summaryrefslogtreecommitdiff
path: root/compiler/GHC/Unit/Module/Graph.hs
Commit message (Collapse)AuthorAgeFilesLines
* driver: Correct output of -fno-code and -dynamic-tooMatthew Pickering2021-10-191-11/+10
| | | | | | | | | | | | | Before we would print [1 of 3] Compiling T[boot] ( T.hs-boot, nothing, T.dyn_o ) Which was clearly wrong for two reasons. 1. No dynamic object file was produced for T[boot] 2. The file would be called T.dyn_o-boot if it was produced. Fixes #20300
* driver: Cleanups related to ModLocationMatthew Pickering2021-10-191-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ModLocation is the data type which tells you the locations of all the build products which can affect recompilation. It is now computed in one place and not modified through the pipeline. Important locations will now just consult ModLocation rather than construct the dynamic object path incorrectly. * Add paths for dynamic object and dynamic interface files to ModLocation. * Always use the paths from mod location when looking for where to find any interface or object file. * Always use the paths in a ModLocation when deciding where to write an interface and object file. * Remove `dynamicOutputFile` and `dynamicOutputHi` functions which *calculated* (incorrectly) the location of `dyn_o` and `dyn_hi` files. * Don't set `outputFile_` and so-on in `enableCodeGenWhen`, `-o` and hence `outputFile_` should not affect the location of object files in `--make` mode. It is now sufficient to just update the ModLocation with the temporary paths. * In `hscGenBackendPipeline` don't recompute the `ModLocation` to account for `-dynamic-too`, the paths are now accurate from the start of the run. * Rename `getLocation` to `mkOneShotModLocation`, as that's the only place it's used. Increase the locality of the definition by moving it close to the use-site. * Load the dynamic interface from ml_dyn_hi_file rather than attempting to reconstruct it in load_dynamic_too. * Add a variety of tests to check how -o -dyno etc interact with each other. Some other clean-ups * DeIOify mkHomeModLocation and friends, they are all pure functions. * Move FinderOpts into GHC.Driver.Config.Finder, next to initFinderOpts. * Be more precise about whether we mean outputFile or outputFile_: there were many places where outputFile was used but the result shouldn't have been affected by `-dyno` (for example the filename of the resulting executable). In these places dynamicNow would never be set but it's still more precise to not allow for this possibility. * Typo fixes suffices -> suffixes in the appropiate places.
* Driver rework pt3: the upsweepMatthew Pickering2021-08-181-1/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch specifies and simplifies the module cycle compilation in upsweep. How things work are described in the Note [Upsweep] Note [Upsweep] ~~~~~~~~~~~~~~ Upsweep takes a 'ModuleGraph' as input, computes a build plan and then executes the plan in order to compile the project. The first step is computing the build plan from a 'ModuleGraph'. The output of this step is a `[BuildPlan]`, which is a topologically sorted plan for how to build all the modules. ``` data BuildPlan = SingleModule ModuleGraphNode -- A simple, single module all alone but *might* have an hs-boot file which isn't part of a cycle | ResolvedCycle [ModuleGraphNode] -- A resolved cycle, linearised by hs-boot files | UnresolvedCycle [ModuleGraphNode] -- An actual cycle, which wasn't resolved by hs-boot files ``` The plan is computed in two steps: Step 1: Topologically sort the module graph without hs-boot files. This returns a [SCC ModuleGraphNode] which contains cycles. Step 2: For each cycle, topologically sort the modules in the cycle *with* the relevant hs-boot files. This should result in an acyclic build plan if the hs-boot files are sufficient to resolve the cycle. The `[BuildPlan]` is then interpreted by the `interpretBuildPlan` function. * `SingleModule nodes` are compiled normally by either the upsweep_inst or upsweep_mod functions. * `ResolvedCycles` need to compiled "together" so that the information which ends up in the interface files at the end is accurate (and doesn't contain temporary information from the hs-boot files.) - During the initial compilation, a `KnotVars` is created which stores an IORef TypeEnv for each module of the loop. These IORefs are gradually updated as the loop completes and provide the required laziness to typecheck the module loop. - At the end of typechecking, all the interface files are typechecked again in the retypecheck loop. This time, the knot-tying is done by the normal laziness based tying, so the environment is run without the KnotVars. * UnresolvedCycles are indicative of a proper cycle, unresolved by hs-boot files and are reported as an error to the user. The main trickiness of `interpretBuildPlan` is deciding which version of a dependency is visible from each module. For modules which are not in a cycle, there is just one version of a module, so that is always used. For modules in a cycle, there are two versions of 'HomeModInfo'. 1. Internal to loop: The version created whilst compiling the loop by upsweep_mod. 2. External to loop: The knot-tied version created by typecheckLoop. Whilst compiling a module inside the loop, we need to use the (1). For a module which is outside of the loop which depends on something from in the loop, the (2) version is used. As the plan is interpreted, which version of a HomeModInfo is visible is updated by updating a map held in a state monad. So after a loop has finished being compiled, the visible module is the one created by typecheckLoop and the internal version is not used again. This plan also ensures the most important invariant to do with module loops: > If you depend on anything within a module loop, before you can use the dependency, the whole loop has to finish compiling. The end result of `interpretBuildPlan` is a `[MakeAction]`, which are pairs of `IO a` actions and a `MVar (Maybe a)`, somewhere to put the result of running the action. This list is topologically sorted, so can be run in order to compute the whole graph. As well as this `interpretBuildPlan` also outputs an `IO [Maybe (Maybe HomeModInfo)]` which can be queried at the end to get the result of all modules at the end, with their proper visibility. For example, if any module in a loop fails then all modules in that loop will report as failed because the visible node at the end will be the result of retypechecking those modules together. Along the way we also fix a number of other bugs in the driver: * Unify upsweep and parUpsweep. * Fix #19937 (static points, ghci and -j) * Adds lots of module loop tests due to Divam. Also related to #20030 Co-authored-by: Divam Narula <dfordivam@gmail.com> ------------------------- Metric Decrease: T10370 -------------------------
* Put hole instantiation typechecking in the module graph and fix driver batch ↵John Ericson2020-12-281-13/+120
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mode backpack edges Backpack instantiations need to be typechecked to make sure that the arguments fit the parameters. `tcRnInstantiateSignature` checks instantiations with concrete modules, while `tcRnCheckUnit` checks instantiations with free holes (signatures in the current modules). Before this change, it worked that `tcRnInstantiateSignature` was called after typechecking the argument module, see `HscMain.hsc_typecheck`, while `tcRnCheckUnit` was called in `unsweep'` where-bound in `GhcMake.upsweep`. `tcRnCheckUnit` was called once per each instantiation once all the argument sigs were processed. This was done with simple "to do" and "already done" accumulators in the fold. `parUpsweep` did not implement the change. With this change, `tcRnCheckUnit` instead is associated with its own node in the `ModuleGraph`. Nodes are now: ```haskell data ModuleGraphNode -- | Instantiation nodes track the instantiation of other units -- (backpack dependencies) with the holes (signatures) of the current package. = InstantiationNode InstantiatedUnit -- | There is a module summary node for each module, signature, and boot module being built. | ModuleNode ExtendedModSummary ``` instead of just `ModSummary`; the `InstantiationNode` case is the instantiation of a unit to be checked. The dependencies of such nodes are the same "free holes" as was checked with the accumulator before. Both versions of upsweep on such a node call `tcRnCheckUnit`. There previously was an `implicitRequirements` function which would crawl through every non-current-unit module dep to look for all free holes (signatures) to add as dependencies in `GHC.Driver.Make`. But this is no good: we shouldn't be looking for transitive anything when building the graph: the graph should only have immediate edges and the scheduler takes care that all transitive requirements are met. So `GHC.Driver.Make` stopped using `implicitRequirements`, and instead uses a new `implicitRequirementsShallow`, which just returns the outermost instantiation node (or module name if the immediate dependency is itself a signature). The signature dependencies are just treated like any other imported module, but the module ones then go in a list stored in the `ModuleNode` next to the `ModSummary` as the "extra backpack dependencies". When `downsweep` creates the mod summaries, it adds this information too. ------ There is one code quality, and possible correctness thing left: In addition to `implicitRequirements` there is `findExtraSigImports`, which says something like "if you are an instantiation argument (you are substituted or a signature), you need to import its things too". This is a little non-local so I am not quite sure how to get rid of it in `GHC.Driver.Make`, but we probably should eventually. First though, let's try to make a test case that observes that we don't do this, lest it actually be unneeded. Until then, I'm happy to leave it as is. ------ Beside the ability to use `-j`, the other major user-visibile side effect of this change is that that the --make progress log now includes "Instantiating" messages for these new nodes. Those also are numbered like module nodes and count towards the total. ------ Fixes #17188 Updates hackage submomdule Metric Increase: T12425 T13035
* Split GHC.Driver.TypesSylvain Henry2020-10-291-0/+101
I was working on making DynFlags stateless (#17957), especially by storing loaded plugins into HscEnv instead of DynFlags. It turned out to be complicated because HscEnv is in GHC.Driver.Types but LoadedPlugin isn't: it is in GHC.Driver.Plugins which depends on GHC.Driver.Types. I didn't feel like introducing yet another hs-boot file to break the loop. Additionally I remember that while we introduced the module hierarchy (#13009) we talked about splitting GHC.Driver.Types because it contained various unrelated types and functions, but we never executed. I didn't feel like making GHC.Driver.Types bigger with more unrelated Plugins related types, so finally I bit the bullet and split GHC.Driver.Types. As a consequence this patch moves a lot of things. I've tried to put them into appropriate modules but nothing is set in stone. Several other things moved to avoid loops. * Removed Binary instances from GHC.Utils.Binary for random compiler things * Moved Typeable Binary instances into GHC.Utils.Binary.Typeable: they import a lot of things that users of GHC.Utils.Binary don't want to depend on. * put everything related to Units/Modules under GHC.Unit: GHC.Unit.Finder, GHC.Unit.Module.{ModGuts,ModIface,Deps,etc.} * Created several modules under GHC.Types: GHC.Types.Fixity, SourceText, etc. * Split GHC.Utils.Error (into GHC.Types.Error) * Finally removed GHC.Driver.Types Note that this patch doesn't put loaded plugins into HscEnv. It's left for another patch. Bump haddock submodule