredicativeTypes, but that doesn't work anymore
so I introduces RuntimeUnkTv. See Note [RuntimeUnkTv] in
GHC.Runtime.Heap.Inspect
Updates haddock submodule.
WARNING: this patch won't validate on its own. It was too
hard to fully disentangle it from the following patch, on
type errors and kind generalisation.
Changes to tests
* Fixes #9730 (test added)
* Fixes #7026 (test added)
* Fixes most of #8808, except function `g2'` which uses a
section (which doesn't play with QL yet -- see #18126)
Test added
* Fixes #1330. NB Church1.hs subsumes Church2.hs, which is now deleted
* Fixes #17332 (test added)
* Fixes #4295
* This patch makes typecheck/should_run/T7861 fail.
But that turns out to be a pre-existing bug: #18467.
So I have just made T7861 into expect_broken(18467)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Two bugs, #18627 and #18649, had the same cause: we were not
account for the fact that a constaint tuple might hide an implicit
parameter.
The solution is not hard: look for implicit parameters in
superclasses. See Note [Local implicit parameters] in
GHC.Core.Predicate.
Then we use this new function in two places
* The "short-cut solver" in GHC.Tc.Solver.Interact.shortCutSolver
which simply didn't handle implicit parameters properly at all.
This fixes #18627
* The specialiser, which should not specialise on implicit parameters
This fixes #18649
There are some lingering worries (see Note [Local implicit
parameters]) but things are much better.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When we pretty-print a UnitId for the user, we try to map it back to its
origin package name, version and component to print
"package-version:component" instead of some hash.
The UnitId type doesn't carry these information, so we have to look into
a UnitState to find them. This is why the Outputable instance of
UnitId used `sdocWithDynFlags` in order to access the `unitState` field
of DynFlags.
This is wrong for several reasons:
1. The DynFlags are accessed when the message is printed, not when it is
generated. So we could imagine that the unitState may have changed
in-between. Especially if we want to allow unit unloading.
2. We want GHC to support several independent sessions at once, hence
several UnitState. The current approach supposes there is a unique
UnitState as a UnitId doesn't indicate which UnitState to use.
See the Note [Pretty-printing UnitId] in GHC.Unit for the new approach
implemented by this patch.
One step closer to remove `sdocDynFlags` field from `SDocContext`
(#10143).
Fix #18124.
Also fix some Backpack code to use SDoc instead of String.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since Backpack the "home unit" is much more involved than what it was
before (just an identifier obtained with `-this-unit-id`). Now it is
used in conjunction with `-component-id` and `-instantiated-with` to
configure module instantiations and to detect if we are type-checking an
indefinite unit or compiling a definite one.
This patch introduces a new HomeUnit datatype which is much easier to
understand. Moreover to make GHC support several packages in the same
instances, we will need to handle several HomeUnits so having a
dedicated (documented) type is helpful.
Finally in #14335 we will also need to handle the case where we have no
HomeUnit at all because we are only loading existing interfaces for
plugins which live in a different space compared to units used to
produce target code. Several functions will have to be refactored to
accept "Maybe HomeUnit" parameters instead of implicitly querying the
HomeUnit fields in DynFlags. Having a dedicated type will make this
easier.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
| |
- put panic related functions into GHC.Utils.Panic
- put trace related functions using DynFlags in GHC.Driver.Ppr
One step closer making Outputable fully independent of DynFlags.
Bump haddock submodule
|
|
|
|
|
|
|
| |
We don't need to use `sdocWithDynFlags` to know whether we should
display linear types for datacon types, we already have
`sdocLinearTypes` field in `SDocContext`. Moreover we want to remove
`sdocWithDynFlags` (#10143, #17957)).
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Haddock comments are, first and foremost, comments. It's very annoying
to incorporate them into the grammar. We can take advantage of an
important property: adding a Haddock comment does not change the parse
tree in any way other than wrapping some nodes in HsDocTy and the like
(and if it does, that's a bug).
This patch implements the following:
* Accumulate Haddock comments with their locations in the P monad.
This is handled in the lexer.
* After parsing, do a pass over the AST to associate Haddock comments
with AST nodes using location info.
* Report the leftover comments to the user as a warning (-Winvalid-haddock).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Following a long conversation with Richard, this patch tidies up the
handling of return kinds for data/newtype declarations (vanilla,
family, and instance).
I have substantially edited the Notes in TyCl, so they would
bear careful reading.
Fixes #18300, #18357
In GHC.Tc.Instance.Family.newFamInst we were checking some Lint-like
properties with ASSSERT. Instead Richard and I have added
a proper linter for axioms, and called it from lintGblEnv, which in
turn is called in tcRnModuleTcRnM
New tests (T18300, T18357) cause an ASSERT failure in HEAD.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the first step towards implementation of the linear types proposal
(https://github.com/ghc-proposals/ghc-proposals/pull/111).
It features
* A language extension -XLinearTypes
* Syntax for linear functions in the surface language
* Linearity checking in Core Lint, enabled with -dlinear-core-lint
* Core-to-core passes are mostly compatible with linearity
* Fields in a data type can be linear or unrestricted; linear fields
have multiplicity-polymorphic constructors.
If -XLinearTypes is disabled, the GADT syntax defaults to linear fields
The following items are not yet supported:
* a # m -> b syntax (only prefix FUN is supported for now)
* Full multiplicity inference (multiplicities are really only checked)
* Decent linearity error messages
* Linear let, where, and case expressions in the surface language
(each of these currently introduce the unrestricted variant)
* Multiplicity-parametric fields
* Syntax for annotating lambda-bound or let-bound with a multiplicity
* Syntax for non-linear/multiple-field-multiplicity records
* Linear projections for records with a single linear field
* Linear pattern synonyms
* Multiplicity coercions (test LinearPolyType)
A high-level description can be found at
https://ghc.haskell.org/trac/ghc/wiki/LinearTypes/Implementation
Following the link above you will find a description of the changes made to Core.
This commit has been authored by
* Richard Eisenberg
* Krzysztof Gogolewski
* Matthew Pickering
* Arnaud Spiwack
With contributions from:
* Mark Barbone
* Alexander Vershilov
Updates haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, `HsForAllTy` permits the combination of `ForallVis` and
`Inferred`, but you can't actually typecheck code that uses it
(e.g., `forall {a} ->`). This patch refactors `HsForAllTy` to use a
new `HsForAllTelescope` data type that makes a type-level distinction
between visible and invisible `forall`s such that visible `forall`s
do not track `Specificity`. That part of the patch is actually quite
small; the rest is simply changing consumers of `HsType` to
accommodate this new type.
Fixes #18235. Bumps the `haddock` submodule.
|
|
|
|
|
| |
* rename thisPackage into homeUnit
* document and refactor several Backpack things
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch simplifies GHC to use simple subsumption.
Ticket #17775
Implements GHC proposal #287
https://github.com/ghc-proposals/ghc-proposals/blob/master/
proposals/0287-simplify-subsumption.rst
All the motivation is described there; I will not repeat it here.
The implementation payload:
* tcSubType and friends become noticably simpler, because it no
longer uses eta-expansion when checking subsumption.
* No deeplyInstantiate or deeplySkolemise
That in turn means that some tests fail, by design; they can all
be fixed by eta expansion. There is a list of such changes below.
Implementing the patch led me into a variety of sticky corners, so
the patch includes several othe changes, some quite significant:
* I made String wired-in, so that
"foo" :: String rather than
"foo" :: [Char]
This improves error messages, and fixes #15679
* The pattern match checker relies on knowing about in-scope equality
constraints, andd adds them to the desugarer's environment using
addTyCsDs. But the co_fn in a FunBind was missed, and for some reason
simple-subsumption ends up with dictionaries there. So I added a
call to addTyCsDs. This is really part of #18049.
* I moved the ic_telescope field out of Implication and into
ForAllSkol instead. This is a nice win; just expresses the code
much better.
* There was a bug in GHC.Tc.TyCl.Instance.tcDataFamInstHeader.
We called checkDataKindSig inside tc_kind_sig, /before/
solveEqualities and zonking. Obviously wrong, easily fixed.
* solveLocalEqualitiesX: there was a whole mess in here, around
failing fast enough. I discovered a bad latent bug where we
could successfully kind-check a type signature, and use it,
but have unsolved constraints that could fill in coercion
holes in that signature -- aargh.
It's all explained in Note [Failure in local type signatures]
in GHC.Tc.Solver. Much better now.
* I fixed a serious bug in anonymous type holes. IN
f :: Int -> (forall a. a -> _) -> Int
that "_" should be a unification variable at the /outer/
level; it cannot be instantiated to 'a'. This was plain
wrong. New fields mode_lvl and mode_holes in TcTyMode,
and auxiliary data type GHC.Tc.Gen.HsType.HoleMode.
This fixes #16292, but makes no progress towards the more
ambitious #16082
* I got sucked into an enormous refactoring of the reporting of
equality errors in GHC.Tc.Errors, especially in
mkEqErr1
mkTyVarEqErr
misMatchMsg
misMatchMsgOrCND
In particular, the very tricky mkExpectedActualMsg function
is gone.
It took me a full day. But the result is far easier to understand.
(Still not easy!) This led to various minor improvements in error
output, and an enormous number of test-case error wibbles.
One particular point: for occurs-check errors I now just say
Can't match 'a' against '[a]'
rather than using the intimidating language of "occurs check".
* Pretty-printing AbsBinds
Tests review
* Eta expansions
T11305: one eta expansion
T12082: one eta expansion (undefined)
T13585a: one eta expansion
T3102: one eta expansion
T3692: two eta expansions (tricky)
T2239: two eta expansions
T16473: one eta
determ004: two eta expansions (undefined)
annfail06: two eta (undefined)
T17923: four eta expansions (a strange program indeed!)
tcrun035: one eta expansion
* Ambiguity check at higher rank. Now that we have simple
subsumption, a type like
f :: (forall a. Eq a => Int) -> Int
is no longer ambiguous, because we could write
g :: (forall a. Eq a => Int) -> Int
g = f
and it'd typecheck just fine. But f's type is a bit
suspicious, and we might want to consider making the
ambiguity check do a check on each sub-term. Meanwhile,
these tests are accepted, whereas they were previously
rejected as ambiguous:
T7220a
T15438
T10503
T9222
* Some more interesting error message wibbles
T13381: Fine: one error (Int ~ Exp Int)
rather than two (Int ~ Exp Int, Exp Int ~ Int)
T9834: Small change in error (improvement)
T10619: Improved
T2414: Small change, due to order of unification, fine
T2534: A very simple case in which a change of unification order
means we get tow unsolved constraints instead of one
tc211: bizarre impredicative tests; just accept this for now
Updates Cabal and haddock submodules.
Metric Increase:
T12150
T12234
T5837
haddock.base
Metric Decrease:
haddock.compiler
haddock.Cabal
haddock.base
Merge note: This appears to break the
`UnliftedNewtypesDifficultUnification` test. It has been marked as
broken in the interest of merging.
(cherry picked from commit 66b7b195cb3dce93ed5078b80bf568efae904cc5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We often have (ModuleName, Bool) or (Module, Bool) pairs for "extended"
module names (without or with a unit id) disambiguating boot and normal
modules. We think this is important enough across the compiler that it
deserves a new nominal product type. We do this with synnoyms and a
functor named with a `Gen` prefix, matching other newly created
definitions.
It was also requested that we keep custom `IsBoot` / `NotBoot` sum type.
So we have it too. This means changing many the many bools to use that
instead.
Updates `haddock` submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implementation for Ticket #16393.
Explicit specificity allows users to manually create inferred type variables,
by marking them with braces.
This way, the user determines which variables can be instantiated through
visible type application.
The additional syntax is included in the parser, allowing users to write
braces in type variable binders (type signatures, data constructors etc).
This information is passed along through the renamer and verified in the
type checker.
The AST for type variable binders, data constructors, pattern synonyms,
partial signatures and Template Haskell has been updated to include the
specificity of type variables.
Minor notes:
- Bumps haddock submodule
- Disables pattern match checking in GHC.Iface.Type with GHC 8.8
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, holes (both expression holes / out of scope variables and
partial-type-signature wildcards) were emitted as *constraints* via
the CHoleCan constructor. While this worked fine for error reporting,
there was a fair amount of faff in keeping these constraints in line.
In particular, and unlike other constraints, we could never change
a CHoleCan to become CNonCanonical. In addition:
* the "predicate" of a CHoleCan constraint was really the type
of the hole, which is not a predicate at all
* type-level holes (partial type signature wildcards) carried
evidence, which was never used
* tcNormalise (used in the pattern-match checker) had to create
a hole constraint just to extract it again; it was quite messy
The new approach is to record holes directly in WantedConstraints.
It flows much more nicely now.
Along the way, I did some cleaning up of commentary in
GHC.Tc.Errors.Hole, which I had a hard time understanding.
This was instigated by a future patch that will refactor
the way predicates are handled. The fact that CHoleCan's
"predicate" wasn't really a predicate is incompatible with
that future patch.
No test case, because this is meant to be purely internal.
It turns out that this change improves the performance of
the pattern-match checker, likely because fewer constraints
are sloshing about in tcNormalise. I have not investigated
deeply, but an improvement is not a surprise here:
-------------------------
Metric Decrease:
PmSeriesG
-------------------------
|
|
|
|
|
|
|
| |
Introduce GHC.Unit.* hierarchy for everything concerning units, packages
and modules.
Update Haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Over the years the unit management code has been modified a lot to keep
up with changes in Cabal (e.g. support for several library components in
the same package), to integrate BackPack, etc. I found it very hard to
understand as the terminology wasn't consistent, was referring to past
concepts, etc.
The terminology is now explained as clearly as I could in the Note
"About Units" and the code is refactored to reflect it.
-------------------
Many names were misleading: UnitId is not an Id but could be a virtual
unit (an indefinite one instantiated on the fly), IndefUnitId
constructor may contain a definite instantiated unit, etc.
* Rename IndefUnitId into InstantiatedUnit
* Rename IndefModule into InstantiatedModule
* Rename UnitId type into Unit
* Rename IndefiniteUnitId constructor into VirtUnit
* Rename DefiniteUnitId constructor into RealUnit
* Rename packageConfigId into mkUnit
* Rename getPackageDetails into unsafeGetUnitInfo
* Rename InstalledUnitId into UnitId
Remove references to misleading ComponentId: a ComponentId is just an
indefinite unit-id to be instantiated.
* Rename ComponentId into IndefUnitId
* Rename ComponentDetails into UnitPprInfo
* Fix display of UnitPprInfo with empty version: this is now used for
units dynamically generated by BackPack
Generalize several types (Module, Unit, etc.) so that they can be used
with different unit identifier types: UnitKey, UnitId, Unit, etc.
* GenModule: Module, InstantiatedModule and InstalledModule are now
instances of this type
* Generalize DefUnitId, IndefUnitId, Unit, InstantiatedUnit,
PackageDatabase
Replace BackPack fake "hole" UnitId by a proper HoleUnit constructor.
Add basic support for UnitKey. They should be used more in the future to
avoid mixing them up with UnitId as we do now.
Add many comments.
Update Haddock submodule
|
|
|
|
|
|
|
| |
Update Haddock submodule
Metric Increase:
haddock.compiler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements eager instantiation, a small but critical change
to the type inference engine, #17173. The main change is this:
When inferring types, always return an instantiated type
(for now, deeply instantiated; in future shallowly instantiated)
There is more discussion in
https://www.tweag.io/posts/2020-04-02-lazy-eager-instantiation.html
There is quite a bit of refactoring in this patch:
* The ir_inst field of GHC.Tc.Utils.TcType.InferResultk
has entirely gone. So tcInferInst and tcInferNoInst have collapsed
into tcInfer.
* Type inference of applications, via tcInferApp and
tcInferAppHead, are substantially refactored, preparing
the way for Quick Look impredicativity.
* New pure function GHC.Tc.Gen.Expr.collectHsArgs and applyHsArgs
are beatifully dual. We can see the zipper!
* GHC.Tc.Gen.Expr.tcArgs is now much nicer; no longer needs to return
a wrapper
* In HsExpr, HsTypeApp now contains the the actual type argument,
and is used in desugaring, rather than putting it in a mysterious
wrapper.
* I struggled a bit with good error reporting in
Unify.matchActualFunTysPart. It's a little bit simpler than before,
but still not great.
Some smaller things
* Rename tcPolyExpr --> tcCheckExpr
tcMonoExpr --> tcLExpr
* tcPatSig moves from GHC.Tc.Gen.HsType to GHC.Tc.Gen.Pat
Metric Decrease:
T9961
Reduction of 1.6% in comiler allocation on T9961, I think.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* SysTools
* Parser
* GHC.Builtin
* GHC.Iface.Recomp
* Settings
Update Haddock submodule
Metric Decrease:
Naperian
parsing001
|
|
|
|
| |
XBindStmtTc) to help clarify the meaning of XBindStmt in the renamer and typechecker
|
|
|
|
| |
Also add more documentation.
|
|
|
|
|
| |
Don't use noSyntaxExpr for it. There is no good way to defensively case
on that, nor is it clear one ought to do so.
|
|
|
|
|
| |
This fixes several small oversights in the choice of pretty-printing
function to use. Fixes #18052.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This changes every unused TTG extension constructor to be strict in
its field so that the pattern-match coverage checker is smart enough
any such constructors are unreachable in pattern matches. This lets
us remove nearly every use of `noExtCon` in the GHC API. The only
ones we cannot remove are ones underneath uses of `ghcPass`, but that
is only because GHC 8.8's and 8.10's coverage checkers weren't smart
enough to perform this kind of reasoning. GHC HEAD's coverage
checker, on the other hand, _is_ smart enough, so we guard these uses
of `noExtCon` with CPP for now.
Bumps the `haddock` submodule.
Fixes #17992.
|
|
Update Haddock submodule
|