| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
| |
One more step towards the new design of EPA.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch removes the following defaulting of type variables
in type and data families:
- type variables of kind RuntimeRep defaulting to LiftedRep
- type variables of kind Levity defaulting to Lifted
- type variables of kind Multiplicity defaulting to Many
It does this by passing "defaulting options" to the `defaultTyVars`
function; when calling from `tcTyFamInstEqnGuts` or
`tcDataFamInstHeader` we pass options that avoid defaulting.
This avoids wildcards being defaulted, which caused type families
to unexpectedly fail to reduce.
Note that kind defaulting, applicable only with -XNoPolyKinds,
is not changed by this patch.
Fixes #17536
-------------------------
Metric Increase:
T12227
-------------------------
|
|
|
|
|
|
|
|
|
| |
Use an (Raw)PkgQual datatype instead of `Maybe FastString` to represent
package imports. Factorize the code that renames RawPkgQual into PkgQual
in function `rnPkgQual`. Renaming consists in checking if the FastString
is the magic "this" keyword, the home-unit unit-id or something else.
Bump haddock submodule
|
|
|
|
| |
We no longer need it after previous IndefUnitId refactoring.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Because uVar used eqType instead of tcEqType, it was possible
to accumulate a substitution that unified Type and Constraint.
For example, a call to `tc_unify_tys` with arguments
tys1 = [ k, k ]
tys2 = [ Type, Constraint ]
would first add `k = Type` to the substitution. That's fine, but then
the second call to `uVar` would claim that the substitution also
unifies `k` with `Constraint`. This could then be used to cause
trouble, as per #20521.
Fixes #20521
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PHASE 1: we never rewrite Concrete# evidence.
This patch migrates all the representation polymorphism checks to
the typechecker, using a new constraint form
Concrete# :: forall k. k -> TupleRep '[]
Whenever a type `ty` must be representation-polymorphic
(e.g. it is the type of an argument to a function), we emit a new
`Concrete# ty` Wanted constraint. If this constraint goes
unsolved, we report a representation-polymorphism error to the user.
The 'FRROrigin' datatype keeps track of the context of the
representation-polymorphism check, for more informative error messages.
This paves the way for further improvements, such as
allowing type families in RuntimeReps and improving the soundness
of typed Template Haskell. This is left as future work (PHASE 2).
fixes #17907 #20277 #20330 #20423 #20426
updates haddock submodule
-------------------------
Metric Decrease:
T5642
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It is quite easy to end up accidently retaining a KnotVars, which
contains pointers to a stale TypeEnv because they are placed in the
HscEnv.
One place in particular we have to be careful is when loading a module
into the EPS in `--make` mode, we have to remove the reference to
KnotVars as otherwise the interface loading thunks will forever retain
reference to the KnotVars which are live at the time the interface was
loaded.
These changes do not go as far as to enforce the invariant described in
Note [KnotVar invariants]
* At the end of upsweep, there should be no live KnotVars
but at least improve the situation.
This is left for future work (#20491)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Like the built-in type defaulting rules these plugins can propose candidates
to resolve ambiguous type variables.
Machine learning and other large APIs like those for game engines introduce
new numeric types and other complex typed APIs. The built-in defaulting
mechanism isn't powerful enough to resolve ambiguous types in these cases forcing
users to specify minutia that they might not even know how to do. There is
an example defaulting plugin linked in the documentation. Applications include
defaulting the device a computation executes on, if a gradient should be
computed for a tensor, or the size of a tensor.
See https://github.com/ghc-proposals/ghc-proposals/pull/396 for details.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit makes the `Validity` type polymorphic:
```
data Validity' a
= IsValid -- ^ Everything is fine
| NotValid a -- ^ A problem, and some indication of why
-- | Monomorphic version of @Validity'@ specialised for 'SDoc's.
type Validity = Validity' SDoc
```
The type has been (provisionally) renamed to Validity' to not break
existing code, as the monomorphic `Validity` type is quite pervasive
in a lot of signatures in GHC.
Why having a polymorphic Validity? Because it carries the evidence of
"what went wrong", but the old type carried an `SDoc`, which clashed
with the new GHC diagnostic infrastructure (#18516). Having it
polymorphic it means we can carry an arbitrary, richer diagnostic type,
and this is very important for things like the
`checkOriginativeSideConditions` function, which needs to report the
actual diagnostic error back to `GHC.Tc.Deriv`.
It also generalises Validity-related functions to be polymorphic in @a@.
|
|
|
|
|
|
|
|
|
|
|
|
| |
Close #20356.
See addendum to Note [coreView vs tcView] in GHC.Core.Type
for the details.
Also killed old Note about metaTyVarUpdateOK, which has been
gone for some time.
test case: typecheck/should_fail/T20356
|
| |
|
|
|
|
| |
Closes ticket #17820.
|
|
|
|
|
|
|
|
|
|
|
| |
See Note [Equality on FunTys] in TyCoRep.
Close #17675.
Close #17655, about documentation improvements included in
this patch.
Close #19677, about a further mistake around FunTy.
test cases: typecheck/should_compile/T19677
|
|
|
|
|
|
| |
When determining whether to default a RuntimeRep or Multiplicity
variable, use isMetaTyVar to distinguish between metavariables
(which can be hidden) and skolems (which cannot).
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit adds the following constructors to the TcRnMessage type and
uses them to replace sdoc-based diagnostics in some parts of GHC (e.g.
TcRnUnknownMessage). It includes:
* Add TcRnMonomorphicBindings diagnostic
* Convert TcRnUnknownMessage in Tc.Solver.Interact
* Add and use the TcRnOrphanInstance constructor to TcRnMessage
* Add TcRnFunDepConflict and TcRnDupInstanceDecls constructors to TcRnMessage
* Add and use TcRnConflictingFamInstDecls constructor to TcRnMessage
* Get rid of TcRnUnknownMessage from GHC.Tc.Instance.Family
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch specifies and simplifies the module cycle compilation
in upsweep. How things work are described in the Note [Upsweep]
Note [Upsweep]
~~~~~~~~~~~~~~
Upsweep takes a 'ModuleGraph' as input, computes a build plan and then executes
the plan in order to compile the project.
The first step is computing the build plan from a 'ModuleGraph'.
The output of this step is a `[BuildPlan]`, which is a topologically sorted plan for
how to build all the modules.
```
data BuildPlan = SingleModule ModuleGraphNode -- A simple, single module all alone but *might* have an hs-boot file which isn't part of a cycle
| ResolvedCycle [ModuleGraphNode] -- A resolved cycle, linearised by hs-boot files
| UnresolvedCycle [ModuleGraphNode] -- An actual cycle, which wasn't resolved by hs-boot files
```
The plan is computed in two steps:
Step 1: Topologically sort the module graph without hs-boot files. This returns a [SCC ModuleGraphNode] which contains
cycles.
Step 2: For each cycle, topologically sort the modules in the cycle *with* the relevant hs-boot files. This should
result in an acyclic build plan if the hs-boot files are sufficient to resolve the cycle.
The `[BuildPlan]` is then interpreted by the `interpretBuildPlan` function.
* `SingleModule nodes` are compiled normally by either the upsweep_inst or upsweep_mod functions.
* `ResolvedCycles` need to compiled "together" so that the information which ends up in
the interface files at the end is accurate (and doesn't contain temporary information from
the hs-boot files.)
- During the initial compilation, a `KnotVars` is created which stores an IORef TypeEnv for
each module of the loop. These IORefs are gradually updated as the loop completes and provide
the required laziness to typecheck the module loop.
- At the end of typechecking, all the interface files are typechecked again in
the retypecheck loop. This time, the knot-tying is done by the normal laziness
based tying, so the environment is run without the KnotVars.
* UnresolvedCycles are indicative of a proper cycle, unresolved by hs-boot files
and are reported as an error to the user.
The main trickiness of `interpretBuildPlan` is deciding which version of a dependency
is visible from each module. For modules which are not in a cycle, there is just
one version of a module, so that is always used. For modules in a cycle, there are two versions of
'HomeModInfo'.
1. Internal to loop: The version created whilst compiling the loop by upsweep_mod.
2. External to loop: The knot-tied version created by typecheckLoop.
Whilst compiling a module inside the loop, we need to use the (1). For a module which
is outside of the loop which depends on something from in the loop, the (2) version
is used.
As the plan is interpreted, which version of a HomeModInfo is visible is updated
by updating a map held in a state monad. So after a loop has finished being compiled,
the visible module is the one created by typecheckLoop and the internal version is not
used again.
This plan also ensures the most important invariant to do with module loops:
> If you depend on anything within a module loop, before you can use the dependency,
the whole loop has to finish compiling.
The end result of `interpretBuildPlan` is a `[MakeAction]`, which are pairs
of `IO a` actions and a `MVar (Maybe a)`, somewhere to put the result of running
the action. This list is topologically sorted, so can be run in order to compute
the whole graph.
As well as this `interpretBuildPlan` also outputs an `IO [Maybe (Maybe HomeModInfo)]` which
can be queried at the end to get the result of all modules at the end, with their proper
visibility. For example, if any module in a loop fails then all modules in that loop will
report as failed because the visible node at the end will be the result of retypechecking
those modules together.
Along the way we also fix a number of other bugs in the driver:
* Unify upsweep and parUpsweep.
* Fix #19937 (static points, ghci and -j)
* Adds lots of module loop tests due to Divam.
Also related to #20030
Co-authored-by: Divam Narula <dfordivam@gmail.com>
-------------------------
Metric Decrease:
T10370
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Type-checking plugins can now directly rewrite type-families.
The TcPlugin record is given a new field, tcPluginRewrite.
The plugin specifies how to rewrite certain type-families with a value
of type `UniqFM TyCon TcPluginRewriter`, where:
type TcPluginRewriter
= RewriteEnv -- Rewriter environment
-> [Ct] -- Givens
-> [TcType] -- type family arguments
-> TcPluginM TcPluginRewriteResult
data TcPluginRewriteResult
= TcPluginNoRewrite
| TcPluginRewriteTo
{ tcPluginRewriteTo :: Reduction
, tcRewriterNewWanteds :: [Ct]
}
When rewriting an exactly-saturated type-family application,
GHC will first query type-checking plugins for possible rewritings
before proceeding.
Includes some changes to the TcPlugin API, e.g. removal
of the EvBindsVar parameter to the TcPluginM monad.
|
|
|
|
|
|
|
|
| |
We also add a new `ol_from_fun` field to renamed (but not yet
typechecked) OverLits. This has the nice knock-on effect of making
total some typechecker functions that used to be partial.
Fixes #20151
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
When eyeballing calls of GHC.Core.Opt.Simplify.Monad.traceSmpl,
I saw that lots of cold-path logging code was getting inlined
into the main Simplifier module.
So in GHC.Utils.Logger I added a NOINLINE on logDumpFile'.
For logging, the "hot" path, up to and including the conditional,
should be inlined, but after that we should inline as little as
possible, to reduce code size in the caller.
|
|
|
|
|
|
|
| |
This patch fixes #20103, by treating HasCallStack constraints as
cheap when eta-expanding.
See Note [Eta expanding through CallStacks] in GHC.Core.Opt.Arity
|
|
|
|
|
|
|
|
|
|
|
|
| |
Methodology: Create a -hi profile and then search for TcGblEnv
then use ghc-debug to work out why they are being retained and remove
the reason.
Retaining TcGblEnv is dangerous because it contains pointers to things
such as a TypeEnv which is updated throughout compilation. I found two
places which were retaining a TcGblEnv unecessarily.
Also fix a few places where an OccName was retaining an Id.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use DiagOpts for diagnostic options instead of directly querying
DynFlags (#17957).
Surprising performance improvements on CI:
T4801(normal) ghc/alloc 313236344.0 306515216.0 -2.1% GOOD
T9961(normal) ghc/alloc 384502736.0 380584384.0 -1.0% GOOD
ManyAlternatives(normal) ghc/alloc 797356128.0 786644928.0 -1.3%
ManyConstructors(normal) ghc/alloc 4389732432.0 4317740880.0 -1.6%
T783(normal) ghc/alloc 408142680.0 402812176.0 -1.3%
Metric Decrease:
T4801
T9961
T783
ManyAlternatives
ManyConstructors
Bump haddock submodule
|
| |
|
| |
|
|
|
|
| |
Fixes #14380, #19997
|
|
|
|
|
|
|
|
|
|
|
| |
This commit tries to untangle the zoo of diagnostic-related functions
in `Tc.Utils.Monad` so that we can have the interfaces mentions only
`TcRnMessage`s while we push the creation of these messages upstream.
It also ports TcRnMessage diagnostics to use the new API, in particular
this commit switch to use TcRnMessage in the external interfaces
of the diagnostic functions, and port the old SDoc to be wrapped
into TcRnUnknownMessage.
|
|
|
|
|
|
|
|
| |
Now that Outputable is independent of DynFlags, we can put tracing
functions using SDocs into their own module that doesn't transitively
depend on any GHC.Driver.* module.
A few modules needed to be moved to avoid loops in DEBUG mode.
|
|
|
|
| |
fixes #19756, updates haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
`GHC.Hs.Syn.Type`
The existing `hsPatType`, `hsLPatType` and `hsLitType` functions have also been
moved to this module
This is a less ambitious take on the same problem that !2182 and !3866
attempt to solve. Rather than have the `hsExprType` function attempt to
efficiently compute the `Type` of every subexpression in an `HsExpr`, this
simply computes the overall `Type` of a single `HsExpr`.
- Explicitly forbids the `SplicePat` `HsIPVar`, `HsBracket`, `HsRnBracketOut`
and `HsTcBracketOut` constructors during the typechecking phase by using
`Void` as the TTG extension field
- Also introduces `dataConCantHappen` as a domain specific alternative to `absurd`
to handle cases where the TTG extension points forbid a constructor.
- Turns HIE file generation into a pure function that doesn't need access to the
`DsM` monad to compute types, but uses `hsExprType` instead.
- Computes a few more types during HIE file generation
- Makes GHCi's `:set +c` command also use `hsExprType` instead of going through
the desugarer to compute types.
Updates haddock submodule
Co-authored-by: Zubin Duggal <zubin.duggal@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Introduce LogFlags as a independent subset of DynFlags used for logging.
As a consequence in many places we don't have to pass both Logger and
DynFlags anymore.
The main reason for this refactoring is that I want to refactor the
systools interfaces: for now many systools functions use DynFlags both
to use the Logger and to fetch their parameters (e.g. ldInputs for the
linker). I'm interested in refactoring the way they fetch their
parameters (i.e. use dedicated XxxOpts data types instead of DynFlags)
for #19877. But if I did this refactoring before refactoring the Logger,
we would have duplicate parameters (e.g. ldInputs from DynFlags and
linkerInputs from LinkerOpts). Hence this patch first.
Some flags don't really belong to LogFlags because they are subsystem
specific (e.g. most DumpFlags). For example -ddump-asm should better be
passed in NCGConfig somehow. This patch doesn't fix this tight coupling:
the dump flags are part of the UI but they are passed all the way down
for example to infer the file name for the dumps.
Because LogFlags are a subset of the DynFlags, we must update the former
when the latter changes (not so often). As a consequence we now use
accessors to read/write DynFlags in HscEnv instead of using `hsc_dflags`
directly.
In the process I've also made some subsystems less dependent on DynFlags:
- CmmToAsm: by passing some missing flags via NCGConfig (see new fields
in GHC.CmmToAsm.Config)
- Core.Opt.*:
- by passing -dinline-check value into UnfoldingOpts
- by fixing some Core passes interfaces (e.g. CallArity, FloatIn)
that took DynFlags argument for no good reason.
- as a side-effect GHC.Core.Opt.Pipeline.doCorePass is much less
convoluted.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit expands the old Note [Type variable cycles in Givens] to apply
as well to Deriveds. See the Note for details and examples. This fixes a
regression introduced by my earlier commit that killed off the flattener in
favor of the rewriter.
A few other things happened along the way:
* unifyTest was renamed to touchabilityTest, because that's what it does.
* isInsolubleOccursCheck was folded into checkTypeEq, which does much of the
same work. To get this to work out, though, we need to keep more careful
track of what errors we spot in checkTypeEq, and so CheckTyEqResult has
become rather more glorious.
* A redundant Note or two was eliminated.
* Kill off occCheckForErrors; due to Note [Rewriting synonyms], the
extra occCheckExpand here is always redundant.
* Store blocked equalities separately from other inerts; less stuff
to look through when kicking out.
Close #19682.
test case: typecheck/should_compile/T19682{,b}
|
|
|
|
|
|
|
|
|
|
|
| |
This commit converts a bunch of HsToCore (Ds) messages to use the new
GHC's diagnostic message infrastructure. In particular the DsMessage
type has been expanded with a lot of type constructors, each
encapsulating a particular error and warning emitted during desugaring.
Due to the fact that levity polymorphism checking can happen both at the
Ds and at the TcRn level, a new `TcLevityCheckDsMessage` constructor has
been added to the `TcRnMessage` type.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch comprises of four different but closely related ideas. The
net result is fixing a large number of open issues with the driver
whilst making it simpler to understand.
1. Use the hash of the source file to determine whether the source file
has changed or not. This makes the recompilation checking more robust to
modern build systems which are liable to copy files around changing
their modification times.
2. Remove the concept of a "stable module", a stable module was one
where the object file was older than the source file, and all transitive
dependencies were also stable. Now we don't rely on the modification
time of the source file, the notion of stability is moot.
3. Fix TH/plugin recompilation after the removal of stable modules. The
TH recompilation check used to rely on stable modules. Now there is a
uniform and simple way, we directly track the linkables which were
loaded into the interpreter whilst compiling a module. This is an
over-approximation but more robust wrt package dependencies changing.
4. Fix recompilation checking for dynamic object files. Now we actually
check if the dynamic object file exists when compiling with -dynamic-too
Fixes #19774 #19771 #19758 #17434 #11556 #9121 #8211 #16495 #7277 #16093
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This creates new modules GHC.Tc.Solver.InertSet and
GHC.Tc.Solver.Types. The Monad module is still pretty
big, but this is an improvement. Moreover, it means
that GHC.HsToCore.Pmc.Solver.Types no longer depends
on the constraint solver (it now depends on GHC.Tc.Solver.InertSet),
making the error-messages work easier.
This patch thus contributes to #18516.
|
|
|
|
| |
This patch is a first step towards a simpler design for exact printing.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes a space leak related to the use of
Maybe in RealSrcSpan by introducing a strict variant
of Maybe.
In addition to that, it also introduces a strict pair
and uses the newly introduced strict data types in a few
other places (e.g. the lexer/parser state) to reduce
allocations.
Includes a regression test.
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Change the names of the fields in in `data FieldOcc`
- Renames `HsRecFld` to `HsRecSel`
- Replace `AmbiguousFieldOcc p` in `HsRecSel` with `FieldOcc p`
- Contains a haddock submodule update
The primary motivation of this change is to remove
`AmbiguousFieldOcc`. This is one of a suite of changes improving how
record syntax (most notably record update syntax) is represented in
the AST.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit extends the GHC diagnostic hierarchy with a `GhcHint` type,
modelling helpful suggestions emitted by GHC which can be used to deal
with a particular warning or error.
As a direct consequence of this, the `Diagnostic` typeclass has been extended
with a `diagnosticHints` method, which returns a `[GhcHint]`. This means
that now we can clearly separate out the printing of the diagnostic
message with the suggested fixes.
This is done by extending the `printMessages` function in
`GHC.Driver.Errors`.
On top of that, the old `PsHint` type has been superseded by the new `GhcHint`
type, which de-duplicates some hints in favour of a general `SuggestExtension`
constructor that takes a `GHC.LanguageExtensions.Extension`.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit converts some TcRn diagnostic into proper structured
errors.
Ported by this commit:
* Add TcRnImplicitLift
This commit adds the TcRnImplicitLift diagnostic message and a prototype
API to be able to log messages which requires additional err info.
* Add TcRnUnusedPatternBinds
* Add TcRnDodgyExports
* Add TcRnDodgyImports message
* Add TcRnMissingImportList
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Replace uses of WARN macro with calls to:
warnPprTrace :: Bool -> SDoc -> a -> a
Remove the now unused HsVersions.h
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is no reason to use CPP. __LINE__ and __FILE__ macros are now
better replaced with GHC's CallStack. As a bonus, assert error messages
now contain more information (function name, column).
Here is the mapping table (HasCallStack omitted):
* ASSERT: assert :: Bool -> a -> a
* MASSERT: massert :: Bool -> m ()
* ASSERTM: assertM :: m Bool -> m ()
* ASSERT2: assertPpr :: Bool -> SDoc -> a -> a
* MASSERT2: massertPpr :: Bool -> SDoc -> m ()
* ASSERTM2: assertPprM :: m Bool -> SDoc -> m ()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch was driven by #18481, to allow visible type application
for levity-polymorphic newtypes. As so often, it started simple
but grew:
* Significant refactor: I removed HsConLikeOut from the
client-independent Language.Haskell.Syntax.Expr, and put it where it
belongs, as a new constructor `ConLikeTc` in the GHC-specific extension
data type for expressions, `GHC.Hs.Expr.XXExprGhcTc`.
That changed touched a lot of files in a very superficial way.
* Note [Typechecking data constructors] explains the main payload.
The eta-expansion part is no longer done by the typechecker, but
instead deferred to the desugarer, via `ConLikeTc`
* A little side benefit is that I was able to restore VTA for
data types with a "stupid theta": #19775. Not very important,
but the code in GHC.Tc.Gen.Head.tcInferDataCon is is much, much
more elegant now.
* I had to refactor the levity-polymorphism checking code in
GHC.HsToCore.Expr, see
Note [Checking for levity-polymorphic functions]
Note [Checking levity-polymorphic data constructors]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CorePrepProv is only created in CorePrep, so I thought it wouldn't be
needed in IfaceUnivCoProv. But actually IfaceSyn is used during
pretty-printing, and we can certainly pretty-print things after
CorePrep as #19768 showed.
So the simplest thing is to represent CorePrepProv in IfaceSyn.
To improve what Lint can do I also added a boolean to CorePrepProv, to
record whether it is homogeneously kinded or not. It is introduced in
two distinct ways (see Note [Unsafe coercions] in GHC.CoreToStg.Prep),
one of which may be hetero-kinded (e.g. Int ~ Int#) beause it is
casting a divergent expression; but the other is not. The boolean
keeps track.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit adds GhcMessage and ancillary (PsMessage, TcRnMessage, ..)
types.
These types will be expanded to represent more errors generated
by different subsystems within GHC. Right now, they are underused,
but more will come in the glorious future.
See
https://gitlab.haskell.org/ghc/ghc/-/wikis/Errors-as-(structured)-values
for a design overview.
Along the way, lots of other things had to happen:
* Adds Semigroup and Monoid instance for Bag
* Fixes #19746 by parsing OPTIONS_GHC pragmas into Located Strings.
See GHC.Parser.Header.toArgs (moved from GHC.Utils.Misc, where it
didn't belong anyway).
* Addresses (but does not completely fix) #19709, now reporting
desugarer warnings and errors appropriately for TH splices.
Not done: reporting type-checker warnings for TH splices.
* Some small refactoring around Safe Haskell inference, in order
to keep separate classes of messages separate.
* Some small refactoring around initDsTc, in order to keep separate
classes of messages separate.
* Separate out the generation of messages (that is, the construction
of the text block) from the wrapping of messages (that is, assigning
a SrcSpan). This is more modular than the previous design, which
mixed the two.
Close #19746.
This was a collaborative effort by Alfredo di Napoli and
Richard Eisenberg, with a key assist on #19746 by Iavor
Diatchki.
Metric Increase:
MultiLayerModules
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The main idea here is to avoid treating
* case e of {}
* case unsafeEqualityProof of UnsafeRefl co -> blah
specially in CoreToStg. Instead, nail them in CorePrep,
by converting
case e of {}
==> e |> unsafe-co
case unsafeEqualityProof of UnsafeRefl cv -> blah
==> blah[unsafe-co/cv]
in GHC.Core.Prep. Now expressions that we want to treat as trivial
really are trivial. We can get rid of cpExprIsTrivial.
And we fix #19700.
A downside is that, at least under unsafeEqualityProof, we substitute
in types and coercions, which is more work. But a big advantage is
that it's all very simple and principled: CorePrep really gets rid of
the unsafeCoerce stuff, as it does empty case, runRW#, lazyId etc.
I've updated the overview in GHC.Core.Prep, and added
Note [Unsafe coercions] in GHC.Core.Prep
Note [Implementing unsafeCoerce] in base:Unsafe.Coerce
We get 3% fewer bytes allocated when compiling perf/compiler/T5631,
which uses a lot of unsafeCoerces. (It's a happy-generated parser.)
Metric Decrease:
T5631
|